Frank, A. U. "Combining a Network Database with Logic Programming." 14.
Orono, Maine, USA: Department of Civil Engineering, 1985.

Department of Civil Engineering

SURVEYING ENGINEERING

 Combining a Retwork Databuse
with Logic Programming

Andrew U. Frank

Report No. 45

Abstract

Combining a Prolog interpreter with a database management system can be
viewed either as providing Prolog with structured, permanent storage, or
_extending the database with a powerful query language. The simlarity in
the structure of network databases and fogic-programming (Horn-clause
proovers based on the resolution principle) has recently been discovered.
with a minimal extension of Prolog (an additional data type 'entity
identifier') facts stored in the database can be accessed with regular
(first-order) predicates. The proposed guery language is therefore well
based within the theory of logic but the resulting constructs are also easy
for users. Experience with a working prototype using a regular, network
database to store Prolog facts and rules, but also permitting access to
structured database entities from writing Prolog is reported.

This manuscript is in a preliminary form and comments from readers are
encouraged and very welcome. -

University of Maine at Crono
103 Boardman Hall
Orono, Maine 04469

gruber
Textfeld
Frank, A. U. "Combining a Network Database with Logic Programming." 14. Orono, Maine, USA: Department of Civil Engineering, 1985.

i.Introduction ‘
There is considerable discussion going on about how resuits and
experiences from the two fields of database research and artificial
intelligence could be combined. Reseachers in both fields try to solve
essentially the same problems, namely maodeling parts of reality as
accurately as possible. The approaches on both sides are different as
database management is mostly cencerned with managing very large
numbers of Tacts of few different types, whereas artificial intelligence is
more concerned with smalier numbers of facts from a large diversity of
types Mytopoulos 1981},
In a recent discussion [Kerschberg 1584] the following points where
mentioned as the major shortcomings of present systems:
® databases . -too rigid structures to truly mode) reality

~inflexible to adapt to later changes

~-access to data is either thru an extended traditional
programming

language includiny database operators, or using a query

Janguage with limited expressive power
@ artificial inteiligence systems:

-main memory bound {not permanent and limited address space)

-no modularization to structure very large knowledge bases

The diversity of approaches from the two sides is partly motivated by a

concern for the best use of expensive hardware; now that more processing

power is available, amore flexible and better adapted solution may
.become possible.

This paper describes a workirg prototype combination of a Prelog-like
tanguage with a network orientad database system. Such a combination can
be tooked at from two different angles:

-first,the database can be used to store the Prolog facts and rulss, and is
therewith providing Ai systems with transparent management of
permanent data on dick.

-second, Prolog can be considered as a host language (similar to COBOL as
a host for a CODASYL Data Manipulation Language [CODASYL 1378},
providing & higher level, multi-purpose programiming interface to the
database. :

This paper deals with both of these espects. 1ts main contribution is in a
proposal for including database access operations into the framework of
logic-pragramming with minimal extension. The motivation for our work
comes from the area of CAD/CAEL systems, where complex structured data

must be stored and retrieved in different forms [Stonebraker 1984],
[Retifuss, 19841 We assume, as others, that a Prolog-1ike method may
help to build more inteltigent systems [cad comp graphics)[Paimer 1984],
Especially it would provide an uniform language to express dala and rules
for data manipulation in a conceptually simple integrated framework,
without the limitations of present day database query tanguages which
lack transitive closure and recursion operations that are very important in
CAD/CAEL systems.

2.0rganization of the Paper

‘The next section shortly explains the framework of logic programming
without going into details. The first main section describes a
datastructure suitable for storage of Prolog rules and facts {Horn clauses)
and discusses some of the performance issues. The second math section
shows methods of using Prolog as a host tanguage for a Data Manipulation
Language and describes a first prototype impiementation. The following
section then discusses some other features that should be integrated to
make such a system truly useful . The final section argues that using both
extenstons described together in one system results in synergetic effects.

3. Logic PBregramming and Prolog
The background of logic programming is twofold: construction of theorem
provers based on the resolution principle [Rboinson 1965] [Kowalski
1979] and natural ianguage understanding system [Colmerauer 19731 It
-uses the special form of Horn clauses to express logical (first order
predicate) clauses. in{Gallaire 1984] a comprehensive discussion of the
special properties of this restricted form of firsi order logic and their
(performance) advantages over unrestricted forms is given. We will
restrict the discussion here to such Definite Deductive Databases which
consist of general deduciion methods, etementary facts and deduction
rules. The deduction methods can be built in into the inference programs
and are the same for all applications. The specific application oriented
knowledge i3 stored in facts and deduction rules which both can be
formulated as Horn clauses (A1 and A2 and ... and An implies B). Horn
clauses ¢an a'so be interpreted as procedures with a head, the atomic
formula that stands for the consequent, and a body, the atomic formulae
that form the aniecadent.
The notaticn is typically
consequent - antecedents... .
or more detailed;
predicatel (argl, ... argn) - predicate? (argl, ..), predicate3 {(argl,..).

Example:
grandfather (g,) :- father (g, p), father {(p,s).
which is to be read:
g is the grandfather of sif g is father of p and p is father of s.

Symbols starting with lowercase letters are taken as variables, such
starting with uppercase letters as constants (some Protlog implementation
use different rules).
All predicates in the antecedent are to be connected by AND, and the
separator "~ ‘stands for IF. A clause may have no antecedent, it is then
said to be a fact as it is true without depending on other clauses. Clauses
‘that have antecedents are commonly called rules.
Running a Prolog program is actually proving a clause, but due to the
restricted form of facts and rules (Horn clauses) efficient methods can be
applied. The resolution principle [Robinson] allows to combine two clauses
to form & new one. From
Gc, d}~ P (a, b, ¢} and
Ple, f, gt - R{@
follows
Q(g, d} - R (g).
The resolution principle can be applied repeatedly. A resolution proof
consists of applying the resolution principle to all atomic formulae in the
initial set, adding those newly derived atoms to the set and iterating the
process until the set is empty. During each step of resclution a selection
of the next atom from the set to process must be made; standard Prolog
_selects atoms from left to right adding new atoms to the front of the set
(this is equivalent to a depth first search). For each step of the resolution
a clause to be used must be chosen, If this choice does not lead to success,
other possible cheices must be tried (backtracking).

The following example should help Lo understand.
Example:

father (Adam, Bert).

father (Adam, Brigit).

father (Bert, Cecil).
Using the above rule about the grandfather, vve can ask:

? - grandfather (Adam, x).
the first resolution step results in the new set:

? [grandfather (Adam, x3}:- father (Adam, p) and father (p, x).
select atom: ? - father (Adam, p).
and resoive with fact:

father (Adam, Bert). - success

continue from above _
7 {grandfather (Adam, x).~ father (Adam, Bert)), father (Bert, x).
select atom: 7 :-father (Bert, x).
father (Adam Bert). - not matching, backtrack
father (Adam, Brigit). - not matching, backtrack
father (Bert, Cecil). - success
continue from above:
7 {grandfather (Adam, Cecil).~ father (Adam, Bert), father (Bert,
Cecil)].
no atom left, sucess,

Using the same facts and rules, we could also ask
7 grandfather (x, Cecil).
or
7 grandfather (x, y).
and receive the correct answers as Prolog rules express logic predicates
which can be used with any variable instantiated and then returns with all
combinations of variables, that foltow from the database (invertibitity),

This simplistic example should have made ciear some of Prolog's most
compelling features:

- no explicit control structure, only backtraekmg

=~ very high level, descriptive programming

implementation of Prolog is not necessary slow; some advanced versions
_provide compilers and claims are reported that Prolog implemented
programs may be faster than implementation using traditional
programming languages [comp. graph. cad].

In the following we will assume the reader to be somewhat knowledgeable
about the features of Prolog (for an excelient introduction to ‘standard’
Prolog see [Clocksin 1981), and how it might be applied to build expert
systems. However, we ¢o not think that all the extra-logical features of
standard Prolog should be retained for the intended use of it. In fact, we
will understand in the sequel by the word ‘Proloeg’ or logic-programming
tanguage’ (which shall be used as synonym), a pure, "Horn clause only’ logic
based programming lianguage, using the resolution principie and a
depth-first, backtracking strategy. In[Turner1984i[Brodie 1984] and
[Frank 1984} a discussion of shortcomings of Prolog can be found; this is
excluded from the present treatment of the topic.

4. Uszng a Database to Store Proleg Facis and Rules

Normatly facts and rules are stored in the address space of the processor,
either inreal or in virtual memory (in the latter case possibly paged out
on disk). Long term storage of facts and rules is in filtes that are read in
on the users demand. Most actual systems are limited in the number of .
rules that c¢an be used at a given time.

in order to build large systems, storage of rules on disk and transparent
access to them from the Prolog interpreter are desirable. Using a database
to provide these services is an obvious idea as doms traditionally provide
such functions to all types of programs. Hot only would this free the user
from distributing rules over different files and the obligation to read in
the necessary rules for a problem, but also secure the data against
accidential loss. Finally, most dbms permit concurrent access to data by
several users at a time, a form of use highly desirabie for building targe
expert systems, but presently (to my knowledge) not availabie on any
knowledge system [Smith 1984].

This paper discusses a working prototype implemeniation of this idea. It
does not implement the full Prolog language (as described in [Clocksin
1981), but a useable variant. The most important restriction is to single

. valued variables (no lists and structures, but including strings). There are
several extensions, including built-in predicates for graphical output, and
changes in the programmer interface to make the language more usefyl
within the realm of programming targe and complex software Systems.

_The goal of our work is very sxmﬂar to work reported in [Sciore 1984], but
the approach is quite different: we start with a dbms and augment it with
a Prolog inference engine, wheras Sciore starts with a Prolog system that
is to be expanded to provide typical dbms functions.

4.1 Datastructure for Storirg Facts and Rules.

In order Lo store Horn clauses in a database we have to choose a
datastructure. Eliminating repetitive groups and doing some additional
normalization we can model thenm in the following relations:

PREDICATE: (predname, arity).

CLAUSE -« (clau®).

ATOM : (gtom®, pradname, clau®, consequeni/antecedent)
ARGUMENT: (atom®, NolnAtom, value, type).

There is obviously a problem with the attribute velue in the ARGUMENT

navigational command to move from one entity to the next is fairly
simple. Writing recursive procedures - if the host programming language

- permits it - is simple as a present position in the navigation can be stored
in a variable and be used for later continuation.

We have worked on the PANDA dbms [Frank 1982a] using an advanced type
of network model, supporting generalization [Smith & Smith 19761 and
data abstraction [Guttagl It is completely written in Pascal and provides a
Data Manipulation Language that is implemented as Pascal functions.

Predicatn Sumbel
name value
arity
antecedent Sumbol in Ciauss

| comseauent variable number
l

At om "l: anecedent ——— Clause
consequant —

Argument

nuvibEe

The data structure, equivalent to the retational schema given above, is
_now drawn as an extended box diagram.

writing a Preiog interpreter is neither extremely ditficult nor very simpie
[Rattani 1983) It contains a module for binding values from one clause to
the next, which is of no interest to our present topic, and a module to
traverse the and/or tree. Tree traversing routines are easily written in
navigational data manipulation language. Our impiementation concentrates
all operations for data storage and retrieval in a few routines and could
easily be adapted to other database management systems. Finally the
traversal routines are either used recursively or an expilcit stack
management is necessary. We implemented the latter as it provides more
flexibility as to what actions can be taken once a solution is found and
how to continue to ind the next.

The present prototype is of course slower than optimized, all in main
memory systems (or compilers). [t runs at several hundred inferences per

second on a heavily loaded, general purpose university |BM mainframe.
Optimization of the code will certainly improve this figure, but is not of
prime importance Lo us at the moment. Qur interest is much more in highly
structured code that is easy to extend and experiment with. We are
especially interested in the requirements a Prolog interpreter demands .
from a dbms, and can report here some pretiminary findings:

Requirements for a dbms suitabie for a Prolog interpreter

- Fast access from one entity to another of a different type, as necessary
for tree traversal operations

- Very large buffers for entities: an entity once used will be necessary
much later (when recursion unrolls). The usual page oriented buffer
strategy will not avoid reading in this entity from disk again. The PANDA
dbms has a two level buffer: a first level managed in pages, the second in
single entities. It is obvious that such a method can hold a vastely larger
number of records of interest in a smatler space. Such a device was
deemed necessary for use of the Panda dbms with geographical data and
interactive graphical output, and generatly for engineering [Frank

1982bl see also [Plouffe 1984]

9. Prolog as a Host Language for 3 DML

A different line from the previously discussed use of a dbms to store
:Prolog rules and facts is the use of Prolog as a host language for access to

a database ~ Prolog as an intetligent front end to & database. The

similarity between (relational) doms and legic pregramming had been

noticed in [Gallaire 1978] and [Kowalski 1979]

The problem is related to the previous one as in both cases 2 dbms is used

to store facts that can be used from Prolog, but it is less general as it

does not provide storage for Prolog rules.

2.1 Tight Couplirg of Prolog Front-End with the DBMS

It a Prolog front-end is coupled with a dbms, either two separate systems

may exchange intermiediate results, or one integrated system may be

produced,

Severai implementations and projects are reported which combine Protog

with an existing relational database, most prominent the Japanese Sth

generation project [Runifugi 1334] [Jarke 1984a] [Vassilou 19841 [Li 1984}

A method that is often proposed (Chang 1984] is to use the apparent
similarity between the relatione] query rangiages and logic programming -

both are based on predicate logic, and treat data in relations as Pralog
facts. A Prolog query could be executed by passing the relevant query to
the dbms, a tuple request a time. This is clearly inefficient as Prolog's
model of execution {depth first, backtracking) is the exact opposite of
relational dbms's relation at a time logic. Inorder to improve
performance and allow optimization, regrouping of antecedents in a Prolog
query is proposed. This requires first that enly pure logical predicates
{without side effects, especially excluding the ‘cut’) are used. The
Japanese fifth generation project plans to move all database predicates to
the end of the query and execute them at the end - ailowing for most
extensive optimization. Unfortunately this does not always lead to correct
“results [Nagvi 1584).
3eme systems use Proleg as an intelligent query optimizer [Jarke]
[Vasilou] that uses semantic information about the database to improve a
query that is ultimately passed to a standard dbms which then produces
the answer. Similarly, Prolog can be used to provide more flexibie and

better adapted query languages which are then translated by Prolog intc a
form understandable for the dbms [Li 19584].

Combining two separate systems includes some overhead each time

- control passes from the one to the other. Qur goal is to provide a fully
integrated system where access to the database is part of and integrated
into the execution of Proleg query. Ultimately, Prolog should then be used
in our project for example for a reimpiementation of MAPQUERY [Frank
1982cliEgenhofer 1984}, a query language to retrieve geographic, spatial
_data from a database and produce map-like output. Al present, however,
‘we discuss only how a Prolog programmer can gain access to the database

2.2 Dbms Access Operations from Prolog

[Zaniolo 1984b] observed the intimate similarity in execution strategy
between a navigational doms and Prolog. A query in Prolog proceeds from
one antecedent fo the nexti, using backtracking in case of failure. This is
similar to writing a sequential procedura! program in a traditional host
language and.using navigationz! DML statements.

A navigational interface to a dins provides operations cn two different
levels, namely on single valued fields in the entities (records in CODASYL
parlance), and on the entilies as a whole, moving from one entity to the
next in following one of the navigetional paths (CODASYL sets). Any
navigational languayge raust in one form or ancther provide these two types
of objects and operatitns on them.

Generally the entities are considered as Prolog facts with the entity name
as a predicate and the appropriate number of constants. In order to move

10

between these facts seen as aggregation of values or seen as entities in
their own right, Zaniolo proposes two different methods. The first using a
binary predicate '@ ' to transiate from the entity to a fact that is

- composed of the fields in the entity, or to transiate in the reverse
direction.

The second method is 'object-oriented as there are methods defined that
lead from one of the entities to anothe, using a navigational path.
Syntactically he proposes an additional construction ', that separates an
entity predicate from a method, that unifies with another entity, rejated
to the first by a path.

"We opted for a method which needs less extension to the syntax of Prolog
and stresses even more the navigational aspect of the data mode). 1t may
as well be claimed that navigation is a natural metaphor to express
movement in the data space - human beings have been navigating in real
space since their very early days, and it may be argued that they have a
good sense for finding their way on road systems etc . This remark should
not be taken too seriously - it is only to counter the abundant claims for
‘naturality’ in query language literature,

In order to accomodate an interface to the database, we extend the Prolog
datatypes by a 'surrogate’ datatype, i.e. a single value that stands for a
dbms entity. There are no user available constants for such values, but
variables may be used in the usual way.

-As a first level, which is not intended for human.programmers, we
implemented the fotlowing basic network DML predicates (very closely
modelled after [CODASYL 1978]):

findMember (owner-entity, member-entity, set-name)

findOwner (member-entity, cwner-entity, set-name).

findwithKey (entity, pathname, key-value).

findinSortedSet (member-entity, owner-entity, set-name, key-value).

giveField (entity, fieldname, value).
The use of these predicates is severely restricted as they work only if
certain values are irstantiated and thay do not backtrack (except
findMember which in turn produces 2! member-entities in the specified
set). They are comparable to the basic computational predicates in Prelog

which also have strict limitation to the number of instantiated variables
present,

From this level we construct a second level of predicates which are better
suited for programmers. They relate lo the graphical description of the

H

database schema and provide navigation using the schema as a chart:

titem | Department
fame A name
price /,f" Ttoor
‘ dept_sales !
itefn_sales er:’,-’ : dept_ernplaygye
i rd ;
Sales ,o-"’/ Employgea
vorlume fame
i |
employee.group managed_by
i L
broup

For each Tield in an entity, there is a predicate with this field name
(attribute name) of the form

attribute-name (entity, value)
eg. '

salesVolume {sales, number).

This predicate succeeds if the entity is instantiated and binds the value
to the value of the respective attribute.

It also succeeds if the value is given and the attribute is defined as a key
for accessing this entity. It fails if there is no entity with this value.

For each set apredicate of the form

set-name (owner-entity, member-entity)
is definedq;
eg. dept_sale (dept, sales).
It succeeds, if any of the two entities is instantiated, or if both are
instantiated and they are related in a set. If the owner is Instantiated, it
will succeed repeatedly If backtracked and produce all the members,
It fails if the instantiated entity is not member in any occurence of the
named set or if none of the entities is instantiated,

Using this second level predicates, we show some of the standard
examples of doms literature using the schema given above.

Ex. . find ail employees who work for departments on the first floor of
ABC comparny.

References

Battani, G. et. al,, mod-PROLOG, microcomputer oriented Prolog, in;
Proceedings 1983 ACM Conference on Personal and Small Computers,
SIGPC vol. 6, No. 2

Brodie, M, Jarke, M, integrating Logic Programming and Databases, in: L. .
Kerschberg {Ed.), Proceedings of the First International Workshop on
Expert Database Systems, 1984

Chang, CL. and Walker, A. PROSQL : a Prolog programming interface with
SQL/DS, in: L. Kerschberg (Ed.), Proceedings of the First
International Workshop on Expert Database Systems, 1984

Clark, Gregory, PARLOG, Parallel Programming in Logic, Imperial
College of Science and Technology. Research Report 844, London,
1984

Clocksin, WF., Mellish, C.5., Programming in Proiog, Springer Verlag,
1981

CODASYL, Data Description Language, Journal of Development, 1978

Codd, E., Extending the relational database model to capture more
maaning. ACM Transaction on Database Systems, Vol. 4, No. 4,
Deceimber 1979 ,

Colmerauer, A, Un systéme de communication homme-machine en
frangais. Rapport, Groupe Intetligence Artificielle Université
d'Aix-Marseille-Luminy, Marseille (France), 1973

Eggenhofer, M, Implementation of MAPQUERY, (in gerrnan),report No. ...,
Institute of Geodesy and Photogrammetry, Swiss Federal Institute
of Technology, Zurich (Switzerland), 1304

Frank, A, PANDA, A Pascal network database system, Prowedmgs ACM
SIGSMALL conference, Colorado Springs Co. 1682 '

Frank, A., PANDA Pascal Network Database, (in garman) report No, 62,
Institute of Geodesy and Photogrammetry, Swiss Federai !nstltu:e
of Technology, Zurich (Switzerland), 1982

Frank, A, Extending a Network Database with Prolog, in, L. Kerschberg
(Ed.), Proceedings of the First International Worishoo on Expert
Database Systems, 1934

Freeman, H., Ahn, J., Autonap - An expert system for automatic name
placement, in: D. Marble et al. (Eds.), Proceedings of the
international Symposium on Spatial Data Handling, Zurich
(Switzerland), 1964

Gallatre, H. Minker, J. (eds.), Logic and Databases, Plenum, 1978

Gezllaire, H, et 81, Logic and Databases: a deductive approach, ACM

Computing Surveys, Vol 16, No. 2, June 198l

Goldberg, A, SMALLTALK-80: The Language and its Implementation .
Addison Wesley, Reading (Mass.). 1983

Gonzalez, J,, et al., Evaluation of the effectiveness of Prolog for a CAD

application IEEE Computer Graphics. Vol. 4, No. 3, March 198434 .

Gougen, J.,, Thatcher, J,, Wagner, E., An initial algebra approach to the
specification, correctness and implementation of abstract data
types in: Yeh, R. (Ed.} Current Trends in Programming Methodology,
Prentice-Hall, Englewood Clifts, NJ. 1978

Gray, J., et al., The recorvery manager of the system R database manager,
ACH Computmg Surveys, Vol. 13, No. 2, June 1981

Guttag, J; Horowitz, £, Musser, D., The demgn of data type specification,
in: Yeh, R. (Ed.} Current Trends in Programming Methodology,
Prentice~Hall, Englewood Clifts, N.J. 1978

Jarke, M., Clifford, J. Vassilioy, Y., An optimizing front-end to a
relational query system, in: B. Yormark (ed.), Proceedings ACM
SIGMOD "84, Boston, 5IGMOD Record, Vol. 14, No.2, 1984

Jarke, M., and Koch, J,. Query Optimization in database systems, ACM
COmputing Surveys, Vo.16, No. 2, June 1984

Kersc‘xberg, L. (Ed.), Proceedings of the First International Workshop on

txpert Database Systems, 1984

Kowaiski, R. Lagic for Problem Solving, North Holland, 1979

Kunifuji, S. and Yoketa, H,, Prolog and relational databases for 5th
generation computer systems, Proc. Workshop on Logical Basis for
Databases, Toulouse (France), 1984

Li, [. A PROLOG Database System, Research STudeis PRess, Letchworth,
England/ Jehn Wiley & sons, 1984

Meier, A, Lorie, F, A surrogate concept for engineering datebaaes in:
schkolnick, M Thanos, T, (Eds.) Proceedings Ninth Intérnational
Conferance on Very L.arge Databases, Florenmce (ltaly), 1983

Mylopoulos, J. An overview of knowledge representation, in: 14, Brodie, S,
Zitles (Eds.), Procedings of the workshop on data abstraction, da.a
bases and conceptuzl modelling, Pingree Park, Co. , Si5MOD Recors,
Vel 11, No.2, 1981

Naqvi, 5 A., Interfacing Frotog and relational databases: the probiem of
recursive queries, in: L. Kerschberg (Ed.), Proceedings of the First
international Workst.op on Expert Database Systems, 1984

Palmer, B, Syrabelic feature analysis and expert systems, in: D. Marble
et al. (Eds), Proceedings of the International Symposium on Spatial
Data Handling, Zurich (Switzerland), 1984 '

Parnas, D., A technique for software module specification with

examples, Commun. ACM, Vol 15, No. 5, May 1972

Plouffe, W, et. al, A database System for Engineering Desing, 1EEE
DATABASE Engineering, Vol. 7, No. 2, June 1684

"Price, D., and Maier, D. Data model requirements for engineering
applications, in:L. Kerschberg {Ed.), Proceedings of the First
International Workshop on Expert Database Systems , 1984

Rehfuss, 5., et al., Paritcularity in Engineering Data, in: L. Kerschberg
(Ed.), Proceedings of the First international Workshop on Expert
Database Systems, 1984

Robinson, J., A machine oriented logic based on the resolution principle,
Journal of the ACM, Vol. 12, No. 1, Jan. 1965

Schorn, P., Schutz, T, Description of LOGULA (in german), Swiss Federal
Institute of Technology, institute for Computer Science, Zurich
(Switzerland), 1984

5ciore, E. and Warren, D.S., Towards an integrated Database-Proiog
system, in: L. Kerschberg (Ed.), Proceedings of the First
International Workshop on Expert Database Systems, 1984

Smith, J., Smith, D., Database abstraction: aggregation and
generalization, ACH Transaction on Database Systems, Vol. 2, No. 2,
Jure 1975,

Smitn, J., Expart database systems: a datzbase perspective, in L.
Kerschberg (Ed.), Proceedings of the First International Workshop on
Expert Databzse SGystems, 1984

sionetraker, M., Guttman, A, Using a relational database management
system for computer aided design ¢ata - an update, IECE Database
Engineering, Vol. 7, No. 2, June 1984

Tyener, 5.J. W-Grammars for logic prograniming, in: J.A. Camposll {ed),
Implementations of Prolag, Chichester, England, 1384 1984

vassilou, Y., Clifford, J., Jarke, M., How does an expert system get its
data?, in MSchkethick, C.Thanos {e¢s) Proceedings 9th Internat.
Conf. on Very Large Data Bases, Florence (1taly), 1334

7aniolo, C., An implementation of GEM - supporting a sementic data model
on a relational back-end, in: B. Yormerk (ed.), Proceedings
SiGMOD'84, SIGMOD Reecord, Vol. 14, No. 2, 1984

Zanicto, €., Prolog: a database query language for all seasons, in: L.
Kerschbery (Ed.), Froceedings of the First international Worvshop on
Expert Database Systems, 1984

7aniole, C., Opject-oriented programming in Prolog, int. Logic
Programraing Sympasium, 1984

meablications

1. Defining the Cetfestial Pole, A Leick, Manuscripta Geodetica, Vol. 4,
No. 2.

2. Aiew Generation of Surveying Instrumentation, A Leick, The Maine

Land Survevor, Vol 79, No, 3

3. The Teaching of Adjustment Computations at UMO, A Leick, The Maine
Land Surveyor, Voi. 79, No. 3.

4. Spaceborne Ranging Systems - A useiul tool for network
denzification, A Leick, The Maine Land Surveyor, Vol. 80, No. 1.

5. Potentiality of Lunar Laser Range ~ Differencing for Measuring the
Earth's Orientation, A. Leick, Bulletin Geodesigue.

6. Crustal Subsidence in Eastern Maine, D. Tyler, J. Ladd and H. Borns;
NUREG/CR-(887, Maine Geological Survey, June 1679,

7. Land Information Systems for the Twenty-First Century, E. Epstein
and W. Chatterton, Real Property, Probate and Trust Journal,
Armnerican Bar Association, Vol 15, No. 4, 890-800 { 1880).

8. Analysis of Land Data Resources and Requirements for the City of
Boston, Epstein, EF, L.T. Fisner, A Leick and D.A. Tyler, Technica]
Report, Cffice of Property Equalization, City of Boston, December
1980.

9. Legal Studies for Students of Surveying Enginesring, E. Epstein and .
McLaughtin, Proceedings, 41st Annual Meeting, American Congress on
Surveying and Mapping, Feb. 22-27, 1981, wWashington, D.C.

10. Record of Boundary: A Surveying Analog to the Record of Title, E.
Epstein, ACSM Fall Technical Meating, San Francisco, Sept. 9, 1981,

1. The Geodetic Component of Surveying Engineering at UMO, A. Leick,
Proceedings of 41st Annual Meeting of ACSM, Feb. 22~24, 1981,

12. Use of Microcomputers in Network Ad justments, A. Leick, ACSM Fall

{5

ib.

rechnical Meeting, San Francisco. Sept. 9, 19381, (co~auther: Waynn
welton, Sentor in Surveying Engineeringl.

Verticat Crustal Movemnent in Maine, Tyler, D.A. and J. Ladd, Maine
Geelogical Survey, Augusta, Maine, January 1981,

Minimal Constraints in Two-Dimensional Networks, A Leick, Journal
of the Surveying and Mapping Division (r*n(smed to Journat of
Surveying Engineering;, American Society of Civil Engineers, Vol. 108,
Mo SU2, August 1982,

slorage Methods for Suace Related Data: The FIELD TREE, A Frank in:
MacDonald Barr (£4.) ‘%f:; ial Atgorithms for Processing Land Data
with z riinicomputer. Lincoln institute of Land Policy 1983.

Struclure das donnees polr les systenm:

{Date Structures for Land Information iS
Procecdings ‘Gestion du territoire assis
Novernber 1983, Montreal,

e3 d'information du territoire,
wt ms), A Frank in:
siee par ordinateur's,

Semantiache, *0@":f‘=lﬂgi3r*fse und raumtiche Datenstrukiuren in
Land-informations-systemen (Semantic, tepolegical and spatial data
structures in Land Information Systems) A Frank and B. Studenman,

Fio xvil CGHQ,I 85 Sofis, June 1983, Paper 3011

Adjustment Computations, A, Leick, 250 pages.
Geometric Geodesy, 3D-Geodesy, Conformal Mapping, A. Leick.

Text for the First Winter institute in Surveying Engineering, A. Leick
(co-author: 0. Humphrey, Senior in Surveying Engineering).

2

Adjustment Computations for the Surveying Practitioner, A, Leick,
(co-author: D. Humphrey, Senior in Surveying Engineering).

Advanced Survey Computations, A Leick, 320 pages.
surveying Engineering Anruat Report, 1983-84,

Macrometer Satetlite Surveying, A. Leick, ASCE Journal of Surveying
Engineering, August, 1984,

25,

33.

34

35.

36.

37.

Geodetic Program Library at UMO, A Leick, Proceedings, ACSM Fall
Convention, San Antonio, Cctober, 1984

. GP3 Surveying and Dzta Management, A Leick, URISA Proceedings,

Seatle, August 1984,

. Adjustments with Examples, A, Leick, 450 p3ges.
. Beodetic Programs Library, A Leick,

. Data Analysis of Montgomery County (Penn) GPS Satellite Survey, A

Leick, Technical Report, August, 1884,

Macintosh: Rethinking Computer Education for Engineering atugents,
A Frank, August, 1584,

. Surveying Engineering at the University of Maine (Towards a Center of

£xcellence), D. Tyler and E. Epstein, Proceedings, MOLDS Session,
ACSM Annual Mesting, Washington, March, 1984,

. Innovations in Land Data Systems, D. Tyler, Proceedings, Association

of State Flood Plain Managers, Annuat Meeting, Portlang, Maine, June
1984

Crustal Warping in Coastal Maine, D. Tyler et. al,, Geology, vol 12, pp
677-680, November, 1984,

St. Croix Region Crustat Strain Study, D. Tyter and A Leick, Technical
Report submitted to the Maine Geolegical Survey, June 1964,

Appiications of DBMS to Land tnformation systems, A, Frank, in: C.
Zaniolo, C. Delobel (Ed.), Proceedings, Seventh International

Conference on Yery Largs Databases, Cannes (France), September,
1881,

MAPQUERY: Database Query Language for Retrieval of Geometric Data
and Their Graphical Representation, A. Frank, Computer Graphics Vol
16, No. 3, July 1982, p. 199 (Proceedings of SIGERAPH '82, Boston),

PANDA: A Pascal Network Data Base Management System, A. Frank,

3B

3S.

40,

4i.

43.

44,

43.

47.

48.

in: G.W. Gorsling (Ed.). Proceedings of the Fifth Symposium on Small
Systems, (ACM SIGSMALLY, Colorado Springs (C0), August, 1582,

Conceptugl Framework fer Land information Systems - A First
Approach, A Frank, paper presented to the 1982 Meeting of
Cornmission 3 of the FIG in Rome (Italy) in March 1982,

Requirements for Dstsi}asc Syatems Suitable to Manage Large Spatial
Databases, A Frank, in: Duane F. Marble, et. al, Proceedings of the
Interoational a;fm;mamz‘ﬂ of Spatial Data Handling, August, 1984,
Zurich, Switzeriend,

Extending a Network Database with Prolog, A Frank, in First
fnternational Workshop on Expert Databases Systems, October, 1584,
Kiawah Island, SC.

The Influence of the Modet Underlying the User Interface: A Case
study in 20 Geoimetric Construction, W. Kuhn and A Frank.

Canonical Geomeiric Representations, A, Frank,

Computer Assisted Cartography - Graphics or Geometry, A Frank,
Journat of Surveying Engineering, American Society of Civil
Engineers, Vol. 11{C, No. 2, August 1984, pp 159-168.

Datenstrukturen von Messdaten, A Frank and B. Studemann, paper
presented at IX {nternational Course for Engineering Surveying (Graz,
Austrial), September 1984,

Combining a Network Database with Logic Programming, A Frank.

Montgomery County {PA) GPS Survey, A, Leick and J. Collins,
ASP/ACSM Annual F’ﬂ'etll‘u |, Washington, D.C., March 10~15, 1985,

Analysis of Macremeter Networks with Emphasis on The Montgomery
County Survey, A Leick and J. Cotting, First international Symposium
on Precise Pos sitioning with the Global Positioning System, Rockviile,
Maryland, April 15-19, 1985,

Application of GPS in a High Precision Engineering Survey Network, R,
Ruland and A, emk rirst Internationat Symposium on Precise

4G,

30.

21,

32,

53.

o4,

Positioning with the Giobal Positioning System, Rockville, Maryland,
April 15-19, 1985, '

Graphics Programming in Prolog, R. Michael White and Andrew U. Frank

Instrumentation Needs (GPS and Related Matters), Alfred Leick.
Workshop on Fundamental Research Needs in Surveying, Mapping, and
Land Information Systems, Virginia Polytechnic institute and State
University, Blacksburg, Virginia, November 18-20, 1985,

Surveying Engineering Annual Report, 1984-85,

Expert Systems Applied to Problems in Geographic Information
Systems, Vincent Robinson, Andrew U. Frank, Matthew Biaze,
presented at the ASCE Specialty Conference on Integrated Geographic
Information Systems: AFocal Point for Engineering Activities,
February 3-5, 1986.

Integrating Mechanisms for Storage and Retrieval of Data, Research
Needs, Andrew U. Frank, challenge paper for the ‘Workshop on
Fundamental Research Needs in Surveying, Mapping, and Land
Information Systems', held November 17-19, 1985, Virginia
Polytechnic Institute and State University, Blacksburg, VA 24061

Formal Methods for Accurate Definitions of Some Fundamental Terms
in Physical Geography; Andrew U. Frank, Bruce Palmer, Vincent B.
Robinson. Invited paper at the Second international Symposium on
Spatial Data Handling, July 5-10, 1986, at Seattle, WA.

