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Abstract

Following reviews of previous approaches to spatial reasoning, a completely qualitative
methad for reasoning about cardinal directions, without recourse to analytical procedures, is
introduced and a2 method is presented for a formal comparison with quantitative formulae. We
use an algebraic method to formalize the meaning of cardinal directions. The standard
directional symbols (N, 8, E,W) are extended with a symbol O to denote an undecided case,
which greatly increases the power of inference, Two examples of systems to determine and
reason with cardinal directions are discussed in some detail and results from a prototype are
given. The deduction rules for the coordination of directienal symbols are formalized as
equations; for inclusion in an expert system they can be coded as a look-up table (given in the
text). The conclusions offer some direction for future work.

1. Introduction

Qualitative spatial reasoning is widely used by humans to understand, analyze, and conclude
about the spatial environment when the information is qualitative; for example, received

_through a verbal channel. A formalizadon and computer implementation for qualitative spatial
reasoning is necessary to understand Spatial information expressed in natural language, is
generally useful for user interfaces to spatial information systems (e.g. Geographic
Information Systems), and is useful for optimization of spatial queries and for inclusion in
expert systems.

Most methods of spatial reasoning transiate the given problem from the quantitative to the
qualitative realm and use analytical geometry to find a solution. This is not always a workable
solution. The treatment of the inherent uncertainty in qualitative spatial descriptions creates
problems. The construction of expert systems that deal with space and spatial problems has
been recognized as difficult (Bobrow, et al. 1986). Here, a strictly qualitative approach 1s
proposed and algebraic methods are used towards a formalization. The major step is the
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inroduction of an identity symbol 0, that aliows for a definition of rules which yield answers
for all input values. :

‘This paper is restricted to the specific problem of reasoning with cardinal directions. The
problem addressed, described in practical terms, is the following: given the information that
San Francisco is west of St. Louis, Chicago is north of St, Louis, and Baltimore is east of St,
Louis, one can deduce the direction from San Francisco to Baltimore by the chain of
deductions as follows:

1. Use 'San Francisco is west of St. Louis' and ‘Baltimore is east of St. Louis', to
establish a sequence of directions San Francisco - St. Louis - Baltimore .
2. Deduce 'St. Louis is west of Baltimore' from 'Baltimore is east of St. Lonis'
3. Use the concept of ansitivity: 'San Francisco is west of St. Louis' and 'St. Louis
is west of Baltimore', thus conclude 'San Francisco is west of Baltimore' .
This paper formalizes such rules and makes them available for inclusion in an expert system.

The deseription of directional telationships between points in the plane can be formulated
s propositions ‘A is north of B' or 'north (A, B)'. Given a set of propositions one can then
deduce other relative positions as the induced set of spatial constraints (Dutta 1950).
Following an algebraic concept, one does not concentrate on directional relations between
points but rather finds rules for the manipulation of the directional symbols themselves, when
combined by operators. An algebra is defined by a set of symbols that are manipulated ¢here
the directional symbols), a set of operations and axioms that define the outcome of the
operations.

The two operations considered here are ‘inversion’ and ‘combination” of paths.
Directional symbols with the operations defined have properties very similar to the properties
of algebraic groups, if one introduces an additional symbol for 0 (identity), such thata oo ) =
a. This symbol can be interpreted as ‘two points are so close that one cannot determine a
direction'. _

Cardinal directions are similar to the four directions 'front', 'back’, left!, and 'right’,
which are regularly used in sparial references (Herskovits 1986, Retz-Schmidt 1987).
Cardinal directions are easier to analyze because the frame of reference is fixed in space,
However, the solution reported here is directly applicable for treating reference frames once a
qualitative operation to integrate frames of different orientation is devised.

This work is part of a larger effort to understand how we describe and reason about space
and spatial situations. In particular, within the research initiative 2, 'Languages of Spatial
Relations' of the National Center for Geographic Information and Analysis (NCGIA 1989) a
need for multiple formal descriptions of spatial reasoning—both quantitative-analytical and
qualitative—became evident (Mark, et al. 1989, Mark and Frank 1990, Frank and Mark
1991, Frank 1990, Frank 1991).

The structure of this paper is as follows: the next sectiog discusses previous work. Then
the two basic operations on direction symbols and their properties are formalized, using
geometric intuition; we also define what 'exact qualitative spatial reasoning' means. Two
examples of systems of cardinal directions are constructed and then compared. The paper
concludes with some research questions for future work.

2. Related work

A standard approach to spatial reasonin £ 1s to translate the problem posed into analytical
geometry and to use quantitative methods for ifs solution. Many problems can be conveniently
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reformulated as optimization with a set of constraints, e.g. location of a resource or shortest
path question. A similar approach has been applied to undersiand spatial references in natural
language text (Herskovits 1986, Nirenburg and Raskin 1987, Retz-Schmidt 1987). A special
problem is posed by the inherent uncertainties in these descriptions and their translation into
an analytical format. (McDermott and Davis 1984) introduced a method using 'fuzz' and in
(Dutta 1988, Dutta 1990, Retz-Schmidt 1987) fuzzy Eoglc (Zadeh 1974) is used to combine
such approximately metric data.

An entirely qualitative approach was utilized in the work on symbolic projections (Chang,
et al. 1990). They translate exact metric information, primarily about objects in pictures, into 4
qualitative form Segments in pictures are projected vertically and horizontally, and their order
of appearance is encoded in two strings. Spatial reasoning, especially spatial queries, are
excented as fast substring searches (Chang, et al. 1987).

One is tempted to apply first-order predicate calculus to spatial reasoning with directions:
"The direction relation NORTH. From the iransitive property of NORTH one can
conclude thatif A is NORTH of B and B is NORTH of C then A must be NORTH of
C as well (Mark, et al. 1989)"

This leads to complex rules of inference, stating conditions for points and the directional
relations between them. Hemdndez combines directional and topological relations and gives
rules for the deduetion of spatial relations based on multiple, perspective observations
(Herndindez 1990).

Our concern is different from (Peuquet and Zhan 1987), where 'an algorithm to determine
the directional relationship between arbitrarily-shaped polygons in the plane'is given and no
inferences from given directionat relations are drawn.

3. An algebra of cardinal directions

The intuitive properties of cardinal directions are described in the form of an algebra with two
operations applicable to direction symbols:
- the reversing of the direction of travel (inverse ), and
- the combination of the direction symbol of two consecutive segments of a path
(combination).

The operational meaning of cardinal direction is captured in a set of formal axioms. These
axioms define the properties of cardinal directions. The rules are, for a part, formally similar
to vector algebra. We find that the axioms deduced from geometric intvition are approximating
geometrically exact reasoning and as a system logically contradictory.

3.1. Cardinal Directions
Direction is a binary function from two points in the plane (P1, P2) that map onto a symbolic

direction d. The specific directional symbols available depend on the system of directions
used, e.g., d4 = [N, E, S, W) or more extensive d§g = [N, NE, E, SE, S, SW, W, NW}.

We avoid the limitation, that direction is only meaningful if the two points are different and
introduce a special symbol O (for 'zero’), in algebra usually called identity, It means ‘two
points too close for a direction to be determined'. This simplifies the rules and increases
deductive power.
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3.2. Reversing direction’

Cardinal directions depend on the direction of travel. If a direction is given for a line segment
between points P1 and P32, the direction from P2 to P can be deduced (Peuquet and Zhan
1987, Freeman 1975). This operation is called inverse (Figure 1), with

inv (dir (P1, P2) ) = dir (P2, P1) and inv (inv (d)) =d.

po P2
inv (P1, P2) Z) P3
P1 P
Figure 1: Inverse Figure 2: Combination

3.3. Combination
The second operation combines the directions of two contiguous line segments, such that the
end point of the first direction is the start point of the second one (Figure 2).

d] oo d2 =d3 means dir (P1,P2) oo dir (P2, P3) = dir (P], P3)
It is not necessary that combination is commutative (2 o2 b # b == a), but this is the case for
both examples of definitions for cardinal directions studied here, are.

Associativity: Combinations of more than two directions should be independent of the order
in which they are combined: .

dace(becg)=(aeb)cec=gecboag (associative law)
This rule follows immediately from a figure or from the definition of combination in terms of
line segments.
Identity: Adding the direction from a point to itself, dir(P{,P1) =0, to any other direction
does not change the direction. :

Algebraic definition of inverse: In alpebra, an inverse to a binary operation is defined
such that a value, combined with its inverse, results in the identity value. Geometrically the
inverse is the line segment that combines with a given other line segment to lead back to the
start (see Figure 3).
inv(d)eed=0 and deoinv (d) =0

Computing the combination of two directions, where one is the inverse of the other, is in
the general case an approximation and not Euclidean exact. The degree of error depends on
the definition of 0 nsed and the difference in the distance between the points - if they are the
same, the inference rule is exact. This represents a type of reasoning like: New York is east of
San Francisco, San Francisco is west of Baltimore, thus New York is too close to Baltimore
(in the frame of reference of the continent) to determine the direction. In general one observes
that deduction based on directions alone is only applicable if all the distances are of the same
order of magnitude.
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o2 V inv(a2)
d2

P1 o b3 °.
) d3

Figure 3: deeinv{d)=0 Figure 4: d| =d3 == inv (d2)

The inverse is also used o compute the completon of one path to another (Figure 4) and
one finds that a combined path is picce-wise reversible inv (a o= b) =inv (b} e= inv (a).

Idempotet: If ane combines two line segments with the same direction, one expects that the
result maintains the same direction. This is transitivity for a direction relation:

fromd (A,B) and d (B,C) follows d (A.C)

This rule for directional symbols is substantially different from the corresponding tule for
vector addition. From an algebraic point of view, all directions are idempotent:

d e d =d, for any d.

3.4. Definition of Euclidean exact reasoning

The rules for qualitative spatial reasoning given are compared with the quantitative methods
using analytical geometry. The following definition gives a precise framework for such a
comparison. A qualitative rule is called Euclidean exact, if the result of applying the rule is the
same ag if we had translated the data to analytical geometry and applied the equnivalent
functions, i.e. if we have a homomorphism. Otherwise it is called Euclidean approximate.

dir(P1,P2) o dir (P2, P3) = dir ((P1, P2} + (P2, P3))

3.5, Summary of Properties of Cardinal Directions
The basic rules for cardinal directions and the operations of inverse and combination are:

» The combination operation is associative (1').

» The direction between a point and itself is a special symbol 0, called identizy (1) (2

= The direction between a point and another is the inverse of the direction between the
other point and the first (Z) (3).

« The set of directions is closed under inverse and combination.

+ Combining two equal directions results in the same direction (idempotent, transitivity
for direction relation) (3) - an approximate rule

« The combinaton can be inverted (4).

- Combination is piece-wise invertible (5). -

dir (¥1, P1}=0 n doo{dead)=(dood)eod (1
dir (P1, P2) = inv {dir (P2, P1)) (2) dea0=0cad=d @
decd=d ' (3 deainv (d} =0 37
for any a, b in D exist unique x in D such that

aex=bandxeea=bhb (4)
inv (a eo b) = inv (a) == inv {b) (5)

Properties of direction Group properties
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Several of the properties of directions are similar to properties of algebraic groups or
follow immediately from them. Unfortunately, the approximate cancellation rule (3% d e=inv
(d) = 0 leads to a contradiction with the remaining postulates. Searching for an inverse x for
any d e x =0, we find x = inv (d) (using (3)} or x = 0 (using 3'}. A standard sclution is to
define a non approximate rule, d o inv (d) = [d, 0, inv (d)}, which reinstates logical
consistency. We prefer the plausible reasoning solution and use (3") but give up associativity
(17 and nniqueness of the inverse (4).

4. Two Examples of Systems of Cardinal Directions

Two examples of systems of cardinal directions are studied, both using the same set of eight
directional symbols (plus the identity). One is based on cone-shaped (or triangular) areas of
acceptance, the other is based on projections. These two semantics for cardinal direction can
be related to Jackendoff's principles of centrality, necessity and typicality (Tackendoff 1983)
as pointed out by Peuquet (Mark, et al. 1989, p. 24),

4.1. Directions in 8 or More Cones
Cardinal directions relate the angular direction between a position and a destination to some
directions fixed in space. An angular direction is assigned the nearest named direction which
results in cone shaped areas for which a symbolic direction is applicable. This mode! has the
property that “the area of acceptance for any given direction increases with distance” {Peucquet
and Zhan 1987, p. 66) (with additional references) and is sometimes called ‘triangular’,
We use the set of directional symbols

Vo =[N, NE, E, SE, §, SW, W, NW, 0).
and define a turn of an eighth anii-clockwise:

e(N)=NE,e (NE)=E, e (E)=SE, ...,ec (NW) =N, e@=0
with 8 eighth turns being the identity function 8 (d} =d. The inverse is defined as 4 eighth
turns inv (d) = e? (d). The rules for combination of directions are(2" (3) and the
approximative tule (3"). This allows for a dediction of about one third of possible
combinations. A set of averaging rules, which allow the combination of directional values
which are apart by 1 or 2 eighth turns, is necessary to complete the system. For example N is
combined with NE to yield N. ‘

ee(dead=ec(d), e(de=d=d, e(d)esinv(d)=0, desg (d)=d, etc.

In this system, from all the 81 pairs of values (64 for the subset without 0) combinations

can be inferred, but most of them only approximately. Written as a table, where lower case
denotes Euclidean approximate inferences:

N NE E SE § SW W NW O
N N n ne o o o] nw nw N
NE | NE ne e o o 0 n NE
E ne ne E e 8 O o] o E
SE o e e SE se s o o SE
S o o se s S 5 SW 0 S
SW |o 0 0 S 5 SW sw w  SW
W nw o o o swosw W ow W
NW | nw n o o o w w  NW NW
0 N NE E SE S SW W NW O
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Directions so defined do not fulfill all the requirements, because they violate the associative
property (i.e. 328 out of 729 cases); for example {3 ee N) oo E= (0= E=E hut

S (NewE)=S8 e NE = (. The evaluation of a compqu expression depends on the order.
The differences are minor and are probably a reflection of the inherent vagueness of the
concept of directions (Herskovits 1986, p. 192)

4.2. Cardinal Directions Defined by Projections

4.2.1. Directions in 4 half-planes

One can define four directions such that they are pair-wise opposites (Peuquet and Zhan
1987) and each pair divides the plane into two half-planes. The direction operation assigns for
each pair of points a combination of two directions, e.g., South and East for a total of 4
different directions (Figs. 5 and 6).

North NW | NE
West East
South SwW SE
Figure 5: Two sets of half-planes. Figure 6: Directions defined by half-
pIanés.

Another justification for this definition of cardinal direction is found in the structure that
geographic longitude and latitude impose on the globe. Cone directions better represent the
direction of 'going toward’, whereas the ‘half-planes’ {or equivalent parts of the globe) better
represent the relative positfion of peints on the earth. Frequently, the two coincide.

In this system, the two projections can be dealt with individually. When the two
projections in N-S§ and E-W are combined to form a single system with the directional
symbols:

V4= NE, NW, SE, SW}
only the trivial cases (NE e« NE = NE, etc.) can be resclved.

4.2.2. Projection-Baged Directions with Neutral Zone

If points which are near to due north (or west, east, south) are not assigned a second
direction, i.e. one does not decide whether or not such a point is more east or west, one
divides effectively the plane into 9 regions (Figure 7): a central neutral area, four regions
where only one direction applies and 4 regions where two are used. We define for N-§ three
values for direction dpg [N, P, 8) and for the E - W direction the values dew {E, Q, WJ.
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NW | N | NE
W |o:| E
sw | s| sE

Figure 7: Directions with neutral zone

It is important to note that the width of the 'neutral zone' is not defined a priori, Its size is
effectively decided when the directional values are assigned and a decision is made that P2 is
north (not north-west or north-east) of P1.The algebra deals only with the directional
symbols, not how they are assigned. The system assumes that these decisions are consistently
made in order to determine if a deduction rule is Euclidean exact or not.

Allowing a neutral zone introduces a 'tolerance geomeiry' point of view. Whenever an
identity direction dir (P1, P2) =0 is assigned in cases where P # P2 the transitivity
assumption of equality is violated (Robert 1973, Zeeman 1962).

In one projection, selecting dpg= (N, P, §) as the prototype, the inverse operation is
defined as inv (N) = S, inv (§)= N, inv (P) = P. For the combination, we require the rules
{3}, (2% and (3"). These rules together violate associativity. In 200 of the 729 cases, the
result depends on the order of evaluation.

The two projections in N-S and E-W are then combined to form a single system, in which
for each line segment one of 9 combinations of directions are assigned.
Vo = [NE, NQ, NW, PE, PW, PQ, SE, SQ, SW)
Adding some syntacti¢ sugar, P and Q are eliminated {replacing PQ by 0)
Vo =[NE,N, NW,E, W, (, SE, S, SW)

If any of the results of the two projections is approximate, the total result is considered
approximate reasoning.

The inverse operation is combined from the inverse for each projection, written as a table:

d NE N NW E w0 SE 8§ SW

inv(d) |[SW S SE W E 0 NW N NE
The combination operation is defined as the combination for each projection. Using the three
rules, we can compute the values for each combination. Written as a table (again, lower case
indicates approximate reasoning):
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*y N NE E SE 8§ SW W NW 0
N N NE NE e 0 w NW NW N
NE NE NE e e o n n NE
E NE NE E SE SE s o n E
SE e SE SE SE s s o SE
S e SE SE § SW SW w S
SW  jw o 5 5 SW SW SW w sSw
W NW n o] ] SW SW W NW W
NW n 1 0 w  w  NW NW NW
0 N NE E SE § SW W NwW 0

4.3. Assessment

The power of the 8 direction cone-shaped and the 4 half-plane based directional system are
similar. Each system uses 9 directional symbols, 8 cone directions plus identity on one hand,
the Cartesian product of 3 values (2 directional symbols and 1 identity symbol) for each
projection on the other hand. The same three rules are used to build both systems, but the
cone-shaped system had to be completed with a number of 'averaging rules'

Introducing the identity symbol O increases the number of deduction in both cases
considerably. Only 8 out of 64 combinations could be resolved for cone shaped directions and
only trivial cases can be resoclved for the half-plane based system. Without the identity
symbol the systems with identity allow conclusions for any pair of input values (81 different
pairs) at least approximately. The comparison reveals that the cone-shaped directions result in
more cases of approximative results than the projection-based system (56 vs. 32) and that it
yields more often the value 0 (25 vs. 9). Considering the actual values (other than 0)
deduced, we see differences only for results where the 'averaging rules' are used for the
cone-shaped directions, and the values differ by one eighth turn cnly. The two systems
produce essentially the same deduction results.

Both systems violate some of the desired properties. One can easily observe that
associativity is not guaranteed, but the differences seem not to be very significant.

An implementation of thege rules and a comparison of the computed combinations with
the exact value was carried out and these results confirm the theoretical findings. Comparing
all possible 106 combinations in a grid of 18 by 10 points (with a nentral zone of 3 for the
projection-based directions) shows that the results for the projection-based directions are
carrect in 50% of cases and for cone-shaped directions in only 25%. The result 0 is the
outcome of 18% of all cases for the projection-based, but 61% for the cone-shaped directions.
The direction-based system with an extended neutral zone produces in 2% of all cases, a
result that is a quarter turn off. Otherwise, the deviation from the correct result is never more
than one eighth of a turn, namely in 13% of all cases for cone-shaped and 26% for projection-
based direction systems. In summary, the projection-based system of directions produces in
80% of all cases a result that is within 45 and otherwise the value 0.

5. Conclusiong

This paper introduced a system for inference rules for qualitative spatial reasoning with
cardinal distances from an algebraic point of view. Two operations, inverse and combination
are applied to direction symbols and their meanings formalized with a set of axioms. Three
requirements, that such directions should fulfill, are (1) the direction from a point to itself is a
special value, meaning 'woo close to determine a direction’, (2) every direction has an inverse,
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namely the direction from the end point to the start point of the line segment, and (3) the
combination of two lines segments with the same direction results in a line segment with the
same direction.

These rules can be used to identify some systems which are not suitable for cardinal
directions, e.g., a system with an uneven number of cardinals. In order to compare the
qualitative rules with quantitative calculations, we define the notion of 'Buclidean exact’,
using a homomorphism. A deduction rule is called ‘Euclidean exact’ if it prodnces the same
results as those obtained using Euclidean geometry operations.

Twao different systems for cardinal directions were discussed in detail, both fulfilling the
requiremnents for directions. One is based on cone-shaped {or triangular) directions, the other
deals with directions in two orthogonal projections. The introduction of the identity element 0
simplifies the reasoning rules in both cases and increases the power for both, cone and
projection-based directional systems. The half-plane based system of directions is slightly
easier to describe and formalize, as we can deal with each projection separately, yielding
simpler inference rules.

Both systems yield resulis for all the 81 different inputs for the combination operation, but
the projection-based system does more often yield an Euclidean exact result than the cone-~
based one (49 vs. 25 cases). It also produces less often the value 0 (9 vs, 25 cases). Another
important result is that the two systems do not differ substantially in their conclusions, if
definite conclusions can be drawn, i.e. not the value 0. This reduces the potential for testing
with human subjects to find out which system they use, observing cases where the conclusion
using one or the other line of reasoning would yield different results.

We have implemented these deduction rules and compared the results obtained for all
combinations in a regular grid. The projection-based systemn results in 53% of all cases in
exact resuits and in another 26% in results which are not more than 45° off. In 189 of all
cases the application of the rules yields a value of 0. The results for the cone-shaped
directions are less accurate. The methods shown here can be used to quickly assess whether
the combination of two directions yields a value that falls within some limits, and a more
accurate and slower computation should be done,
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