Frank, A. U. "Panda: An Object-Oriented Pascal Network Database

Management System." 17. Orono, Maine, USA: Department of Civil

Engineering, 1982.

PANDA ;
AN Object-Oriented PASCAL
Network Database Management System

Andrew U. Frank

Report No. 57

gruber
Textfeld
Frank, A. U. "Panda: An Object-Oriented Pascal Network Database Management System." 17. Orono, Maine, USA: Department of Civil Engineering, 1982.

ABSTRACT

Object-oriented software design methods are very important for
Computer Aided Engineering systems. The PANDA database we have
built is suitable for such an environment, which is based on an
extended network concept and strongly influenced by the
functional data model [Shipman 1981)]. Database objects follow an
object semantic (as opposed to a value semantic), and are defined
in separate modules without restrictions on their internal
structure., All object types are considered specializations of a
generic type for which the database operations are defined. Thus,
all objects inherit database operations such as access by key,
access through association, etc. Database operations must not use
any information about the internal structure of the objects, and
employ access operations defined in the object modules to
retrieve values associated with an object. The system 1is
implemented and in use for research and instruction at a few
locations.

1 INTRODUCTION

In many areas of application, especially where geometric
properties of real objects are considered, modelling methods that
can combine simple objects to form more complex ones are
necessary, and must be merged with database management systems
and graphics packages., A suitable database management system
(DBMS) must support this approach by object-oriented access and
manipulation tools [Battory 1985]. Standard, non-object-oriented
databases offer a limited selection of data types, which are
usually not sufficient for engineering applications. This paper
describes a method of dealing with the incongruities between an
object-oriented modular software design, based on abstract data
types, and a generic database management system.

The applications of particular interest to us are Cartography and
CAD/CAM, The problems we encountered in our practical work are,
however, general, and are found in a similar form in other areas.
We are convinced that a formal and general treatment will provide
us with more insight and lead us to better scolutions than will an
ad hoc 'fudging’ applicable to one situation only.

This paper describes the concepts we used in the design of the
object-oriented PANDA DBMS. First, we will explain the term
'object-oriented’ as used in this paper. As background, we will
briefly introduce the programming environment we used to
implement large software systems. We will then explain what
perceive to be the clash between object-oriented design and
database functionality, and will go on to show how this can be
overcome. Finally, we will present a data model suitable for an
object-oriented approach, as implemented in our object-oriented
database PANDA [Frank 1982], a CODASYL-like network database. The
data model and the DBMS are currently used at several sites for
research as well as for graduate and undergraduate instruction.

2 OQUR NOTION OF THE OBJECT
We will use the word 'object’ to describe a single occurrence

{instantiation} of data describing something having some
individuality, some observable behaviour, and wupon which some

Pagé 2

operations can be carried out. The terms ’'sort’, 'type', 'ADT',
or 'moduile’ will be used to refer to types of objects.

In our view, object-oriented programming is a concept independent
of a message-passing control structure. Working with PASCAL, we
are restricted to the use of subroutine «calls (with strong
typing). Nevertheless, message-passing together with concurrency,
as found in Thoth [Cheriton 1982], should be noted as an
interesting concept.

2.1 Abstract Data Types Or Multi-Sorted Algebras

Qur notion of the object is influenced by the work done to date
on formal specification methods using abstract data types. An
abstract data type (ADT) or multi-sorted algebra [Goguen 1878]
[zilles 1980] is a mathematical structure which defines the
behaviour of objects of certain types by describing a theory,
stating what sorts (types) of objects are dealt with and what
operations are applicable to them, and establishing a system of
axioms which determine what the effects of the operations are.
This is a formal method of fully defining the semantics of a sort
and its operations. It remains the designers problem to assure
that these sorts and operations are meaningful in real world
terms.

2.2 Construction 0Of Types

2.2.1 Classification/Instantiation - Given an gnsemble of
objects, classification groups together all objects which respond
to the same operations.

One level of classification is built into programming languages,
as we use modules to describe the behaviour of classes of objects
(types) and then create single instances of this behaviour.

2.2.2 Generalization/Specialization - Classes of objects which
have some operations in common can be grouped into more general
classes {sometimes called superclasses [Goldberg 1983]). From
this, it follows that all subclasses of a superclass inherit all
the operations of the superclass. We recognize only inheritance
(1.e, all operations are inherited) and require a strict
hierarchy between classes and superclasses. This is not only an
implementation problem, but also a reflection of our as yet
insufficient understanding of other inheritance schemes.

2.2.3 Aggregation/Part-of - Aggregation constructs a
higher-level object from several objects (or values). We
differentiate between aggregates with a fixed number of parts and
those in which a wvarying number of parts of the same type is
combined.

2.2.3.1 BAggregates With A Fixed Number of Parts - With
aggregation comes an operation into combine the parts to the
aggregate (usually called 'make’}) and operations to get the
individual parts from the aggregate.

Page 3

2.2.3.2 Aggregates With A Varying Number Of Parts - This type of
aggregation requires an operation to add a part to the aggregate,
as well as a '"for each’-operator which permits the application of
an operation to all parts [Backus 1978]

2.3 Object Semantics Vs. Value Semantics

'All objects rely on the existence of an operation to <c¢reate an
ocbject of their type, an assignment operation, and an operation
to compare two objects for equality. Other operations may be
available, but this seems to be the minimal set necessary.

Programming languages offer two different semantics £for the
create/assignment operation and the egquality operations on
variables [MacLennan 1982].

- value semantics: the ’"assignment’ operation creates a new
object of the same type with the same value; two objects are
equal if they have the same values;

- object semantics: each time it is wused, the 'create’
operation creates a new object, different from any object
previously created; an ’'identity’ function tests whether two
references point to the same object.

" The difference between value and object semantics are easily
detectable:

var a,b : sometype
begin
create (a);
b i= a;
change (a, x}; {* some changes which affect the values of a *)
if a = b then writeln (’object semantics’)

else writeln (’value semantics’);
end;

It may be noteworthy that ADA modules {packages) export
assignment and equality [ADA 1983], but their semantics depend on
the implementation of the package. It is therefore possible that
a change in the implementation (value type to dynamic type)
without a corresponding change of the interface may influence the
noticeable behaviour of a package, and thus may cause errors in
code using this module. B

For CAD/CAM applicationa, a third form of semantics seems worth
studying: version semantics. In version semantics, ‘new version’
creates something which is neither a new object nor a simple
reference to the old object.

We will associate our notion of an ‘'object’ with those things
which use object semantics for assignment and equality. Similary,
we will use the term ‘value’ to refer to those things which wuse
value semantics for assignment and eguality.

2.4 Persistence Of Objects

We will assume that objects are stored in a database and are
therefore persistent, meaning that their lifespan does not depend

Page 4

on the running of a program. While it is possible and sometimes
useful to create things with object semantics which are not
persistent, this topic will not be discussed here.

3 IMPLEMENTATION OF ABSTRACT DATA TYPES (MODULES)

A module implements an abstract data type, either of object or
value type. Such a module exports the type definitions {including
all used constants) and the procedures and functions which are
defined for this ADT.

Every module exports,as a minimum, an operation to create or
assign objects of this type and an operation to test for the
equality or identity of two objects. The semantics of these
operations are either 'value’ or 'object’ semantics,
respectively.

For input/putput operations, we include an operation to parse an
object of this type from an input string and to convert an obhject
to a string for output., We are presently studying better methods
of dealing with I/0, especially the proposal made in [Shaw 1986].
Experience has shown that I/0 operations are our major design
problem, and as such we £feel they are closely related to the
discussion of object-oriented programming.

We exclude the treatment of errors and exceptional states,
although theoretical solutions are known [Parnas 1982} {[Goguen
1978].

4 PROGRAMMING ENVIRONMENT

A programming environment must support the software engineering
method wused, and should support only that one. When we built our
system in 1983, not many languages supported modularization based
on abstract data types. We decided tec use PASCAL as a base
language, because we were familiar with it and becaocuse PASCAL
compilers were available for most hardware.

A precompiler [Frank 1983) provides an import/export facility for
modules [Wirth 1983} (or a package concept [ADA 1983]}). The same
precompiler makes the changes necessary to produce PASCAL source
code suitable for different compilers; in consegquence, we have
one set of source code which runs on such vastly different
hardware as 1IBM 370 (under VM/CMS), DECsystem-10 (TOPS-10) and
VAX (VMS).

Any module using an ADT from another module imports the lower
module, which makes the complete type definition (including all
type definitions of even lower modules) and all the operations on
this type available at this higher 1level. We do not provide
selective imports (as do ADA or MODULA-2), and under PASCAL rules
the internals of the imported type are accessible to a malicious
programmer. Our coding rules prohibit the use of any internal
details of an imported ADT. We call exported access functions to
get at the values in an ADT, in lieu of a record selector.

~ Page b

uUnfortunately, the PASCAL host language does not allow coding of
generic modules, so we have to produce these from & common
template using a text editor. We would have been pleased if a
more advanced language had been available, and are still
considering a change. However, interesting new developments such
as Clascal [Casseres 19831, CLU [Liskov 1981], etc. are not
readly available, and ADA seems not to address the issues in a
straightforward way. ' -

5 THE CLASH BETWEEN DATABASE AND OBJECT-ORIENTATION

The object-oriented view considers the modules which define the
objects to be upper-level using a.common database (data storage)
module to provide generic operations (figure la). This is
somewhat analogous to using the built-in value types to construct
other types (figure 1b). This analogy, however, is not correct,
as the operations in the database need access to operations
provided by the object modules, too. Further, the relations
between the objects are not necessarily hierarchical: it will not
suffice to provide operations in module B which result in objects
of type A (and so on in a hierarchy) figure le¢, but we will need
operations on objects from type A that yield objects of type B.
This cannot be modelled in systems with a linear order (i.e.
definitions appear before use}, and conflicts not only with our
way of writing specifications bu also with the reguirements of
our programming environment.

ot 02 03 01 02 03
Y \ 1 \ 9 1
DB-moduie integer string
A Figure ib
A imports B:
X

]

Example: edge - node relation; given an edge, we need access to
the two ending nodes. Likewise, given a node, we need access to
all edges that are incident with it.

Figure la

Figure !¢

Page 6

Object X Object ¥

| J .

Ganeric Database Object

L 4 9

Base Object X Base Object Y
Value Type A Value Type B Value Type C
Figure 2

Our solution is shown in figure 2, where the division between
basic object modules and upper-level object modules is clearly
visible. This allows the DBMS to use the operations included in
the basic object 'modules without resorting to circular import
relations.

It is possible that once the problems are clearly understood and
methods are available to define objects with non-hierarchical
relations, a solution such as that shown in figure la will become
possible. The following description may then be helpful in
guiding the implementation of such a system.

6 DEFINITION OF OBJECT ATTRIBUTES

Objects provide access functions to their parts, a view proposed
in functional database languages such as DAPLEX [Shipman 1981].
We separate these access functions into two groups, one yielding
values (i.e. things with value semantics) and the other yielding
objects (i.e. things with object semantics). The designer of the
database schema has to decide what combination is most
appropriate to model reality ({Kent 1979]. Value and object
semantics are distinct, and it is useful to force a designer to
decide between the two.

The definition of an object consists of defining the wvalue part
(attributes} as a module ,and then indicating the object’s
relations to other objects.

An object-oriented database must support objects with value parts
constructed from arbitrary data types (support for pointer types
and dynamic data structures would require function to map £rom
main memory representation to disk storage representation) and we
describe such constructions before we introduce the data model
proper. We want to stress that the definition of the base object
data types is not part of the data model proper, as in our
understanding the database must not ’'see’ any internal details of

Page 7,

the object data treated.
6.1 Built-In ADT

Every programming language provides some built-in data types and
operations on them. We currently use PASCAL booleans, integers,
reals, characters, and packed arrays of characters.

6.2 Quotient Algebras

Quotient algebras are based on restricted subsets of previously

defined types (e.g. positive integers, angular measurement as a
real modulus 2 pi}.

6.3 Aggregates 0f Value Modules

Object types are most often composed of a fixed number of value
types. The construction in PASCAL is the record {or occcasionally
the array). In principle, aggregates of a variable number of
values are possible, but these are easy to implement in PASCAL,
and are therefore excluded from PANDA in its present form. A very
general solution is the NF2 algebra [Schek 1984] which could be
used to construct value modules.

Fixed-number aggregation of types a,b... into a new type t:
make : a x b ... ->

as t -> a
b: t -> a
equal: t x t -> boolean

axiom:

a2 {make {(al,bl,..}} = al

b (make (al,bl,..)) = bl

equal (tl, t2) = equal{a(tl),a(t2)}) and equal (b{(tl),b(t2)}) and ...

6.4 Generalizaticen Of Value Modules

in some cases, several different value types embody the same
concept (semantics) in different forms, and therefore export the
same operations (e.g. vectors in orthogonal (x-y) or polar
(ph1 r) coordinates, or straight lines and arcs of circles). It
is possible to construct value types which make such differences
invisible to the upper-level module.

The object values can be constructéd from generalizations of
value modules. It is up to the designer of the database schema to
decide whether each of the speclalizations is an object type in

its own right or whether only the generic object type is known to
the database.

The implementation in PASCAL uses a record with variant part.

Generalization of two types p, g to form a new type t
p has operations p.a, p.b, etc.

g has operations g.a, gq.c, etc.

make-from-p: p -> t

make-from-q: @ -> t

type: t -> (p-type or g-type)

Page B

p:t->p
q: t->g
a (t) = if type(t})=p-type then p.ait)
if type(t)=qg-type then g.a(t)
b {(t) = if type(t)=p-type then p.b(t) else error
etc.
p (make-from-p{p)) P

¢

g (make-from-g(qg)) q
p (t) = if type(t)=p-type then p else error
q (t} = if type(t)=g-type then g else error

6.5 Special Operations For Objects To Support Database
Operations

A number of specific operations is necessary to support special
database operations {(e.g. to test for the equality of two values,
to compute an integer (as in hash computation), teo convert to
string for output etc). Modules are available for the most
frequemtly used types such as integers and reals. For other
special ADT's the database designer must construct the required
operations.

"7 DATA MODEL AND DATABASE OPERATIONS

By 'data model’ we mean, as is customary in database studies, the
tools available to the designer to structure his data.

The notion of a data model is less frequently used in programming
language studies, its nearest equivalents being the constructors
for data structures. Some similar concepts have been discussed in
abstract data type literature [Lockeman 1979].

The explanation of a data model without the appropriate
operations is not very helpful, and we want te escape the valid
criticism in [Reiter 1984]. However, the formal definition of
semantics for operations is rendered somewhat awkward due to the
clash between the essentially functional description wused for
multisorted algebras (no side-effects) .and the state-oriented
view of a database [MacLennan 1982].

In an object-oriented design, the data model is somehow
restricted, as it does not include the internal structure of
objects (i.e. attributes with value semantics).

We require that the database schema be available to the database
before data are stored. The following operations assume that
object-types, access—-path and association names are defined and
return 'error’ if an undefined value is encountered or if, for an
association or access path, the objects are not of the correct
type. The available metadata do not influence the semantics of
association or access path, but permit us to select
implementation methods which result in better performance (e.q.
the establishment of auxiliary structures for access). At present
we have not implemented operations to change the database schema
once a database contains data. However, there is no reason why
such operations could not be programmed.

Page 9

7.1 Objects

The database deals with objects, which may contain some value
types ({(aggregates of a fixed number of parts, generalizations of
value types), but may not contain other objects (nor dynamic data
structures using pointers).

The database provides special operations for these ©objects.
Indeed, all objects are specializations of a generic cbhject type.
There is a special 'create’ operation to make the generic
database object from the base object values (cf. generalization)
inherited by all object types, and a test for identity: modules
that implement objects have object semantic. The assignment does
not create a new object, but rather a pointer to the object;
equality serves as a test for same-object. An equal-value

function is often provided to test whether two objects have the
same value.

create : value x object-type -> object
identical : object x object -»> boolean
equal-value : object x object -> boolean
assign: object -> abject

get-value : object -> value

get~type: object -> object-type

axioms:

identical {(o,0) = true

identical (create (vl, tl), create (vl, tl1l)) = false
identical {(assign (o), o) = true

equal-value {create (vl},create (vl)} = true
equal-value (ol,02) = if identical (ol,02) then true

—- but not: identical (ol, o02) = if equal-value (ol, o02) then true
get-value (create (v, t)}) = v .
get-type {create (v,t)) =t

7.2 5Storage Of Objects

As a basic service, a database must provide an operation to store
and retrieve a data element. As a low-level module in a database,
we provide a storage and retrieval operation reminiscent somewhat
of a random access file, In fact it can, but need not, be
implemented wusing a random access file. A high-performance
database will include buffer management and clustering of data
which is frequently used together, but this is not part of the
present conceptual discussion.

This low-level storage system requires a unique identifier for
each object. This function may be implemented in conjunction with
the storage module, but is logically separate.

id: cbject -> id
axiom: object.identical {(ol,02) iff id (cl) = id (o02)

Objects are stored in an ADT ’'db-storage’, which is the explicit
result of all storage modifying operations.

initial: . -> db-storage
store: object x db-storage -> db-storage
retrieve: db-storage x id -> object

Page 10

modify: object x db-storage -> db-storage
delete: object % db-storage -» db-storage

axioms:
retrieve (store {(o0l,dl), id(o2)) =
if 0ol = 02 then ol
else retrieve (dl, id{(o2))
modify (o, d} = if not retrieve {(o,d) then error
—— it is an error to modify an object which
~- was not previously stored
retrieve (modify (ol,dl), id(o2)) = if ol = 02 then ol
else retrieve (dl, id{(o2)}}
retrieve (delete (ol,dl), id (o02) = if ol = 02 then error
~else retrieve (dl, id(o2))

7.3 Access Based On Unique Values

A database management system must also provide access to the
objects based on values in them. The semantics of the method
described requires that the values be unique: this is implemented
using hashing techniques [Knuth 1973].

In order to avoid the database using information about the
internal structure of an object (which would vioclate the
principle of information hiding [Parmas 1978]), operations must
be defined which calculate an integer value (which is then used
to calculate the hash value for each object and access-path. 1In
addition, a function must be provided which compares two
object-values for equality with respect to the values used for an
access path. ' '

This access method works with single attribute values of any
type, on a combination of attribute values, or on some value
associated with the object in another way (sometimes called
'virtual attributes?’).

for each object type and access path the following must be defined:

to-integer: object-value x access-path -> integer
equal: " object-value x object-value x access-path -> boolean

axiom:

if equal (ol, o2, pl) then to-integer (ol,pl) = to-integer (o2, pl)
——~ however we do not demand that
—-— if to-integer (ol,pl) = to-integer (o2, pl)
- then equal (o0l,o02,p)

For the retrieval of an object, the database is provided with an
object-value where the values to be used are filled. Since the
database does not make any assumptions about the type used as a
key for retrieval, the whole object type must be provided.

find: object-value x access-path x db-storage -> object

axiom:
find (ol, p, store (02, d)) = if equal (get-value (o02), ol, p)
. then o
else find (ol, p, 4d)

Page 11

find (ol, p, modify (02, d)} = if equal (get-value {o02), ol,p)
- then o
else find (o0l, p, 4d) '
find (o1, p, delete (02, 4)) = if equal (get-value (02), ol,p)
then error:not-£found
glse f£ind (ol, p, 4)

For storage and modification, we have toc add:

store (o,d) = if find (get-value (o), p,: d)

then error:not-unique-~key
modify (o,d) = if find (get-value (o), p, d)

then error:not-unique-key

7.3.1 Associations {(CODASYL: Set) - This construct associates a
number of objects of one (or occasionally more than one type with
cne object of another type. An object can participate in several
different -types of associations, but only in one occurence of
each at any given time. This construct models the typical 1 : n
relation between objects. In the language of DAPLEX, an
association is a single~valued function which returns an object
with an inverse which is multi-valued [Shipman 1981].

We would like to be able to provide a distributive function as in
FL fBackus : 1978], but in a procedural,
one—-object-at-a-time-oriented language, a generic 'FOR EACH
member-object 1IN association-type FROM owner-object’ would he
sufficient. Without extension of PASCAL we have to do with:

initialize {ownerObject, memberObject);
while nextobject (memberObject, association) do
begin
{* operations on the single objects in the assoc1at10n *}
action (memberObject);

end;

operation:
insert: object x object x association x database -> database
all-members: object x association x database -> set-of-objects
~— this is similar to the multi-valued functions in DAPLEX
find-owner: object x association x database -> object
—— this is the single-valued function in DAPLEX

axioms:
—— for the formulation we make use of mathematical set operations:
contains (all-members {(owner, a, insert (owner, member, a,d)},
member) = true
-— an object wich is inserted is found in the association
intersection {(all-members (ownerl, a, db},
all-members (ownerz, a, db))= empty
—-- no object can take part in two associations of the same type
—— an insertion that would violate this condition raises
—-— an error condition .
find-owner {member, a, insert (owner, member, a, d)) = owner

Page 12

There is an additional operation to find the object with some
given values in an association. The method of interaction between
object module and database is essentially the same as that wused
for access based on unigque values.

The association can be used to model two semantically different
situations: aggregation and classification. It 1is thus a
lower~level construct. We are in the ‘process of studying the
semantics of higher-level operations which might be more
appropriate as an interface. .

7.3.1.1 Aggregation - Aggregations of eparts which are objects
can be accomplished using the association. The 1 : n restriction
is necessary for a proper aggregations of parts - it seems
correct that an object can only be part of one (aggregate) object
in a given context. An object may be composed of parts in

different ways - e.g. a department consists of personnel,
offices, projects etc.: conversely, objects may participate 1in
different ways 1in aggregations - eg. a person is part of an

office, of a family etc.

We alsoc use aggregations for values which appear an indefinite
number of times for an object. Under these circumstances, these
values become objects. It may be appropriate to allow fields of
varying length for such cases (preferably in the generality as
discussed as NF2 relations [Schek 1984]), as the meaning of this
structure is different, and a value should not be converted into
an object simply because limitations in the data model demands
it.

7.3.1.2 Classification - Associations can also be used to model
a classification/instantiation relation. (e.g. a type of bolt -~
an individual bolt used in an assembly)., Again the 1 : n
restriction seems appropriate, as an object can only be of one
type (in a given context).

7.3.1.3 1Inheritance - In both cases, aggregation and
classification, some ‘inheritance’ of properties occurs. The
details of this inheritance however, are different. In

classification, the instantiations inherit most properties from
the class (e.g. the bolt inherits the properties of dimension,
material, price, etc.). In aggregation, the parts have conferred
upon them some properties inherent in the top assembly but the
resultant aggregate alsc has some properties which are directly
determined by its parts (e.g. the total weight of the assembly is
the sum total of the weights of its parts).

We are currently studying such situations in order to detect more
appropriate, more meaningful constructs, for which we can
formally state the semantics of this distribution of attribute
values among related objects. As our present model does not
include any inheritance, there is no need for a differentiation
between aggregation and classification. The object programmer has
to formalize his wunderstanding of the specific situation
individually for each object type.

Page 13

7.4 Obiect Modules

For each object, meaningful operations are initially designed and
then coded in a top-level object module. This module exports all
meaningful operations on objects of this type, e.g. £finding a
specific object given some value, storing a new object with some
given values, etc. These modules import the operations the
database offers and use them to implement their own operations.

Consistency constraints are included in the storage and modifying
operations in these modules (except those constraints which are
part of the data model, such as unique keys for access paths).
Consistency constraints can thus be written using the £full power
of our programming language - which is generally needed for
non-standard applications.

Consistency constraints in this model are not necessarily
expressed as predicate over database values (e.g, constraints in
DAPLEX [Shipman 1981]), but the set of all consistent states is
defined by an enumeration of all possible states reachable
through a finite chain of operations exported by the object
modules.

The application-level programmer sees only the top level of
operations applying to the objects. She is not concerned with the
database operations at all. It has been the purpose of this paper
to show how the subordinate modules are constructed.

While objects appear to the application-level programmer to be of
individual types, they are specializations of a generic object
type. Operations are then implemented using the generic
operations on objects for creation and deletion, for association
between objects and for access methods. The operations that deal
with specific values are handled using the basic object modules.

8 EXTENSIONS
8.1 Simplification For Object Definitions

The operations necessary for the database can be provided in the
modules which define the value types (e.g. a module for integer
or string). The code in the object modules can then be produced
automatically from a record description and the declaration of
access path and Associations. Unfortunately, this induces a view
which is different from that of an object-oriented design.

8.2 Access By Nearly Unique Keys

We often have attribute values which are natural candidates for
access keys even though their value is not guaranteed to be
unique, e.g. names of persons or towns. Searching on such a path
delivers

— the matching object if there is only one
- the matching objects if there are more than one. the user has

to select the desired one in a dialog. this requires output
operations for objects accessible from the database.

Page 14

8.3 ©Spatial Access

Many data in engineering applications (e.g. land information
system) are space-related, making access based on 1location
necessary [Frank 1984]. We have included special internal
support, invisible to the programmer, which allows the retrieval

of all objects which fall within a specified rectangle [Frank

1983a] '
9@ EXPERIENCES AND QUTLOOK
9.1 Implementation

The implementation of the basic database operations follows
traditional 1lines. Storage space is divided into pages, and each
record has a tuple identifier similar to SYSTEM R [Astrahan
1976]. Input and output of pages is buffered, and there is an
additional level of buffering for records: both are managed using
a least-recently-used strategy. Associations are stored as linked
lists. Access paths for unigque keys use a hash algorithm.

Our experience shows that such a simple implementation can be
presented with an easily understood, clean interface. It seems a
natural candidate for the implementation of an object-oriented
database. Further, these simple methods provide fast response
times for the complex retrievals of engineering databases.

9.2 Implemented Projects

We have implemented a number of databases using this methodology;
a simple database can be up and running in a few days. The PANDA
database was used to store the facts and rules £for our PROLOG
interpreter [Frank 1984a). We did not encounter problems during
schema design, and the performance 1is acceptable - in our
non-optimized prototype, access to an object takes no more than
several milliseconds.

The construction of a new database schema is a non-trivial task.
The data model presented here has more semantic precision than
does, for example, a purely relational one, and provides better
‘guidelines, The coding of all object modules required for a
project is a substantial effort, but similar code 1is necessary
for any database. The guidelines for the construction of object
modules, and the similarity between objects, do assist the
programmer. Subsequent higher levels of the application program
do not include direct references to the database, and are thus
easier to code and truly independent of the database.

9.3 Input And Output Operations

The construction of higher-level toocls to use the data in a
database (e.g. query language, browser, form based input)} depends
on routines for the input or output of database objects. It is
not sufficient to provide a single output routine, as the
presentation of an object must vary with context (sometimes, in
fact a graphical representation is desired).

Page 15

Writing the - code for these input and output operations is
exteemely tedious, and we are investigating more general methods,
especially along the lines described in [Shaw 1986].

10 CONCLUSIONS

Commercial (standard) databases are too restricted <£for complex,
non-standard applications. The approach presented here is
object-oriented in the sense that: '
o operations on objects have an object semantic (as opposed to
a value semantic) for assignment and equality
o objects can have an arbitrary internal structure (attribute
values)} which is not interpreted by the database
o objects can be related to each other (l:n association)
o objects can be accessed using values which uniquely identify
them (without limitationson certain data types)

Our experience with the construction of databases for Computer
Aided Engineering applications leads us to beleive that

o the object paradigm is powerful and appropriate and the
differentiation between values and objects important for a
data model. Efforts to introduce surrogates into the relation
data model seem to be a step in the same direction [Plouffe
1984] [Meier 1983]. :

o the concept of consistency defined by all states reachable
with a finite sequence of operations on objects meshes well
with an object-oriented approach. It permits arbitrarily
complex consistency constraints and makes the full power of
the programming language available for their encoding.

o applications in this area have structures which are so
complex that schema design and coding are major efforts. It
is more important to have a system which allows proper
modelling than a system which is simple to use. :

We are presently experimenting with query language, and again we
found that conventional languages (e.g. SQL) are not powerful
enough (lacking recursion). We are therefore investigating a
PROLOG-like 1language, which blends well with the presented data
model, although it is not yet clear how PROLOG may best be used
in an object-oriented style [Frank 1984b].

11 ACKNOWLEDGEMENTS

The work reported here evolved over a number of years and many a
friend and colleague of mine helped me better towards a better
understanding of the issues involved. Special thanks go to
Andreas Gautschi, Prof. R. Conzett, and Beat Sievers (then all at
the Swiss Federal Institute of Technology at Zurich, ETH)} and to
Larry Latour, Max Egenhofer and Doug Hudson (from the University
of Maine). Linda Langley helped with the preparation of this

paper.
12 REFERENCES

ADA Reference Manual for the ADA Programming Language,
Springer-verlag, New York, 1983

Page 16

Astrahan, M.M. et al., System R: Relational Approach to Database
Management, ACM TODS, Vol. 1, No. 1,1976

Backus, J., Can Programming be Liberated from the Von Neumann
Style? A Functional Style and its Algebra of Programs, CACHM,
vel. 21, No. 8, Aug. 1978,

Battory, D.S, Kim, W., Modelling Concepts for VLSI CAD Objects,
ACM Transactions on Database Systems, Vol. 10, No. 3, Sept.

Casseres, D., CLASCAL Reference Manual for the LISA, first draft,
Apple, 1983

Cheriton, David R., The Thoth System: Multi-Process Structuring
And Portability, North-Holland, New York, 1982

Frank, A., PANDA Pascal network database system, Proceedings ACM
SIGSMALL, Colorado Springs CO, 1982

Frank A., A Precompiler 'for Transportable Modulatr PASCAL,
internal documentation, University of Maine at Orono,
Department of Civil Engineering, Surveying Engineering,
Orono ME, 1983

Frank, A., Problems of Realizing LIS: Storage Methods for Space
Related Data: The Field Tree, No. 71, 8wiss Federal
Institute of Technology, Zurich (Switzerland), 1983

Frank, A., Requirements for database systems suitable to manage
large spatial databases, in: D. Marble, et al. (Eds),
Proceedings of the International Symposium on Spatial Data
Handling, Zurich (Switzerland), 1984

Frank, A., Extending a Database with Prolog, in: Kerschberg, L.
(ed.), Proceedings of the First International Workshop on
Expert Database Systems, Kiawah Island (SC), Oct. 1984

Frank, A., Combining a Network Database with Logic Programming,
No. 45, University of Maine at Orono, Department of Civil
Engineering, Surveying Engineering, Orono ME, 1984

Goguen, J.A., et al., An 1Initial Algebra Approach to the
Specification, Correctness, and Implementation of Abstract
Data Types, in: Yeh, R. (Ed.) Current Trends in Programming
Methodology, Prentice-Hall, Englewood Clifts, N.J., 1978

Goldberg, A., Robson, D., Smalltalk-80, Addison-Wesley, 1983

Kent, W., Data and Reality, North-Holland, New York, 1979

Knuth, D.E., The Art of Computer Programming, Vol. 3: Sorting and

' Searching, Addison-Wesley, Reading MA, 1973 .

Liskov, B., et al., Lecture NOtes in Computer Science, CLU
Reference Manual, Springer-Verlag, New York, 1981

Lockemann, P.C., et al., Data Abstraction for Database Systems,
ACM Transactions on Database Systems, Vvol. 4, No. 1, March
1979

MacLennan, B.J., Values and objects in programming languages,
SIGPLAN Notices, Vvol. 17, No. 12, Dec. 1982

Meier, A., Lorie, R., A surrogate concept £for engineering
databases, in: Schkolnick, M., Thanos, c¢., (Eds.},
Proceedings Ninth International Conference on Very Large
Databases, Florence (Italy}, 1983

Parnas, b.L., Share, J.E., Language facilities for supporting the
use of data abstraction in the development of software
systems, Naval Reasearch Laboratory, Washington, 1978

Plouffe, W., et al., A Database System for Engineering Design,
IEEE Database Engineering, Vol. 7, No. 2, June 1984

Reiter, R. Towards a logical reconstruction of relational
database theory, in: Brodie, M.L., et al. (Eds), On
Conceptual Modelling, Perspectives from Artificial

Intelligence, Databases, and Programming Languages, Springer

Page 17

Verlag, New York, 1984 .

Schek, "H.~J., Nested Transactions in a Combined IRS-DBMS
Architechture, Proceedings of the 3rd Joint BCS and ACM
Symposium on Research and Development in Information
Retrieval, Cambridge University Press, 1984

Shaw, M., An Input-Qutput Model for Interactive Systems,
Proceedings CHI’'86, Human Factors in Computing Systems,
Boston, 1986 - ' '

Shipman, D.W., The Functional Data Model and the Data Language
DAPLEX, ACM Transactions on Database Systems, Vol. 6, No. 1,
March 1981

Wirth, N., Programming in MODULA-2, Springer-Verlag, New York,
1983

Zilles, S. N., An introduction to data algebras, in: Bjorerner,
D., (Ed.), Abstract Software Specifiactions, Lecture Notes
in Computer Science, Vol. 86, Springer Verlag, New York,
1980

15.

17.

18.
19.

24.

217.
28.
30.

3L

32.

33.

PUBLICATIONS
Surveying Engineering Program
University of Maine

The following is a current list of publications by the Surveying Engineering
Program at the University of Maine. Copies, unless specifically designated as No
Longer in Print (NLP) or available from some other publisher or agency, are
available from University of Maine, Surveying Engineering Program, 120
Boardman Hall, Orono, ME 04469. (A fee to cover the costs of processing,
printing and mailing is indicated after each available publication.)

Land Information Systems for the Twenty-First Century, E. Epstein and W.
Chatterton, Real Property, Probate and Trust Journal, American Bar Association,
Vol. 15, No. 4, 890-900 (1980). ($5.)

Legal Studies for Students of Surveying Engineering, E. Epstein and J.
McLaughlin, Proceedings 41st Annual Meeting, American Congress on Surveying
and Mapping, Feb. 22-27, 1981, Washington, D.C. ($5.)

Storage Methods for Space Related Data: The FIELD TREE, A. Frank in: Spatial
Algorithms for Processing Land Data with a Minicomputer, MacDonald Barr (Ed.).
Lincoln Institute of Land Policy, 1983. ($15.)

Semantische, topologische und raumliche Datenstrukturen in L and-informations-
systemen (Semantic, topological and spatial data structures in Land Information
Systems) A. Frank and B. Studenman, FIG XVII Congress Sofia, June 1983.
Paper 301.1. ($5.)

Adjustment Computations, A. Leick, 250 pages. ($25.)

Geometric Geodesy, 3D- Geodesy, Conformal Mapping, A. Leick, 420 pages.
($30.)

Macrometer Satellite Surveying, A, Leick, ASCE Journal of Surveying
Engineering, August, 1984, ($3.)

Adjustments with Examples, A. Leick, 450 pages. ($30)
Geodetic Programs Library, A. Leick, about 400 pages. ($25.)

Macintosh: Rethinking Computer Education for Engineering Students, A. Frank,
August, 1984, ($5.)

Surveying Engineering at the University of Maine (Towards a Center of
Excellence), D. Tyler and E. Epstein, Proceedings MOLDS Session, ACSM
Annual Meeting, Washington, March, 1984. ($5.)

Innovations in Land Data Systems, D. Tyler, Proceedings Association of State
Flood Plain Managers, Annual Meeting, Portland, Maine, June 1984. ($5.)

Crustal Warping in Coastal Maine, D. Tyler, et. al., Geology, Vol 12, pp. 677-
680, November 1984. ($5.)

34,

35.

36.

37.

38.

39.

40.

42,
43,

44.

43.
46.

48.

49.

St. Croix Region Crustal Strain Study, D. Tyler and A. Leick, Technical Report
submitted to the Maine Geological Survey, June 1984. ($10.)

Applications of DBMS to Land Information Systems, A. Frank, in: Proceedings,
Seventh International Conference on Very Large Databases,C. Zaniolo and C.
Delobel (Eds.), Cannes (France), September, 1981. ($5.)

MAPQUERY: Database Query Language for Retrieval of Geometric Data and Their
Graphical Represéntation, A. Frank, Computer Graphics, Vol. 16, No. 3, July
1982, p. 199 (Proceedings of SIGGRAPH '82, Boston). ($5.)

PANDA: A Pascal Network Data Base Management System, A, Frank, in:
Proceedings of the Fifth Symposium on Small Systems,G.W. Gorsline (Ed.).
(ACM SIGSMALL), Colorado Springs (Colorado), August 1982, ($5.)

Conceptual Framework for Land Information Systems - A First Approach, A.
Frank, paper presented to the 1982 Meeting of Commission 3 of the FIG in Rome
(Italy) in March 1982. ($5.)

Requirements for Database Systems Suitable to Manage Large Spatial Databases,
A. Frank, in: Duane F. Marble, et. al., Proceedings of the International
Symposium of Spatial Data Handling, August, 1984, Zurich, Switzerland. ($10.)

Extending a Network Datgabase with Prolog, A. Frank in: First International
Workshop on Expert Databases Systems, October, 1984, Kiawah Island, South
Carolina. ($5.)

Canonical Geometric Representations, A. Frank. ($10.)

Computer Assisted Cartography - Graphics or Geometry, A. Frank, Journal of
Surveying Engineering, American Society of Civil Engineers, Vol. 110, No. 2,
August 1984, pp 159-168. ($5.)

Datenstrukturen von Messdaten, A. Frank and B. Studemann, paper presented at
IX International Course for Engineering Surveying (Graz, Austria), September
1984. ($5.)

Combining a Network Database with Logic Programming, A. Frank. ($10.)

Montgomery County (Pennsylvania) GPS Survey, A. Leick and J. Collins,
ASP/ACSM Annual Meeting, Washington, D.C., March 10-15, 1985. ($5.)

Application of GPS in a High Precision Engineering Survey Network, R. Ruland
and A. Leick, First International Symposium on Precise Positioning with the
Global Positioning System, Rockville, Maryland, April 15-19, 1985. ($5.)

Graphics Programming in Prolog, R. Michael White and Andrew U. Frank. ($5.)

50.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.
63.

Instrumentation Needs (GPS and Related Matters), Alfred Leick. Workshop on
Fundamental Research Needs in Surveying, Mapping, and Land Information
Systems, Virginia Polytechnic Institute and State University, Blacksburg, Virginia,
November 18-20, 1985. ($5.)

Expert Systems Applied to Problems in Geographic Information Systems, Vincent
Robinson, Andrew U. Frank, Matthew Blaze, presented at the ASCE Specialty
Conference on Integrated Geographic Information Systems: A Focal Point for -
Engineering Activities, February 3-5, 1986. ($10.)

Integrating Mechanisms for Storage and Retrieval of Data, Research Needs,
Andrew U. Frank, challenge paper forWorkshop on Fundamental Research Needs
in Surveying, Mapping, and Land Information Systems, November 17-19, 1985,
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061. ($10.)

Formal Methods for Accurate Definitions of Some Fundamental Terms in Physical
Geography; Andrew U. Frank, Bruce Palmer, Vincent B. Robinson. Invited paper
at the Second International Symposium on Spatial Data Handling, July 5-10, 1986,
at Seattle, WA. ($5.) .

Cell Graphs: A Provable Correct Method for the Storage of Geometry; Andrew U.
Frank and Werner Kuhn. Invited paper at the Second International Symposium on
Spatial Data Handling, July 5-10, 1986 at Seattle, WA, ($10.)

LOBSTER: Combining Database Management and Artificial Intelligence
Techniques to Manage Land Information; Andrew U. Frank. Invited paper No.
301.1 for the XVIII. Intemational Congress of FIG, Toronto, Ontario, Canada,
1986. Commission 3, Land Information Systems. ($5.)

PANDA: An Object-Oriented PASCAL Network Database Management System;
Andrew U, Frank, ($5.)

GPS Network Adjustment with Apriori Information and Orbital Determination
Capabilities; Kamil Eren and Alfred Leick. Proceeding of the Fourth International
Geodetic Symposium on Satellite Positioning, Austin, Texas, April 28-May 2,
1986. ($5.)

MAINEPAC (1): Processing GPS Carrier Phase Observations; Alfred Leick,
University of Stuttgart, Federal Republic of Germany. ($10.)

Mathematical Models within Geodetic Frame; Alfred Leick, Journal of Surveying
Engineering, Vol. 111, NO. 2, August, 1985, (paper No. 19952). ($5.)

Deformation Measurements Workshop, Guenter Wittman., ($5.)

Three Dimensional Conceptual Modeling of Subsurface Structures, Eric Carlson;
Appropriate Conceptual Database schema Designs for Two Dimensional Spatial
Structures, Max Egenhofer; both papers were presented at the Eight American
Congress of-Surveying and Mapping, March 29-April 4, 1987 in Baltimore,
Maryland. ($10.)

64.

65.

. 66.

67.

68.

69.

70.

71.

72.

73.

74.

75.
76.

Query Languages for Spatial Relations, David Pullar; Knowledge Representation
Using First Order Predicate Calculas, Doog Hudson; both papers where presented
at the Eight American Congress of Surveying and Mapping, March 29-April 4,
1987 in Baltimore, Maryland. ($10.)

Processing GPS Carrier Phase Observations for Station and/or Orbital Adjustments;
Alfred Leick, presented at the Eight American Congress of Surveying and
Mapping, March 29-April 4, 1987 in Baltimore, Maryland. ($5.)

Survey Checklist: A Practical Guide to Review and Analysis of Land Surveys, I
Richard White and Harlan J. Onsrud. ($15.)

PANDA: An Object-Oriented Database Based on User-Defined Abstract Data
Types, Max J. Egenhofer and Andrew U. Frank. ($5.)

Combining a Least Squares Adjustment with a Direct-manipulation Human
Interface, R. Michael White and Werner Kuhn; presented at the Annual Conference
of the American Congress on Surveying and Mapping, Baltimore, Maryland on
May 30, 1987. ($10.)

Centimeter-Level GPS Surveys in Seconds: Formulation and Analysis, Cheryl A.
Quirion, presented at the Eighth American Congress on Surveying and Mapping,
March 29-April 4, 1987 in Baltimore, Maryland. ($5.)

The Global Positioning System in Kinematic Mode: Formulation, Analysis, and
Use; Cheryl A. Quirion. ($15.)

Monitoring Vertical Crustal Deformation in Eastern Maine Using GPS Derived
Orthometric Heights; Steven R. Lambert. ($15.)

Maine Pac II, Geoid Undulation Determination Program, Program Documentation;
Steven R. Lambert. ($20.)

Maine Pac III, Geoid Undulation Determination Program, User's Manual; Steven
R. Lambert. ($10.)

Research Topics in GIS. Three papers presented at the IGIS Conference at Crystal
City, November 1987. Object-Oriented Databases: Database Requirements for
GIS; Andrew Frank and Max J. Egenhofer. Towards a Spatial Theory; Andrew
Frank. Artificial Intelligence Tools for GIS; Andrew Frank, Douglas L. Hudson
and Vincent B. Robinson. ($15.)

GIS Point Referencing by Satellite and Gravity; Alfred Leick. 1987, ($5.)

Positioning 2001; Alfred Leick, Surveying and Mapping, Vol. 47, No. 3, pp. 181-
189 (Sept. 1987). ($5.)

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

First Steps in Modernizing Local Land Records, Harlan J. Onsrud, Surveying and
Mapping, Vol. 45, No. 4, pp. 305-311 (December 1985);

Research for Validating Cadastral Data, Harlan J. Onsrud, Proceedings of the IGIS
Conference, Crystal City, Washington, D.C. (November 1987); Technical
Standards for Boundary Surveys: Developing a Model Law, Harlan J. Onsrud,
Journal of Surveying Engineering, Vol. 113, No. 2, pp. 101-115.

"The Education of Surveyors and Cartographers in an Information Age, Harlan J.
Onsrud, Technical Papers of the XTI Surveying Teachers Conference, Madison,
Wisconsin (July 1987); Challenge to the Profession: A Formal Legal Education for
Surveyors, Surveying and Mapping, Vol. 47, No. 1, pp. 31-36.

Data Structures to Organize Spatial Subdivisions, Ian Greasley (Graduate Student
in Surveying Engineering) 1987. Paper presented at the ACSM-ASPRS 1988
convention at St. Louis, MO. ($5.)

The MainePac Series, Alfred Leick. Paper presented at ACSM-ASPRS
Convention, St. Louis, Missouri, 1988. ($5.)

Maine Crustal Project: Final Report. Steven R. Lambert and David A. Tyler.
Final Report to the Maine Geological Survey on Grant No. NRC-G-04-82-009.
1987. ($10.)

Designing a User Interface for a Spatial Information System. Max J. Egenhofer.
Paper presented at the ACSM-ASPRS 1988 convention at St. Louis, MO. Partially
funded by grants from NSF No. IST-8609123 and Dlgltal Equipment Corporation,
pémcnpal investigator Andrew U. Frank.

(CRD R

Graphical Representation of Spatial Data: An Object-Oriented View. Max J.
Egenhofer. Paper presented at the third International Conference on Engineering
Graphics and Descriptive Geometry at Vienna (Austria). Project was partially
funded by grants from NSF No. IST-8609123 and Digital Equipment Corporation,
principal investigator Andrew U. Frank. ($5.)

A Precompiler For Modular, Transportable Pascal. Max J. Egenhofer and Andrew
U. Frank. This paper has been submitted to SIGPLAN Notices. Project was
partially funded by grants from NSF No. IST-8609123 and Digital Equipment
Corporation. (§5.)

Integrating a Database Management System into an Object-Oriented Code
Management System. Max J. Egenhofer and Andrew U, Frank. Project was
partially funded by grants from NSF No. IST-8609123 and Digital Equipment
Corporation. ($5.)

Requirements for Database Management Systems for Large Spatial Databases.
Andrew U. Frank. Paper presented at the COGEDATA meeting in Dinkelsbuehl,
F.R. Germany, December 2, 1986, program for digital mapping in geo-science.
($3)

87.

88.

89.

90.

91.

92.

93.

Integrated Processing of GPS and Gravity Data. Giinter W. Hein, Alfred Leick,
and Steven Lambert. Paper presented at the GPS '88 conference on Engineering
Applications of GPS Satellite Surveying Technology, May 11-14, 1988, Nashville,
TN. (85)

Multisensor Image Fusion Techniques in Remote Sensing. Manfred Ehlers. (May
1988).(%$5)

Maine Laws Pertaining to the Practice of Land Surveying. Compiled and Edited
by: Harlan J. Onsrud and Kathry Fessenden. Based on laws in affect in 1987,
(June 1988). ($12)

Multiple Inheritance and Genericity for the Integration of a Database Management
System in an Object Oriented Approach. Andrew U. Frank. Paper was submitted
to the Second International Symposium on Object Oriented Data Bases, Bad Stein
am Ebernberg, Germany, September 27-29, 1988.($5)

Towards a Spatial Query Language: User Interface Considerations. Max J.
Egenhofer and Andrew U. Frank. Paper presented at the Fourteenth International
Conference on Very Large Data Bases at Long Beach, CA, August 29 - September
1, 1988. ($5)

Designing Object-Oriented Query Languages for GIS: Human Interface Aspects.
Max J. Egenhofer and Andrew U. Frank. Paper presented at the Third
International Symposium on Spatial Data Handling at Sydney, Australia, August
17-19, 1988. ($5)

Toward Formal Definitions of Topological Relations Among Spatial Objects.
David V. Pullar and Max J. Egenhofer. Paper presented at the Third International
Symposium on Spatial Data Handling at Sydney, Australia, August 17-19, 1988,
($3)

