Matching entries: 0
settings...
Egenhofer MJ (1989), "Spatial Query Languages". Thesis at: University of Maine. University of Maine.
BibTeX:
@phdthesis{Egenhofer1989c,

  author = {Egenhofer, Max J.},
  title = {Spatial Query Languages},
  publisher = {University of Maine},
  school = {University of Maine},
  year = {1989}
}
Hudson DL (1990), "Autonomous View-Stages: Materialized Support for View Update Propagation". Thesis at: University of Maine. University of Maine.
BibTeX:
@phdthesis{Hudson1990,

  author = {Hudson, Doug L.},
  title = {Autonomous View-Stages: Materialized Support for View Update Propagation},
  publisher = {University of Maine},
  school = {University of Maine},
  year = {1990}
}
Al-Taha K (1992), "Temporal Reasoning in Cadastral Systems". Thesis at: University of Maine. University of Maine.
Abstract: A GIS is not just a collection of maps stored in a computer, but a database that should correctly model a particular region of the world. Since the world is changing continuously, GIS applications require that the data collection to be updated. Every GIS is, by definition, a database that manages spatial data and includes facilities to update its data so it continues to reflect the current situation. But only a GIS that includes ``time'' and ``space'' in its model of reality is often called a ``temporal GIS,'' which contains the current information and keeps the data that describe the previous states and when they were applicable. A temporal GIS must answer ``when-and-where-'' questions, such as: ``what were the boundaries of New York City in June, 1908?'' ``Where were the forest areas in New England in 1880,'' or ``which properties owned John Doe in Baltimore from August 1981 to June 1988.'' When GIss include time, they can really demonstrate the enormous advantage of a database that models reality compared to a conventional collection of printed maps.
BibTeX:
@phdthesis{al-taha92,

  author = {Al-Taha, Khaled},
  title = {Temporal Reasoning in Cadastral Systems},
  publisher = {University of Maine},
  school = {University of Maine},
  year = {1992}
}
Buyong T (1992), "Measurement-Based Multi-Purpose Cadastral Systems". Thesis at: University of Maine. University of Maine.
BibTeX:
@phdthesis{Buyong1992a,

  author = {Buyong, Taher},
  title = {Measurement-Based Multi-Purpose Cadastral Systems},
  publisher = {University of Maine},
  school = {University of Maine},
  year = {1992}
}
Bruegger BP (1994), "Spatial theory for the integration of resolution-limited data". Thesis at: University of Maine. University of Maine.
BibTeX:
@phdthesis{Bruegger1994,

  author = {Bruegger, B. P.},
  title = {Spatial theory for the integration of resolution-limited data},
  publisher = {University of Maine},
  school = {University of Maine},
  year = {1994}
}
Dieberger A (1994), "Navigation in Textual Virtual Environments using a City Metaphor". Thesis at: Technical University Vienna.
BibTeX:
@phdthesis{Dieberger1994,

  author = {Dieberger, Andreas},
  title = {Navigation in Textual Virtual Environments using a City Metaphor},
  school = {Technical University Vienna},
  year = {1994}
}
Car A (1996), "Hierarchical Spatial Reasoning: Theoretical Consideration and its Application to Modeling Wayfinding. Ph.D.". Thesis at: Technical University Vienna. , pp. 151. Technical University Vienna.
BibTeX:
@phdthesis{Car1996b,

  author = {Car, Adrijana},
  title = {Hierarchical Spatial Reasoning: Theoretical Consideration and its Application to Modeling Wayfinding. Ph.D.},
  publisher = {Technical University Vienna},
  school = {Technical University Vienna},
  year = {1996},
  pages = {151}
}
Bittner S (1998), "Die Modellierung eines Grundbuchsystems im Situationskalkül". Thesis at: Technical University Vienna. Universität.
BibTeX:
@phdthesis{Bittner1998a,

  author = {Bittner, S.},
  title = {Die Modellierung eines Grundbuchsystems im Situationskalkül},
  publisher = {Universität},
  school = {Technical University Vienna},
  year = {1998}
}
Timpf S (1998), "Hierarchical Structures in Map Series". Thesis at: Technical University Vienna. , pp. 124. Technical University Vienna.
BibTeX:
@phdthesis{timpf98:hierarchical,

  author = {Timpf, Sabine},
  title = {Hierarchical Structures in Map Series},
  publisher = {Technical University Vienna},
  school = {Technical University Vienna},
  year = {1998},
  pages = {124}
}
Bittner T (1999), "Rough Location". Thesis at: Technical University Vienna.
BibTeX:
@phdthesis{bittner99[TUW-119857],

  author = {Bittner, Thomas},
  title = {Rough Location},
  school = {Technical University Vienna},
  year = {1999}
}
Medak D (1999), "Lifestyles - A Paradigm for the Description of Spatiotemporal Databases". Thesis at: Technical University Vienna. Wien
BibTeX:
@phdthesis{medakPhd,

  author = {Medak, Damir},
  title = {Lifestyles - A Paradigm for the Description of Spatiotemporal Databases},
  school = {Technical University Vienna},
  year = {1999}
}
Staudinger M (1999), "A Cost Orientated Approach to Geodetic Network Optimisation". Thesis at: Technical University Delft.
BibTeX:
@phdthesis{Staudinger1999,

  author = {Staudinger, Martin},
  title = {A Cost Orientated Approach to Geodetic Network Optimisation},
  school = {Technical University Delft},
  year = {1999}
}
Bittner S (2001), "An Agent-Based Model of Reality in a Cadastre". Thesis at: Technical University Vienna. Technical University Vienna.
BibTeX:
@phdthesis{Bittner2001a,

  author = {Bittner, S.},
  title = {An Agent-Based Model of Reality in a Cadastre},
  publisher = {Technical University Vienna},
  school = {Technical University Vienna},
  year = {2001}
}
Bittner T (2001), "Rough Location". Thesis at: Technical University Vienna. Vol. 23 Institute for Geoinformation.
BibTeX:
@phdthesis{Bittner2001c,

  author = {Bittner, Thomas},
  title = {Rough Location},
  publisher = {Institute for Geoinformation},
  school = {Technical University Vienna},
  year = {2001},
  volume = {23}
}
Raubal M (2001), "Agent-Based Simulation of Human Wayfinding: A Perceptual Model for Unfamiliar Buildings". Thesis at: Technical University Vienna. , pp. 159. Vienna University of Technology.
Abstract: Researchers in the areas of human wayfinding, spatial cognition, computer science, and artificial intelligence have developed cognitively based computational models for wayfinding. These models focus primarily on learning a spatial environment and on the exploration of mental representations rather than the information needs for wayfinding. It is important to consider the information needs because people trying to find their ways in unfamiliar environments do not have a previously acquired mental representation but depend on external information. The fundamental tenet of this work is that all such information must be presented to the wayfinder at each decision point as knowledge in the world.Simulating people's wayfinding behavior in a cognitively plausible way requires the integration of structures for information perception and cognition in the underlying model. In this thesis we use a cognizing agent to simulate people's wayfinding processes in an unfamiliar building. The agent-based model is grounded in the ontology and epistemology of the agent and its environment. Both are derived from human subjects testing using an ecological approach. This leads to two tiers in the conceptual model: simulated states of the environment and simulated beliefs of the agent. The agent is modeled with state, an observation schema, wayfinding strategies, and commonsense knowledge. The wayfinding environment is modeled as a graph, where nodes represent decision points and edges represent lines of movement.The perceptual wayfinding model integrates the agent and its environment within a Sense-Plan-Act framework. It focuses on knowledge in the world to explain actions of the agent while performing a wayfinding task. We use the concepts of affordance and information to describe what kinds of knowledge the agent derives from the world by means of visual perception. Affordances are possibilities for action with reference to the agent. Information such as from signs is necessary for the agent to decide which affordances to utilize. During the navigation process the agent accumulates beliefs about the environment by observing task-relevant affordances and information at decision points. The utilization of a so-called ``go-to'' affordance, i.e., following a pathway, leads the agent from one node to another where it is again provided with percepts. A successful navigation corresponds to the agent's traversal from a start to a goal node. The perceptual wayfinding model concentrates on the actual information needs during wayfinding and does not focus on learning a spatial environment.The proposed formal algebraic specifications of the agent-based model within a functional programming environment can be used to simulate people's wayfinding behavior in spatial information and design systems in a cognitively plausible way. The simulation helps to determine where and why people face wayfinding difficulties and what needs to be done to avoid them. We employ the specific case of wayfinding in an airport to demonstrate the perceptual wayfinding model. The result can be practically used to test the signage in the airport.
BibTeX:
@phdthesis{Raubal2001,

  author = {Raubal, M.},
  title = {Agent-Based Simulation of Human Wayfinding: A Perceptual Model for Unfamiliar Buildings},
  publisher = {Vienna University of Technology},
  school = {Technical University Vienna},
  year = {2001},
  pages = {159}
}
Hochmair H (2002), "The Wayfinding Metaphor - Compairing the Semantics of Wayfinding in the Physical World and the WWW.". Thesis at: Technical University Vienna. Technical University Vienna.
Abstract: Wegesuche ist ein Teil des täglichen Lebens. Die Begriffe Wegesuche und Navigation werden traditionsgemäß mit der realen Welt assoziiert. Durch die Anwendung von neuen Technologien findet Wegesuche auch in künstlich geschaffenen Umgebungen statt (z.B. im World Wide Web, in Computerspielen oder in der virtual reality). Obwohl sich reale Welt und künstlich geschaffene Umgebung in bestimmten Punkten unterscheiden---wie etwa in der Definition von Distanzen oder in der Strukturierung des Raumes---nehmen wir an, dass die wesentlichen Konzepte, die den Wegesuche-Prozess in der realen Welt beschreiben, auch im WWW angewendet werden können.par Ein Ziel der vorliegenden Arbeit ist es, die Bedeutung des Begriffs Wegesuche zu klären. Durch die Analyse von verschiedenen Wegesuche-Definitionen haben wir festgestellt, dass Wegesuche kein eindeutig beschreibbarer Prozess ist. Trotzdem scheint es einige zentrale Eigenschaften eines Wegesuche-Prozesses zu geben. Daher sehen wir den Begriff Wegesuche als Vertreter einer radialen Kategorie. Aus den verschiedenen Wegesuche-Definitionen extrahieren wir die zentralen Eigenschaften von Wegesuche und beschreiben diese mit Hilfe von Axiomen. Die Axiome stellen bestimmte Anforderungen an den Agenten und seine Umgebung. Wenn diese erfüllt sind, kann man den beschriebenen Prozess als Wegesuche bezeichnen.par Ein weiteres Ziel der Arbeit ist es, zu zeigen, dass durch die Wegesuche-Metapher die Bedeutung des Begriffs Wegesuche sowohl in der realen Welt als auch im Web-Raum eine ähnliche ist. Dazu formalisieren wir das konzeptuelle Wegesuche-Modell mittels algebraischer Spezifikationen, welche für zwei Typen von Agent und Umgebung instanziiert werden. Wir zeigen, dass beide Instanzen die Wegesuche-Axiome erfüllen und daher der Begriff Wegesuche auch im Web-Raum sinnvoll angewendet werden kann---und zwar in einer ähnlichen Bedeutung, wie er sie auch in der realen Welt hat. par Die Axiome sind unabhängig von verwendeter Wegesuche-Strategie und Art der Umgebung. Deshalb können wir dem modellierten Agenten eine beliebige Strategie zur Lösung des Wegesuche-Problems, das ihm in einer Simulation gestellt wird, geben. Dabei bewegt sich der Agent in einer ihm unbekannten Umgebung. In seinem Entscheidungsprozess verwendet der Agent Information aus der Umgebung und trifft die Entscheidungen vorzugsweise aufgrund semantischer Kriterien. Die Simulation zeigt, dass die algebraischen Spezifikationen ausführbar sind.par
BibTeX:
@phdthesis{Hochmair2002a,

  author = {Hochmair, H.},
  title = {The Wayfinding Metaphor - Compairing the Semantics of Wayfinding in the Physical World and the WWW.},
  publisher = {Technical University Vienna},
  school = {Technical University Vienna},
  year = {2002},
  url = {ftp://ftp.geoinfo.tuwien.ac.at/hochmair/phD-thesis.zip}
}
Krek A (2002), "An Agent-Based Model for Quantifying the Economic Value of Geographic Information". Thesis at: Technical University Vienna. Technical University Vienna.
Abstract: The aim of this thesis is to establish the market economic framework for geographic data exchange. We are interested in economic aspects of geographic information and the value it has for the potential buyer. Our hypothesis is that it is possible to quantify the value of geographic information in a specific decision making situation. Our general approach for verifying the hypothesis and testing the agent-based computational model is applied to a car navigation case study. The major scientific contributions of this thesis are a formal agent-based model, a conceptual model of dataset qualities that link properties of a dataset to the cost of the decision making process and results of simulations which give a quantitative value of geographic information in a particular decision making process. In the final sections of this chapter we present the scientific results, the intended audience of this research and an overview on the content of the subsequent chapters.
BibTeX:
@phdthesis{Krek2002a,

  author = {Krek, Alenka},
  title = {An Agent-Based Model for Quantifying the Economic Value of Geographic Information},
  publisher = {Technical University Vienna},
  school = {Technical University Vienna},
  year = {2002},
  url = {ftp://ftp.geoinfo.tuwien.ac.at/krek/krekPhD2002.zip}
}
Navratil G (2002), "Formalisierung von Gesetzen". Thesis at: Technical University Vienna. Technical University Vienna.
Abstract: Die vorliegende Arbeit untersucht Gesetze und Algebra. Auf den ersten Blick sehen diese beiden Themen sehr unterschiedlich aus. Gesetze sind Textwerke, die das Zusammenleben der Menschen regeln, Algebren sind eine mathematische Methode zur Beschreibung von Eigenschaften. Bei näherer Betrachtung fällt allerdings auf, dass in beiden Fällen Systeme modelliert werden und sich die verwendeten Methoden sehr ähnlich sind. In beiden Fällen wird mit Klassenbildung, Abstraktion und axiomatischer Definition gearbeitet.Anhand eines Vergleiches der beiden Modellierungssysteme wird eine Methodikpar entwickelt, wie man Gesetze in Algebren übersetzen kann. Drei Schritte sind notwendig:par textperiodcentered Identifikation der Klassenpar textperiodcentered Definition von Datentypen, Operationen und Axiomenpar textperiodcentered Testen anhand einer einfachen Realisierungpar Wichtig ist dabei vor allem, welchen Beitrag einzelne Paragraphen liefern. Ein Paragraph kann einen Datentyp spezifizieren, eine Operation beschreiben oder ein Axiom festlegen. Die Beschreibung der Operationen zerfällt wiederum in drei Bereiche. Einerseits muss die Notwendigkeit der Operation gegeben sein. Zusätzlich benötigt eine Operation Parameter und produziert ein Ergebnis. Schließlich muss die Operation auch noch einer Klasse zugeordnet werden. All diese Aufgaben werden von Paragraphen erfüllt. Dabei wirken oft mehrere Paragraphen zusammen um eine Aufgabe gemeinsam zu lösen. par Die entwickelte Methode wurde anhand eines Beispiels getestet. Das Testbeispiel ist das österreichische allgemeine Grundbuchsgesetz. Dieses wurde ohne Verwendung von Praxiswissen in ein algebraisches Modell überführt. Alle notwendigen Informationen wurden dabei dem allgemeinen Grundbuchsgesetz oder anderen Gesetzen (z.B. dem allgemeinen bürgerlichen Gesetzbuch) entnommen. Die algebraische Umsetzung wurde in Haskell, einer funktionalen Programmiersprache, durchgeführt. Der Vorteil liegt in der mathematischen Reinheit der Sprache, die sie anderen Programmiersprachen voraus hat und in der Ausführbarkeit, die sie von der Mathematik abhebt.par
BibTeX:
@phdthesis{Navratil2002a,

  author = {Navratil, Gerhard},
  title = {Formalisierung von Gesetzen},
  publisher = {Technical University Vienna},
  school = {Technical University Vienna},
  year = {2002},
  url = {ftp://ftp.geoinfo.tuwien.ac.at/navratil/Nav_PhD.pdf}
}
Pontikakis E (2006), "Wayfinding in GIS: Formalization of Basic Needs of a Passenger When Using Public Transportation". Thesis at: Technical University Vienna.
BibTeX:
@phdthesis{pontikakis06[TUW-120615],

  author = {Pontikakis, Elissavet},
  title = {Wayfinding in GIS: Formalization of Basic Needs of a Passenger When Using Public Transportation},
  school = {Technical University Vienna},
  year = {2006}
}
Rottenbacher C (2006), "Bewegter Planungsprozess". Thesis at: Technical University Vienna.
BibTeX:
@phdthesis{rottenbacher06[TUW-120617],

  author = {Rottenbacher, Christine},
  title = {Bewegter Planungsprozess},
  school = {Technical University Vienna},
  year = {2006}
}
Twaroch F (2007), "Sadbox Geography : How to Structure Space in Formal Models". Thesis at: Technical University Vienna. Vol. Doctor of Technical Science, pp. 200. Technical University Vienna.
BibTeX:
@phdthesis{Twaroch2007a,

  author = {Twaroch, F.},
  title = {Sadbox Geography : How to Structure Space in Formal Models},
  publisher = {Technical University Vienna},
  school = {Technical University Vienna},
  year = {2007},
  volume = {Doctor of Technical Science},
  pages = {200}
}
Achatschitz C (2008), "Preference-Based Visual Interaction Spatial Decision Support in Tourist Information Systems". Thesis at: Technical University Vienna. Vol. Doctor Technical University Vienna.
BibTeX:
@phdthesis{Achatschitz2008,

  author = {Achatschitz, C.},
  title = {Preference-Based Visual Interaction Spatial Decision Support in Tourist Information Systems},
  publisher = {Technical University Vienna},
  school = {Technical University Vienna},
  year = {2008},
  volume = {Doctor}
}
Radovan D (2009), "From Map and Compass to Ubiquitus Navigation -- How Navigation Tools, Strategies, and Errors Work in a Natural Environment". Thesis at: Technical University Vienna.
BibTeX:
@phdthesis{radovan09[TUW-168280],

  author = {Radovan, Dalibor},
  title = {From Map and Compass to Ubiquitus Navigation -- How Navigation Tools, Strategies, and Errors Work in a Natural Environment},
  school = {Technical University Vienna},
  year = {2009}
}
Hofer B (2010), "A Language to Describe Geographic Physical Processes". Thesis at: Technical University Vienna.
Abstract: Der Fachbereich Geographie untersucht, wie sich physische Strukturen und Verteilungen von Objekten im Raum verändern. Die Strukturen und Verteilungen werden von Prozessen geformt und beein usst. Modelle werden erstellt um die beobachteten Veränderungen zu analysieren und zu verstehen. Geographische Informationssysteme (GIS) werden vielfach für räumliche Analysen verwendet; in Bezug auf die Prozessmodellierungpar spielen sie auf Grund ihrer statischen Natur nur eine unterstützendepar Rolle. Die Integration der Konzepte, die mit Prozessen in Zusammenhang stehen, in GIS ist eine der ungelösten Aufgaben der geographischen Informationswissenschaften.par Das Ziel der vorliegenden Arbeit ist es die Anforderungen der Prozessmodellierung besser zu verstehen um langfristig GIS mit Funktionalität zur Prozessmodellierung erweitern zu können. Die Integration von Methoden zur Prozessmodellierung in GIS,par die den Anforderungen verschiedenster Anwendungsbereiche gerecht werden, ist nicht nrealisierbar. Daher muss eine Abstraktion von den Details quantitativer Modellierung durchgeführt und eine allgemeine Methode zur Prozessmodellierung angestrebt werden.par In dieser Forschungsarbeit wird eine systematische Analyse mathematischer Modelle geographischer Prozesse durchgeführt um eine allgemeine Methode zur Beschreibung dieser Prozesse zu de nieren; der Fokus ist hierbei auf geographisch physikalischen Prozessen. Die allgemeine Beschreibungsmethode ist eine Prozessbeschreibungssprache,par die aus drei Komponenten besteht: einem Vokabular; das sind die mathematischen Operatoren, die ein Modell beschreiben; Regeln zur Zusammensetzung der Elemente des Vokabulars; einer graphischen Benutzerschnittstelle, die die Benutzer durch die Modellierungpar führt.par Die Methode zur Spezi zierung des Vokabulars basiert auf Wissen über die Modellierung physikalischer Prozesse mit deterministischen Modellen. Geographisch physikalische Prozesse sind eine Untergruppe physikalischer Prozesse, was die Anwendung physikalischer Prinzipien in der Modellierung dieser Prozesse ermöglicht.par Die physikalischen Prinzipien sind in diesem Zusammenhang Erhaltungssätze, die kontinuierlichen physikalischen Prozessen zu Grunde liegen. Eine Analyse des Massenerhaltungssatzes führt zum Vokabular der Prozessbeschreibungssprache.par Die Ableitung des Vokabulars von mathematischen Gleichungen liefert die Regeln zur Zusammensetzung der Elemente des Vokabulars. Die Elemente der Benutzerschnittstelle werden aus der allgemeinen Vorgehensweise bei der Spezifikation von deterministischen Modellen abgeleitet.par Das Resultat dieser Arbeit ist eine Prozessbeschreibungssprache, die es erlaubt das Verhalten von Prozessen auf einer qualitativen Ebene zu beschreiben, und die es ermöglicht Beschreibungen von Prozesskomponenten zu Modellen zusammenzusetzen. Eine Benutzerschnittstelle führt den Nutzer von einer Konzeption des Verhaltens eines Prozesses zu Gleichungen die den Prozess beschreiben.par Die Anwendung der Prozessbeschreibungssprache wird an zwei Beispielen demonstriert: der Ausbreitung von Giftsto en in einem See und der Ausbreitung von Abgasen eines Fabriksschlots. Das Ergebnis der Anwendung der Prozessbeschreibungssprache ist die Spezi kation der Prozesse zusammen mit benötigten Anfangs- und Randbedingungenpar sowie Parameterwerten. Die erstellten Modelle werden als Modellentwürfe bezeichnet; diese Modellentwürfe beinhalten die benötigte Information zur Simulation der Prozesse. Diese Arbeit stellt die Basis für die Implementierung einer Prozessbeschreibungsumgebung zur Verfügung, die die Integration von Funktionalität zur Prozessmodellierung und GIS voranbringen kann.
BibTeX:
@phdthesis{hofer10[TUW-184654],

  author = {Hofer, Barbara},
  title = {A Language to Describe Geographic Physical Processes},
  school = {Technical University Vienna},
  year = {2010},
  url = {http://publik.tuwien.ac.at/files/PubDat_184654.pdf}
}
Bulbul R (2011), "AHD: Alternate Hierarchical Decomposition Towards LoD Based Dimension Independent Geometric Modeling". Thesis at: Technical University Vienna. Universität.
Abstract: The thesis shows that the separation of metric and topological processing for GIS geometry is possible and opens the doors for better geometric data structures. The separation leads to the novel combination of homogeneous coordinates with big integers and convex polytopes. Firstly, the research shows that a consistent metric processing for geometry of straight lines is possible with homogeneous coordinates stored as arbitrary precision integers (so called big integers). Secondly, the geometric model called Alternate Hierarchical Decomposition (AHD), is proposed that is based on the convex decomposition of arbitrary (with or without holes) regions into their convex components. The convex components are stored in a hierarchical tree data structure, called convex hull tree (CHT), each node of which contains a convex hull. A region is then composed by alternately subtracting and adding children convex hulls in lower levels from the convex hull at the current parent node. The solution fulfills following requirements:
-Provides robustness in geometric computations by using arbitrary precision big integers.
-Supports fast Boolean operations like intersection, union and symmetric difference etc. Supports level of detail based processing.
-Supports dimension independence, i.e. AHD is extendable to n-dimensions (n ≥ 2).
The solution is tested with three real datasets having large number of points. The tests confirm the expected results and show that the performance of AHD operations is acceptable. The complexity of AHD based Boolean operation is near optimal with the advantage that all operations consume and produce the same CHT data structure.
BibTeX:
@phdthesis{bulbul2011diss,

  author = {Rizwan Bulbul},
  title = {AHD: Alternate Hierarchical Decomposition Towards LoD Based Dimension Independent Geometric Modeling},
  publisher = {Universität},
  school = {Technical University Vienna},
  year = {2011}
}
Karimipour F (2011), "A Formal Approach to Implement Dimension Independent Spatial Analyses". Thesis at: Technical University Vienna.
Abstract: Extension of 2D spatial analyses - i.e., a set of operations applied on a spatial data set - to higher dimensions, e.g., 3D and temporal, is one of the requirements to handle real world phenomena in GIS. The current approach is to design a technical solution to extend a certain 2D spatial analysis to a new multi-dimensional space with the least increase in complexity and speed. This technical approach has resulted in developments that cannot be generalized. The result of following such an approach in the software development stage is recoding each spatial analysis, separately, for each dimension. Therefore, the code for a, say, general 2D/3D static and moving objects supporting GIS is nearly four times the current code size, offering four variants: static 2D, moving 2D, static 3D, and moving 3D. The complexity of such a growth of code written in one of the currently popular programming languages, say, C++ is hard to manage, resulting in numerous bugs.
This thesis investigates spatial analyses based on their dimension independent characteristics (i.e., independent of the objects to which the analyses are applied), toward achieving a general solution. It intends to provide an integrated framework for spatial analyses of different multi-dimensional spaces a GIS should support. This framework will be independent of the objects to which the analyses are applied and spatial analyses are formally defined by combinations of the elements of this integrated framework.
To implement this approach, spatial analyses are formally expressed hierarchically where each analysis is defined as a combination of simpler ones. These definitions are independent of dimension and the hierarchy ends in a set of primary operations, which are not further decomposed. A set of required data types are also identified. Having implemented the dimensionally independent data types and operations, they all will be extended to a specific space (e.g., moving points) by applying the mappings between defined the spaces.
The required abstraction of the proposed approach is the subject of algebra that ignores those properties of operations that depend on the objects they are applied to. The desired spaces are structurally equivalent, so they are described by the same algebra. Having implemented the required data types and operations, their extension to a specific space is viable by applying the (structure preserving) mapping.
The proposed approach has been evaluated through implementation of Delaunay triangulation for 2D and 3D static and moving points in the functional programming language Haskell and their efficiency has been evaluated. The implementations were used in two applications, i.e., convex decomposition of polytops and optimum placement of a sensor network based on the moving Voronoi diagram, in order to show how the proposed approach can be practically used. The achieved results certify the hypothesis of the research says that "studying spatial analyses based on their dimension independent characteristics leads to a consistent solution toward implementation of a multi-dimensional GIS".
Complexity and speed are factors used to evaluate the performance of an extension technique in current research. However, the aim here is to avoid recoding each spatial analysis for each dimension. Thus, the main concern of this research is on the mathematical validation of the conceptual framework and investigation of its implementation issues. Nevertheless, the results show that the proposed approach does not affect the big O complexity and speed for applying the spatial analyses on objects of higher dimensions. :
BibTeX:
@phdthesis{Karimipour2010,

  author = {Farid Karimipour},
  title = {A Formal Approach to Implement Dimension Independent Spatial Analyses},
  school = {Technical University Vienna},
  year = {2011},
  note = {Supervisors. Andrew U. Frank}
}
Hahn J (2016), "Context Algebra applied to Spatial Concepts". Thesis at: Technical University Vienna.
BibTeX:
@phdthesis{hahnphd,

  author = {Juergen Hahn},
  title = {Context Algebra applied to Spatial Concepts},
  school = {Technical University Vienna},
  year = {2016}
}
Mocnik F-B (2016), "A Scale-Invariant Spatial Graph Mode". Thesis at: Technical University Vienna.
Abstract: Information is called spatial if it contains references to space. The thesis aims at lifting the characterization of spatial information to a structural level. Tobler´s first law of geography and scale invariance are widely used to characterize spatial information, but their formal description is based on explicit references to space, which prevents them from being used in the structural characterization of spatial information. To overcome this problem, the author proposes a graph model that exposes, when embedded in space, typical properties of spatial information, amongst others Tobler´s law and scale invariance. The graph model, considered as an abstract graph, still exposes the effect of these typical properties on the structure of the graph and can thus be used for the discussion of these typical properties at a structural level.
A comparison of the proposed model to several spatial and non-spatial data sets in this thesis suggests that spatial data sets can be characterized by a common structure, because the considered spatial data sets expose structural similarities to the proposed model but the non-spatial data sets do not. This proves the concept of a spatial structure to be meaningful, and the proposed model to be a model of spatial structure. The dimension of space has an impact on spatial information, and thus also on the spatial structure. The thesis examines how the properties of the proposed graph model, in particular in case of a uniform distribution of nodes in space, depend on the dimension of space and shows how to estimate the dimension from the structure of a data set.
The results of the thesis, in particular the concept of a spatial structure and the proposed graph model, are a fundamental contribution to the discussion of spatial information at a structural level: algorithms that operate on spatial data can be improved by paying attention to the spatial structure; a statistical evaluation of considerations about spatial data is rendered possible, because the graph model can generate arbitrarily many test data sets with controlled properties; and the detection of spatial structures as well as the estimation of the dimension and other parameters can contribute to the long-term goal of using data with incomplete or missing semantics.
BibTeX:
@phdthesis{mocnik2016diss,

  author = {Franz-Benjamin Mocnik},
  title = {A Scale-Invariant Spatial Graph Mode},
  school = {Technical University Vienna},
  year = {2016}
}
Muggenhuber G (2016), "Der Beitrag von Kataster und Geodaten zur Liegenschaftsbewertung (Arbeitstitle)". Thesis at: Technical University Vienna.
BibTeX:
@phdthesis{muggenhuberPhD,

  author = {Gerhard Muggenhuber},
  title = {Der Beitrag von Kataster und Geodaten zur Liegenschaftsbewertung (Arbeitstitle)},
  school = {Technical University Vienna},
  year = {2016}
}