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VORWORT

in randinformationssystemen werden Daten, die sich auf geometrisch
begrenzte, im Raum fixierte Objekte beziehen, gespeichert. Diese
Daten werden kurz 'raumbezogene Daten' genannt. Bendtzer von Land-
informationssystemen wollen meistens Teililmengen dieser Daten als
Plan darstellen und geben dazu einerseits ein Gebiet an und ander-
seits Daten von Objekten in diesem Gebiet. Solche rxéumlichen Zu-
griffe missen rasch erfolgen, damit interzktives geometrisches Ar-
beiten am Bildschirm attraktiv wird. Raumbezogene Zugriffe sind
aber auch zur Ueberpriifung der geometrischen Konsistenzbedingungean
hidufig erforderlich. Diese 'inneren' Funktionen sind dem Bentitzer
kaum bewusst; ihre Ausflihrungsgeschwindigkeit beeinflusst aber
direkt die Leistungsfihigkeit des Systemes bei Daten-Mutationen.

Dr. BAndré Frank hat schon frih begonnen, diese Zusammenhénge 2zu er-
forsechen (IGP Bericht Nr. 26, Probleme der Realisierung von Landin-
formationssystemen, 1. Teil: Datenstrukturen und Speicherung). Im
nun vorliegenden Bericht wird eine i{iberarbeitete, verallgemeinerte
Methode fir den rdumiichen Zugriff beschrieben. Insbesondsre werden
dabei Ideen von Prof. J. Nievergelt (Institut fir Informatik ETH)
einbezogen, die eine systematische Darstellung der komplexen Sach-
verhalte erlauben und sie so der Untersuchung besser zugdnglich
machen.

Dieser Bericht bringt =zwar noch keine abschliessende Behandlung des
Problems; er dokumentiert den derzeitigen Stand. Es sind zusatz-
liche Arbeiten notwendig, die die Verteilung rdumlicher Daten unter-
suchen und Wege zeigen, wie sie mit (statistischen) Parametern be-
schrieben werden kénnten. Ich hoffe, dass esine weitere Zusammenar-
beit zwischen unserem Institut und der University of Maine at Orono,
wo Dr. Frank heute 'Computer Assisted Mapping' lehrt, in dieser
Richtung weitere Fortschritte bringt.

Der Bericht wurde von Dr. Frank fiir ein Seminar des Lincoln Institute

for Land Policy, Cambridge (Massachusetts) geschrieben; er wird am
IGP als internes Arbeitspapier verwendet.

R. Conzett
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STORAGE METHCDS FOR SPACE RELATFD DATA:
THE FIELD-TREE

ABSTRACT

Retrieval of data based on location is the most important access
path in spatial data collection, e.g. Land Information Systems,
In such systems large amounts of data related to varying, geo-
metrically described objects are stored. Users most often need
map-like graphics for which all objects falling in a particular
area have to be retrieved. To allow interactive work a fast
access method for this special two-dimensional range query is
needed.

Field-tree is a storage structure which allows fast retrieval
for spatially extended objects within a two~dimensionzl window.
Access time is essentially linear in the number of objects
retrieved and nearly independent of the amount of data stored.
The field-tree method is physically clustering objects with
similar location, thereby preserving neighborhood in limited
areas. This is beneficial for other algorithms of computational
geometry which process data locally, too.

Clustering objects in fields, field-tree is similar to hashing
methods and their applications to multi-dimensional data. Using
a specific adaptable method for subdivisions of fields, the
fields can be arranged in a tree, which proves advantageous for
range queries. A number of parameters permit the adaptation of
the method to specific applications and hardware. It is inde—
pendent of the way objects are described and can, therefore, be
included in a generalized database management system.
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1. INTRODUCTICM

Land Information Systems as defined in [FIG 1981] are systems
"which consist, on the one hand, of a data-base containing
spatially referenced land-related data for a defined area, and
on the other hand of procedures and techniques for the system-
atic collection, updating, processing and distribution of the
data" {Figure 1).
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Figure 1

This paper concentrates on methods for storage and retrieval of
spatially referenced land-related data for different applica-
tions. Such methods should be included in generalized database
management systems to make them applicable for the management of
land-related data. The discussion here will be restricted to
operations related to the spatial reference of such data, namely
the fast retrieval of all data elements related to a certain
area of interest. Such operations are extremely important for
Land Information Systems, not only, but most obviously, in order
to quickly satisfy demands for graphical, map-like presentation
of data contained in the system [Herot 1986]. Such operations
are equally important for many internal operations like data
aggregation for certain areas and eventually for checks on
consistency of newly input data with previously stored data
(many references in [Dutton 1978]).



Data structures supporting such retrieval operations will also
be beneficial for other geometrical algorithms, as many of them
can be formulated in order to take advantage of locality in the
data {Dutton 1978a]. The retrieval of all data related to a
certain area of interest is a special form of a two dimensional
range query, for which only a few general purpose methods are
known [Leuker 1976] [Lee 1977] [Bentley 1979] [Lee 1980].

Data structures must be laid out independently of the hardware
needed and in order to be applied in micro computer based sys-
tems as well as in programs, running on mainframe computers

In each case they have to be tailored to suit the characteris-
tics of the hardware and the operating system used. In order to
discuss generic transportable software, such adaptations, even
if crucial to the performance of the system, should be clearly
separated from the basic logic of the method.
L]

In this paper only methods for fast spatial access to spatially
referenced data are covered. A complete package for storage and
retrieval of data in a Land Information System (or any logically
coherent part thereof) must include many more access paths to
retrieve data (e.g. based on key values, on logical connection
between data as from parcel to owner, etc.).

Generalized database management systems, as they are available
from different sources and for different hardware, ranging from
micro computers [Everest 1982} to mainframes [DEC 1977 a & b]
usually provide this sort of functionality. None of them, how-
ever, provides the functionality for access based on spatial
reference. It has been shown to be feasible to implement the
methods described hereafter on top of a commercially available,
CODASYL type [CODASYL 1971 and later] database system [Frank
1981], thus enhancing the database management system with addi-
tional functionality. It seems more advantageous, however, to
build this function right into the database system, resulting in
increased performance and lower overhead.

This is not easily done with commercially available systems for
which access to source code usually is barred by commercial
interest. A completely transportable database management system
including space~related functions has been built [Frank 1982]
[Frank 1982a); this system has been succassfully implemented on
different mainframes and micro computers (e.g. IBM 378, PERQ
produced by Three Rivers Computer Corp., DECsystem-18).



2. APPROACH

In order to discuss the methods for storage and retrieval of
space-related data in a most generic form independent of speci-
fic hardware characteristics, we must concentrate on discussing
what has to be performed but refrain from detailed description
of how to do it. This is an advocated practice in modern soft-
ware engineering [Liskov 1979], known as 'program specifica-
tions' or 'abstract data types' [Parnas 1972al [Isner 1982].
These specifications, originating at the description of the
user's needs, are then broken down into functions of lower
layers. The more restricted the interfaces between the layers,
the easier the maintenance and adaptation of such a program
package. Each step down leads closer to the functions computer
hardware performs. If each layer is only relying on the func-
tionality of lower layers (the what) and is independent of how
this lower layer performs these functions, it is much easier to
adapt such a program to a specific task and to transport it to
different hardware f{e.g. [ISO 1979]).

The exposition of the storage and retrieval method in this paper
is guided by these principles. Decisions about how to perform a
certain task are intentionally postponed as much as possibls to
preserve adaptability to different applications.

These techniques will allow us to define very small and easily
programmable modules, For the description of these modules we
shall use a non-formal way of presentation and not strive for a
formal description [Guttag 1977] [Parnas 1972]. Experience
shows that formal descriptions - at least the forms proposed to
date - are hard to read and understand without a great deal of
study and experience.
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The paper will therefore first give a formal description of a
Land Information System as it is assumed for this paper. The
basic space~related query for map drawing purposes, which forms
the primary aim of the method here presented, is then intro-
duced.

A close investigation into the typical query and how to treat it
on one hand, and the desire to find abstract properties which
hold for a larger class of data types without modification, on
the other hand, will enable us to identify generalized, abstract
properties. These make it possible to build lower level func-
tions which can be used uniformly by higher level, more applica—
tion-specific procedures. This leads to a restatement of the
problem in more abstract terms.

Once a formal description of the task is available, we may
proceed to assess published storage and retrieval methods.

Much consideration is given to stating goals for solutions so
that different methods can be assessed and a rational choice is
possible. We have, however, only limited experience with treat-
ment of spatially referenced data and no systematic investiga-
tions into statistical properties of real data are known. Such



studies should be esncouraged as they would ultimately lead to
better adapted algorithms.

Finally, the modules needed for the implementation (based on a

database system) are explained and the code is joined in the
appendix.

3. FORMAL, DESCRIPTICN OF A LAND INFORMATION SYSTEM

3.1 LIS as a Data Collection

Without considering the meaning of the data stored and excluding
any discussion of the relation between the data stored and the
facts in real world (which can be found in [Frank 1983]), we may
state that a Land Information System L is a (probably large) set
of (logical} records d.

L = {d}

The records may be partitioned in disjoint sets of records of
the same type.*

{intersect over i> D.i = L
<union over > D.i =0

with

D.x = {d.x}

The difference between a simple occurrence of a record d.x
describing a simple fact (e.g. a description of my house) and
the generalized set of records D.x (the type 'house' in general)
must be clearly borne in mind for the following discussion.

*To avoid typographic problems, index subscripts are given here
in the 'dot' notation customary for record field selection in
modern programming language. Angle brackets are chosen to de-
note operations, for which no convenient signs are available.
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3.2 LIS as a Spatial Data Collection

Most of the data in a LIS (this follows from the cited defini-
tion of the LIS) are related to objects located in space. These
objects may have arbitrary shape and location. It is not neces-
sary to store for all cbjects an explicit description of loca-
tion and extension, because the spatial reference may be a
reference to other objects whose location and extension are
known. This is called indirect spatial reference.

The logical data records d consist therefore of two parts,
namely geometric data and other attribute data. The geometric
data may either be a description of location and shape or a
reference to anocther data record which provides a gecometric
description (either directly stored or by reference to another
record).

d.i = d.i. description <union> d.i. geometry

It is not assumed that this reference to location and exten-
sion/shape is of the same type for all data records in the LIS.
The spatial reference is expected to be different for different
types of data, depending on the typical shape of the objects
referenced.

The smaller amount of data in a LIS which is not describing
geometric objects, is treated with standard methods and is of no
special concern in the context of this paper.

3.3 Typical Queries in a LIS

Users of a LIS will very often retrieve data based on spatial
criteria. Most obvious is the request for a map on a CRT
screen which requires retrieval of all data of certain types
related to objects within the map boundary. Such queries should
be answered fast enough to support interactive work [Martin
1968].

This is mere difficult to achieve for this type of query than
for queries in commercial systems. Answers in commercial sys-
tems most often are based on only a few logical records whereas
a map of the size of a CRT screen easily consists of data from
1098 -~ 2000 logical records. Screens with more data are too
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crowded to be easily understood, whereas screens with less data
look empty and are difficult to interpret.

Similar retrieval operations are used internally to check con-
sistency of new or updated data which have to be stored in the

system.

It is obvious that consistency checks in a LIS will

involve spatial relations (e.g. a house must lie within the

geometrical bound aries of its lot).

To check such consistency

constraints requires the retrieval of data within a limited,
usually small, area.

Formally we characterize the retrieval operation as:

Where

3.

RETRIEVE DATA OF ALL OBJECTS

OF TYPE type-list
WITHIN area-description
WITH additional-condition.

the type-list is the set of data types re-
quired in the answer (all these must be of
objects with a geometric description)

the area-description is a definition of the
geometric form and location of the area of
interest. This description can be specified
either as an explicit area or as reference to a
stored object which has an area description
associated with it (e.g. the name of a county).

the additional-condition contains the other than
location based conditions the data retrieved
have to fulfill.

4 Approximate Size of a LIS

In oxder to develop a storage structure, certain very rough

assumptions zbout the size of the application are needed.

These

figures are not critical as they may vary over several orders of
magnitude without affecting the methods; parameters within the
algorithms allow to adapt them to specific cases.

Investigations in Switzerland for LIS at the local level -
mainly treating property and utility line data ~ let us expect
the following numbers:



query area = window

abjects selected

Figure 3

Up to 40,000 points per square mile, and up to 1 million objects
(property data, line data, etc.) per system. Remarkable is the
variance in the density of objects per area, which is over
1:1600 (for America probably even higher). About 60 d&ifferent
object types can be identified and the distribution seems to
follow the familiar 20:80 rule.

As the geometric objects described are not changing often, a few
percent of the stored data are changed annually only, the rate
of updating is very low. The ratio between update and retrieval
is therefore less than 1:1000.

3.5 LIS Requires a Database System Which Includes
Special Methods for Spatially Related Data

The data in a LIS are related to each other in many ways not
involving spatial relations. These connections may be ex-
ploited by the users with the same methods usually needed in
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information systems for other applications (e.g. financial,
personnel or squipment information systems). Methods to achieve
this are published in textbooks for database management systems,
and it is therefore not necessary to discuss those technigues
here [Date 1977] [Ullman 1982]. But it should be clearly under-
stood that a Land Information System needs this functionality
together with special methods to deal with spatial queries. &
full database system should thus be included in a LIS program.

4. ABSTRACTION TO FIND A LOWER LEVEL, GENERAL
ALGORT THM

A method for storage of data related to objects with geometrical
properties (location and shape) and retrieval of such data based
on location is needed in a LIS. Such algorithms should be
generally applicable to all kind of data without regard to their
internal structure or the specific form of the description of
their geometric properties., it is clearly not appropriate to
devise a specific method for each data type in a database. This
would hamper the adaptability of a datzbase system to new situa-
tions considerably. To prepare a generalized algorithm we have
to find general traits of the objects we deal with., There are
two different ways we can proceed:

- either we restrict the objects which are
spatially retrievable to a few limited types and
build all other objects from these base types

or

- we find general characteristics of all the
objects to be treated which are sufficient for
the task.

1=

.1 Restricted Set of Spatially Accessible Data
Types

The geometric properties of all objects in a LIS may be des-
cribed using only a few geometric data types (e.g. points and
lines). It is possible then to restrict spatial access to these
geometric data types. In consequence spatial access to other
data has to access the geometric description first.

This seems barely practical for mapping purposes when cur inter-
est is focused on geometric properties, but is clearly not
adequate in cases in which we need spatial access to complex
objects in order to produce derived data (e.g. averages for an



area or similar) without being interested in the geometric
properties.

Furthermore, there are clearly two performance disadvantages:

- access to additicnal data is indirect, making response
slower,

- the algorithms will need decisions of the
'point in polygon' type. These decisions
require computationally expensive .
algorithms. (Faster auxiliary algorithms of the
type described in the next approach certainly
be used to increase speed.)

4.2 Generalization of Spatially Accessible
Objects

In 3.2 we stated that all data in a LIS refer to objects with
known location and shape. The different types of shapes may be
generalized to a geometrically simple circumscribing figure., A
minimal description with three values, two values indicating the
location and one the size of the circumscribing circle of the
object would suffice (e.g. center point (%,y) and radius of a
circumscribing circle),

center point (x,y)

radius (r)
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Non-minimal descriptions may describe the shape of the object
more adequately and therefore be more advantagecus for the
search procedure (cf. next paragraph).

y max

y.min

X min X. max

Figure 5

A rectangle with sides parallel to the coordinate axis gives a
computationally simple description needing four values (e.g. two
coordinate values for each of two diagonally opposite corners or
two coordinate values for the center point and two for the
length of the sides). More elahorate descriptions (e.g. boxes
with sides not parallel to coordinate axis) describe the ob-
jects more accurately but the operations needed involve time
consuming, trigonometric functions . This seems appropriate for
very specific applications only.

Generally each object d.i (i a geometric object type) has a
circumscribing figure v in order that

for all points x (x c d.i => x c v)
is true.

4.3 Generalized Spatial Retrieval

Reconsidering the spatial access requirement (cf 3.3) we can
split it imn a generalized part, which could be carried out by
the database system and a type-specific part, which has to be
programmed specially for each data type.

The spatial query (3.3) can be stated formally as a restriction
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on L yielding the set of objects forming the answers R
B = <all> d <in> L <which>

(d.i c type-list) AND
{(d.i.geametry ¢ area-description) AND
(d.i.description ¢ additional-conditions).

These conditions may be checked in any order and the rules
regarding the outcome of AND-connections allow evaluation of the
conditions to stop as soon as one vields a result of 'FALSE'.

Furthermore, we may split one condition (a) in two (al and a2)
provided

{(not al => not a) or a =» al
(not a2 => not a) a =» a2

Applied to the geometrical condition it may be split in a con-
dition on circumscribing figures for the window and the objects
and an exact condition:

(x.1.geometry ¢ area-description) =

{x.i.v ¢ area-description.w) AND
(x.i.geometry c area-description)

W.Yy.max

@

- query area

| window

&z
% W.y.min

Ww.X.min E:E

W.X.max

Figure 6
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Testing the circumscribing figure (rectangle in Figure 6) for
overlapping is simple and can be done fast whereas testing for
exact inclusion in arbitrary figures is much more complicated
and time consuming.

The decision in which order to test these conditions depends on
their selectivity (ratio between objects accepted and total
objects tested [Wedekind 1976] and the costs (in the form of
waiting time for the user).

Reasonable assumptions about the number of objects and the type
of queries most likely to be asked yield:

Test Selectivity Cost
type-list medium 19% low
circumscribing

figure very high (<1%) low
exact area-

description very high (<1%)* very high
additional-

condition variable (1G0-108%) medium

It is clearly advantageous to perform the two tests with low
cost and high and medium selectivity first thus excluding the
maximum number of data from the costly tests for exact geometric
inclusion and the additional-conditions.

Moreover, these two tests are defined for generalized objects
{cf 4.2) and can therefore be included in a generalized storage
and retrieval method for data related to spatial objects, not
restricting treatment to special geometric data.

This generalized method therefore features two functions:

*This selectivity is assumed if the test is applied to all data
stored; if it is applied only to data which passed the test with
circumscribing figures, the selectivity may drop to 50%.
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- STORE OBJECT (o.v, o.type, c.data)

Where - o.v is a description of the circumscribing
figure of the object,
- o.type the type of the cbject
~ o.data the data associated with the object
(these data are not further interpreted by
the method and can be thought of as an
unstructured stream of bhits)

and
— RETRIEVE ALL OBJECT
OF TYPES type-list
WITHIN window

where - type-list is a set of types describing which
object types should be included,
~ window is the circumscribing figure of the
area of interest.

The latter operation will in the sequel be called a spatial
retrieval.

The rest of this paper will be restricted to discussing methods
for storage and retrieval of data of space-related type, which
allows fast spatial retrieval of the sort described above. This
operation is generally applicable to any type of data related to
space and can be implemented without assumption about the inter-
nal structure of the data.

5. INVESTIGATION INTO STORAGE METHODS

5.1 Performance Goals

The performance of retrieval operations is dependent on the
structure in which the data are stored . The simplest storage
structure is a sequential file which, consequently, is also
searched in sequential manner. This search method requires an
amount of time which increases linear with the number of data
objects stored. Such performance is clearly not acceptable for
any data collection which may eventually contain a large amount
of data.

An optimal system would respond to any query in a short, essen-
tially constant time.
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Factors influencing response time for the spatial retrieval are
(ct. 4.3):

-~ card* (L) amount of data stored

- area (w) area of the gquery window

- card (R) amount of data needed for the response
- t. set up time to set up the query

And the response time is a function
t. response = £.I, -(card (L)) + £.w (area (w)) +
f.R (card (R)) + t.setup

To build systems which are useful for the storage of large
amounts of data, the influence of the amount of data stored £.L
must increase much slower than linearily, otherwise users will
experience unacceptable long response times when the amount of
data stored in the system, has grown.

On the other hand, it seems logical to assume that users will
expect and thus accept the response time to be longer in cases
where a larger area has to be searched and/or more data records
are needed for the answer.

The number of records which can be graphically presented on a
CRT with a given resolution does not vary too much {estimated
about 2,000 records) - more data can not be visually analyzed,
whereas muchfewer data results in 'empty' maps which are diffi-
cult to interpret and not useful to work with. The influence of
the amount of data in the response f.R may approach linearity
without devasting effects.

*card is an abbreviation for cardinality, the number of objects
in a set.



The size of the query window may vary greatly with the applica-
tion. Some users may anly be interested in some landmarks over
a wide area (e.g. all interstate highways in a state), whereas
others are locking for very detailed information about a small
area {e.g. all roads in a village). 1In both cases, the answer
will include about the same amount of data (card (R)} - and
therefore the user will expect approximately the same response
time. Thus it will be important to prepare the retrieval methods
to deal with queries requiring different information density in
their answers; the influence of the area of the window f.w must
therefore be kept low (for a given card (R)).

5.2 Storage Structure Influence

In order to improve the retrieval performance we have to adapt
the storage structure in such a way as to be prepared to respond
to the most often used query. All such preparations increase
the cost of storage operations and increase the storage space
requirements - there is clearly nothing obtained free; a trade-
off is always involved.

The additional cost incurred during storage - additional opera-
tions needed to keep the structure up-to-date - are not impor-
tant in typical LIS applications where retrievals are much more
often performed then storage of new data. Typically space-
related data is very stable and changes are seldom.

All storage methods are geared towards certain access require—
ments; they may be indifferent to (or even hinder} access based
on other attributes.

5.3 Storage Devices

We can assume that the data stored in a LIS occupy more storage
space than can be reasonably used in a computer's main storage
(solid state or core memory). Long time storage of data has to
use secondary or mass storage devices permitting random access
(preferably disk, but floppy disk may be used, too}. Storages
space on such devices is even for small systems readily avail-
able and relatively cheap. Thus the increase in storage size
caused by a specific storage method is not of great importance
to us.



Access to data stored on mass storage devices is relatively slow
{compared to access in main memory about 16,808 times slower).
Exparience with database systems shows that practically all
response time delay is due to access to data stored on mass
storage devices and the influence of processor speed is minimal.
This causes us to investigate the different storage methods
considering only the average number of accesses to main storage
and disregard other processing needed.

The performance difference between larger and smaller systems
should not differ much. Mass storage devices for small systems
are not much slower than the best available for mainframes
(30..1808 msec* compared to 15.. 30 msec for mainframes; if
floppy disks are used, it amounts to 300 msec). Performance is
erpected to be similar provided the small system has enough main
storage (and large enough an address space to take advantage of
this main storage) for all programs and the necessary buffers to
reside in main memory all the time (e.g. 1/2 M bytes). 1In
practice performance is much more influenced by the interaction
between database and operating system; with a certain database
example, we observed better performance on a PER) micro computer
than on an IBM 374d.

Before different storage and retrieval algorithms can be dis-
cussed, we have to investigate briefly the typical access char-
acteristics of mass storage devices.

Mass storage devices have a typical access time characteristic
of the form

t.access = t.Position + t.Transfer . l.data
where
- t.Position is the time needed for positioning
the device's reading/writing heads to the point
where the data required are stored,

- t.Transfer is the transfer time per unit length
of data required, and

*msec = millisecond = 1/1800 second



— 1l.data is the length of the datz to be
accessed. '

Generally t.Position is much larger than t.Transfer (3¢ m seac
compared to 1 microsec)., It is therefore faster to access data
on a mass storage device in large blocks (typically 1 kbytes).
Access to individual data elements within the block may then be
done much faster in main memory.

If we are able to transfer with one access to the main storage
device more than one useful data element, we can save that many
times the long positioning time.

5.4 Principals of Storage Structures

Storage structures and access methods can either be based on an
organization of data space or of the address space [Nievergelt
198071.%

Basically three different broad categories of data structures
may be discerned [Fagin 1979]:

- sequential storage, with minimal organization,
- tree structures, organizing the data space,
- hash metheds, organizing the address space.

Retrieval in sequential storage needs in the order of 0(n)
operations, where n denotes the number of elements stored. This
is clearly not acceptable for this application.

Typical methods based on organization of data space are using
tree structures [Knuth 1973]. Each data element at the same
time represents itself and marks a point in the data space.
These marked points are then used during retrieval to navigate
thru the stored data. Retrieval needs in the order of 0 (log
{n)) operations.

* In this context, the address space is formed by the data
records keys on which access is required and should not be
confused with the physical address space used for addressing
storage cells where data are stored.



Typical methods based on organizing the address space are using
hash storage. The address space is divided into fields; to each
field a storage bucket is attributed. 2all data whose addresses
fall into a certain address field are stored in the correspond-
ing bucket. Retrieval of an element needs then O(l) operations,
but certain other drawbacks have to be considered. An exten-
sive discussion of such methods can be found in [Fagin 1979].

More advanced metheds achieve better performance in adapting to
local differences in the population of address space by stored
records [Nievergelt 1981] [Tamminen 1981] [Tamminen 1982].

3.4.1 Performance Estimates ~ Given that the data in a LIS may
not be completely stored in main memory but must be stored on
mass storage devices and considering the access time of these
devices (cf. 5.2) estimates of performance of different storage
and access methods can not only count operations, but must
differentiate between operations in main memory and those need-
ing access to mass storage. The latter consume so much more
time that valid response time averages can be computed using
only the number of accesses to mass storage. The number of
operations using data in main memory only is hardly influencing
the performance.

it is clearly advantageous if the number of physical accesses to
mass storage can be reduced and methods using more than one
data element of a block of data accessed from mass storage are
faster. Response time is reduced roughly by a Ffactor averaging
the number of useful data elements found in each block accessed.

The goal is therefore to physically and logically cluster datz
which are often used together in one block of mass storage.
Storage and access methods which allow such clustering are
clearly at an advantage if data are stored on mass storage
devices and usually a number of records are retrieved together
{e.g. index-sequential access method ISAM, B*-trees [Knuth
1973], and EXHASH [Fagin 1979]). Methods based on organization
of the data space have usually more problems in clustering the
data. The methods for clustering may either use preset guide-
lines or may adapt themselves to the data stored. Extensive
research into clustering data for fast retrieval in multi-key
queries has been done in the area of document retrieval [Schkol-
nick 1977] [Salton 1978].



Performance of retrieval of large amounts of related data as it
occurs during the spatial retrieval in LIS is obviously much
influenced by the physical clustering of the data elements.

Physical clustering however may only be done for one, the most
important, access path. In a LIS, this will be in most cases
the asccess based on location, given that this access may benefit
most from physical clustering. Experience shows that response
time may be 16 .. 100 times shorter compared to an unclustered
storage structure,

Figure 7

Within methods exploiting clustering of data, we can differen-
tiate between the access methods for the clusters on the one
hand, and the access methods for the data within the cluster on
the other hand.

Therefore the following analysis of methods is divided into two
questions:

- which data are clustered together
- how to access a cluster.

it must be pointed out that these are purely logical discussions
of storage and access methods and do not imply a specific imple-
mentation. Comparisons are based on the average number of acces-
ses to clusters with a minimum retrieval of data not needed.
Details of the implementation, especially how physical cluster—
ing is achieved, are not considered. Certain implementaticns



-~ 25 -

which take advantage of the phy51cal characteristics of storage
devices, however, may prove superior to others.

5.4.2 Maintenance of Storage Structures - Nearly always when we
use storage and access methods, we do not know beforehand the
contents of the data to be stored. Most storage algorithms,
however, build different storage structures according to the
sequence in which the data are stored,

Certain sequences of input may produce storage structures which
are non-optimal for access. Methods based on data space organi-
zation need usually permanent reorganization to maintain optimal
(or at least near to optimal) data structures (e.g. balancing of
trees [Knuth 1973]).

Methods based on address space organization need reorganization
when the amount of data stored grows (globally or locally) over
a certain margin. Sometimes limits are set for how much data a
cluster may contain at the most. If this limit is overrun, the
cluster is divided into some subclusters.

Reorganization of data structure is part of the additional
effort we must pay for faster access. On the average, this does
not influence performance of storage much and even less so
average performance in a LIS, expecting much retrieval and a
few storage operations (cf. 5.2).

Reorganization may, however, incidentally hold up storage opera-
tions more than acceptable for interactive work - this happens
seldom, but it is too bad if it happens.

If a storage method is well divided in a logical clustering
which is used for retrieval and a physical clustering, which
speeds retrieval, shortcomings in physical clustering can be
tolerated. They influence only performance, but not the results
of retrieval operations. 1In such cases the time consuming
physical reorganization does not have to be carried out during
an interactive session but may be postponed until resources are
available (e.g. during the next night).

5.4.3 Problems of Linear Address Spaces - Storage space in
computers is essentlally linear; storage cells may be ordered in
sequence and numbered with integers.
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Most access methods are designed for accessing data based on
keys in a linear data address space where an ordering relation
'<' exist, that for each three keys, a,b,c holds:

a<a
- (a<b)and (b< a) =>a=>hb
- (a<b)and (b <c) => {(a < c)

This ordering relation is relied on for decisions during
search.

For two-dimensional space with coordinates represented as real
numbers, there is no such ordering relation. For a representa-
tion of coordinates with limited precision using computer inter-
nal representation of REALS, there are mappings to the realm of
integer where an order relation exist. (A possible mapping
would be to number all possible points in two-dimensional space
in a row by row fashion as:

381 3@2 383 ....

201 202 263 284 ..

161 12 183 184 ...

1 2 3 4 5 6 vas

Such a mapping can be used for retrieving a specific point with
given coordinate values but is not efficient for two-dimensional
range queries because the address space is very large (e.q.
(Lg**0)**2 = 1@**18) and therefore only sparsely populated
(e.g. 10**6 points; only one in 1@**12 addresses are in use).

Range queries are characterized by at least one condition for
selecting data not given as a discrete value but as a range of
values. The answer to a range query consists generally of a
multitude of data, each with a data value within the range. The
data in the answer form a neighborhood in the address space.
The spatial retrieval is a two-dimensional range query whereby
the x and v location are specified as ranges.

In order to answer range queries fast, we must exploit neighbor-
hoods in the data space (cf. Figure 6a). The mapping in Figure
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7 preserves neighborhood in one direction (%) but not in the
other (v).

Carnap proved that there is no mapping function possible to map
a two-dimensional topolegical space to a one-dimensional pre-
serving neighborhood. The best we can do is to find a compro-
mise preserving neighborhood for limited areas. Dividing the
address space in fields and clustering the data of a given field
into one storage bucket maintain neighborhood within the
fields but not across their boundaries. This is the basic idea
of the following Field-Tree algorithms.

6. ACCESS METHODS FOR SPATIAL RETRIEVAL

After going thru the more theoretical background, we can start
to discuss methods for spatial retrieval as they are proposed in
the literature and work out a method best suited for a LIS.

To provide a framework for discussing different issues, we start
admitting three fundamental simplifications which will be re-
voked one after another during the exposition. To begin with we
shall assume

- that all data concern point-like objects,

- that objects are uniformly distributed in
space

- that all objects are of the same type.

The discussion is intentionally on a very abstract level, trying
not to fix details in too early a stage. This prevents us from
ruling out possibilities by premature decisions.

Figures must be interpreted as examples, as alternate implemen-
tations are possible. The next paragraph will give a descrip-
tion of a possible implementation.

6.1 Quad-Trees

Quad-trees ([Finkel 74} - in the meantime a derived type of
quad-trees for compressed storage of areas has appeared in lit-
erature) are a storage structure for fast access to datz ele-
ments based on two-dimensional keys. Quad-trees are funda-
mentally quaternary trees (trees which branch at each level in
four), each node dividing the data space in four quadrants and
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all data pertaining to any guadrant are stored in the respective
(smaller) quad-tree.

Quad-trees, as all the methods organizing data space, do not
provide for the clustering of data needed when data are stored
on mass storage devices. If data are stored in a quad-tree in
an arbitrary order, quad-trees need, as do all tree structures,
balancing. Deletion in guad-trees seems fairly complicated and
time consuming [Samet 1980]. For large data collections access
time in guad-trees grows with

(base 4) log (card (L)),

resulting for card (L) = 1@ in 10 accesses to mass storage
for finding a point. To search for several points in a range
yields better results, approaching eventually one access per
point found.

As quad trees do not provide for methods for physical clus-
tering, they do not seem adequate for storage of large data
collection with the retrieval characteristics of LIS. Range
queries yielding 2,000 points with one physical access per point
will result in a response time of 2,868 * 30 m sec = 60 sec,
which is too much for interactive work.

6.2 Dividing Address Space in Regular Fields

A very obvious method for fast spatial access consists of divid-
ing the address space (the coordinate space which points are
located in) in regular fields. For each field we collect all
data elements related to points within that field and store them
within a physically contiguous storage bucket. This way data of
nearby points are clustered and neighborhood is at least piece—
wise preserved. Access is now a two-step operation:

- to find field
~ to find peint within field.

Different geometric figures providing a partition of the address
spaces may be used for fields; most simple algorithms result if
we use a rectangular grid, parallel to coordinate axes.

We may number fields in a way similar to Figure 8, and it is
thus simple to calculate the number of the fields touched by a
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query window. Different access methods may then be used for
finding the bucket related to that field (e.g. guad-trees
[Denert 19771).

11 ] 12 113 | 14 | 15

a Figure 8

Implementation is simple. As we assume data to be uniformly
distributed in space, each field will contain the same amount of
data. Thus we can attribute a physical storage bucket (a number
of consecutive disk blacks) to each field.

Access time is then
T = n.field * t.field + n.objects * t.,object + t.set up
wWhere n.field = area (window)/area (field)
When we physically cluster the cobject data together with the
data for the field in one block of mass storage, access to the
field data needs time consuming physical access., The following
processing of the object data is then much faster as no
additional dsata has to be brought in from mass storage (thus
t.object <<+.field).
Furthermore

n.object = area {(window) * object-density

the total access time is thefefore of the order
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0 (1T} area (window)

= n.objects.

This is linear in the number of objects retrieved, therefore
exactly fulfilling our requirement.

6.3 Dividing Space in Fields with Varying Sige

If we have to accommodate for varying distribution of data in
space, fields will contain different amounts of data. This may
be solved by assigning additional storage buckets to fields,
which, however, degrades access time because for some fields we
have now to access several buckets. This influence is strongly
felt in cases where data density vary very much. In a LIS it
must be expected that data density may vary more than 1:1000
between densely populated areas and areas of very ewmtensive use.

Instead of extending the storage space for densely populated
fields, we may reduce the field size (e.g. dividing a field of
the first level into four smaller fields for the second level
and so forth) (Figure 9). This bears some resemblance to [Bur-
ton 1978].
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Figure 9
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This allows us to accommodate even large differences in a few
levels of subdivisions.

v 8 — ¢ et § g f—

| —— query window

]
|
%’__,_,_
L

Figure 18

The access method to find the fields in a range query (e.g. area
outlined in Figure 16) needs some consideration. It is still
possible to find numbering schemes (e.g. as in Figure 9} which
allow us to calculate all field numbers for all fields touching
a query window. The set of such potential fields is large
because it includes all fields of all levels potentially within
the query window even if these levels are not yet used - even if
only a few levels are foreseen this may sum up considerably.

For the case of square ¢grids it is approximately
2%% (area (window)/area (smallest field))

or if squares at level 1 are 1 square mile and the area of
the window is 6 sguare miles, with 19 levels it amounts to

2 % (6/(L/4%%13)) = 12 * 2%%2Q = 12 * 1g#**4,
It is then necessary to try to access all these fields to search
them if they exist or to find out that they do not exist (i.e.

they are empty), which takes about the same amount of time.

For access to the clusters it seems more appropriate to exploit
the structural relation between the larger and the smaller



fields in a tree structure. Thus the name FIELD-TREE for the
method. This requires that the large fields remain, even when
the smaller, lower level fields are used, and it also requires
that all lower level fields existing are connected to larger
fields (which may somewhat 1imit the storage algorithms).

2 range query can then be processed very similar to a range
query in a quad-tree [Denert 1977]. Performance of retrieval in
this structure is similar to the previous case; we know that
only accesses to fields (resulting in physical accesses to
storage blocks) have to be counted. The number of objects in
the answer is propeortional to the number of fields accessed
since each field contains on the average the same number of
objects, Therefore the response time is linear

C(T) = card (R)

in the number of data elements retrieved. The area of the
window does not enter because the number of fields overlapping a
window is variable and depends on the density of the data.
{Small deviations from linearity are caused by the effects of
the limits of the window, where fields have to be accessed which
do contribute less than an average number of data elements
within the window.)

6.4 Treatment of Extended Objects

To store data concerning spatially extended, non-point-like
objects is not possible in the previous model. Objects may
cross the boundaries of the fields and can therefore not always
be unequiveocally assigned to a field.

6.4,1 Cutting Methods choose the fields relatively large
(approximately like traditional map sheets) and cut objects at
the sheet boundaries in pieces which then can be stored within
the respective storage buckets (usually files of the operating
system). The advantage of this latter solution is that the
drawing of map sheets is simplified as all objects are already
clipped at the borders. This approach is therefore useful for
the storage of graphical information as it is currently stored
on paper map sheets [Wild 198¢]. It is not suitable for storage
of more sophisticated data collections where the geometric pro-
perties are only, although but a very important, aspect of the
data stored.
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Figure 11

If we ara not content with the storage and treatment of graphi-
cal data alone but are interested in exploiting other properties
of the objects, this method can not be applied. The resulting
objects can not be interpreted, they do not have meaning in a
real world sense: what is the address of half a house?

Furthermore, it does not seem possible to program general algo-
rithms to cut objects without knowledge of the internal repre—
sentation of the objects, including but not limited to the form
of the geometric description. It is also not clear what would be
the best way to treat indirect spatial reference.

This method is also not flexible enough to adapt to a varying
distribution of data in space. The limits of the shests have to
be chosen beforehand and can not be adapted easily. The retrie-
val method is unsuitable when the query window is much larger
than the sheets, since a great number of sheets have to bhe
searched for the few objects answering the guery and the ob-
jects retrieved have to be recombined at the sheet boundaries.



It is not suitable neither when the query window is much small-
er, since all objects within the sheet have to be acccessed and
tested.

6.4.2 Storing Duplicate References - Instead of cutting objects
in each field the object is touching, a reference to the object
may be stored. This reguires either a storage method with
which objects and references to object may be stored intermixed
or we store only object references within the fields and put the
objects tc another place [Tamminen 1981]. The latter method
requiras an extra (probably physical) access to storage and
therefore increases the response time.

Any system which allows for multiple storage of objects (or
object references) needs a filter to eliminate objects included
in the answer twice. This merely requires sorting of references
to object and slows processing and makes programming more com-
plicated; as no additional data are required from mass storage,
this does not increase average response time by much.

6.4.3 OQOverlapping Fields - If the fields we use for clustering
objects overlap, we may find ways to distribute objects to
fields in order that each cobject goes entirely in ocne fieid
(without crossing that field's border).

An obvious division in fields fulfilling this requirement is
given in Figure 12. If the largest field is larger than the
area out of which we collect data, we are sure that every object
at least fits into this largest field.

For fields containing too many objects the division method in
Figure 9 is still operational, but now some small objects may
not be transferred to the smaller lower level fields because
they cross the boundary of the lower level field. A method to
increase bucket size for a given field wherz too many objects
have to be stored which can not ke transferred down, is needed.
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Figure 12

The method of division for fields given in Figure 12 is not
optimal since any object crossing the boundaries between 11, 12,
13, and 14 has, independent of its size, to be stored in field
1. In general, a field will have an amount of such objects
crossing the boundaries of the next smaller fields, propor-
tional to the length of its side, which results in too many
objects assigned to the upper level fields. As these fields
have to be searched more often than smaller ones, this will
increase the number of objects included in the answer, thus
increasing the number of accesses to mass storage and ultimately
response time,

6.5 Goals for Storage Methods Using Overlapping
Fields

In order to improve performance for spatial retrieval using
clustering based on overlapping fields, guidelines for estimat-
ing performance have to be established.

Other things being equal, the mumber of clusters to be accessed
increases response time linearly. A method which for a given
qguery window results in processing fewer fields is therefore
superior.

The fewer data about objects not falling into the query window
accessed during a retrieval, the better, because if more data
have to be brought into main memory, more accesses to mass
storage are needed, If more data are stored on smaller fields,
the spatial selectivity is enhanced and therefore fewer unwanted
data are accessed.
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Figure 13

For a given small query window, the larger fields cover large
additional areas with data unrelated to the query at hand (Fig-
ure 13). Generally, spatial selectivity of a method is bewter if
objects are assigned to smaller fields,

6.6 Methods for Discussion

The circumscribing figure to indicate location and extension of
a geometric object is described by a number of parameters. If
we choose rectangles with sides parallel to the coordinate axes,
four parameters are needed. These may be either the four coord-
inates of the sides (Figure 14) or, more useful, two coordinates
of the center point and the two lengths of the sides (Figure
i5).
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Figure 14 Figure 15
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Each characteristic figure can thus be represented as a point in
4-dimenzional space [Nievergelt 1981). This center/side space is
most useful for the following discussion.

In order to make further explications simpler, all examples are
chosen from the realm of one-dimensional, extended objects,
which are points in a two~dimensional center/side space and
therefore drawn easily,

In fact, for the metheds presented hereafter, it is possible to
discuss the two projections on the x and y coordinate axes
independently. Thus we can discuss these methods using two-
dimensional center/side diagrams and apply the results for each
dimension independently.

Example: The objects a, b, ¢, and d (in Figure 16) character-
ized by the center point - half side pair

(2,2)
(4,1)
(6,2)
(4,3)

oL oo

are in center/side space points (Figure 17).

Figqure 16
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Figure 17
The spatial query is now not an ordinary range query in cen-
ter/side space, but from the condition for overlapping
Object <intersect> window <> @

follow for each coordinate the conditions for the center-point
half-side figures

O.X + 0.5 > WuX ~ W.S
OR
O0.X = 0,5 € WaX + W.S

(Figure 18).

+0.5

e P e
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Figure 18
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The derived expression

0.X 2 WuaX - W.S — 0.S
or
O.X < WoX + Wo5 + 0.5

describes the search cone in center/side space (hatched in
Figure 19 for the window 2.5 to 3.5)., The similar conditions
for each coordinate in two-dimensicnal applications have to be
combined by AND.

Different division of two-dimensional space into overlapping
fields together with the necessary rules how objects are assign-
ed to fields may now be mapped as grids in center/side space.
These grids may be used to assess different methods, as they
make visible how many fields have to be searched and how large
these are.

half-Tength FW' N l
a gt | PT]TW + 111

center

Figure 19

6.7 Basic Method for Spatial Retrieval

6.7.1 EXHASH - In [Nievergelt 1981] it is proposed to use the
EXHASH storage method which is a very flexible method for multi-
key data. In [Hinrichs 1982] these ideas are further discussed.



EXHASH methods use a hash type directory for access to grid
cells (fields). This seems howsver not optimal in applications
where the range of the keys is very large and the density of
population varies greatly (cf 6.3). To avoid this drawback,
an implementation with a few levels of indirection for the
directory has been completed but no report of performance is yet
available.

EXHASH is based on dynamic adaptation of fields to the amount of
data stored. This dynamic adaptation occurs independently for
every key axis (center point coordinates as well as side length)
and may be guided by some parameters. It makes an arbitrary
pattern of convex fields in the center/side space possible
(Figure 20). 1In a LIS we may expect that the number of large
objects is much smaller than the number of small objects. It is
not obvious how these parameters must be selected to push data
towards the smaller fields to speed the special spatial re-
trieval (cf. 6.6).

LU T
L]

“r

Figure 20

It seems, therefore, that the more general method EXHASH may be
improved by specializing for the specific spatial retrieval
operation.

6.7.1 Field-Tree - Instead of dividing the center/side space in
an arbitrary pattern by the way incoming data direct it, we can
divide it beforehand in a way reflecting the goals mentioned
before (cf 6.5).

Such a prepared fields-division also allows simpler ways of
access to the clusters. The regular properties of the division
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may be exploited to use more specialized and faster access
methods - preferably trees.

half-side I l

Figure 21

center

Figure 21 shows one level of such a division in center/side
space, The ratio middle-point-distance to half-side is 1:1,
which results in square grid cells (grid cells is usad in con-
junction with the division of center/side space, whereas fields
are describing the corresponding division of real world space).
The (one-dimensional) fields for that level are given in Figure
22, showing that each point is laid over by 3 fields.

fields

Figure 22

Applied to the two-dimensional space this means an overlay of 9;

in Figure 23 are the nine fields, all overlapping the hatched
area given.
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Figure 23

On the other hand we may ask what grid cell in center/side space
is formed by all the objects which may be placed within a field
without being cut (Figure 24 for one-dimensional space).

hal f-
side

half-side
of field

center

t
field

Figura 24



In order to have coverage for all objects up to a certain size,
the field's triangular grid cells in center/side pace have tc
cverlap (Figure 25).

1 covered side

Figure 25

Different ways of assigning objects which might be placed in
more than one field are possible resulting in different grids
{e.g. based on left corner, on center, Figure 26).

centar based decision corner based decision

Figure 26

No principal differences between such methods are apparent.

If we lock at two levels of fields, overlapping with diffasrent
side lengths, we may base the dscision to assign objects to the



lower level aon the side of the object or on the fact that an
object fits on the smaller field (Figure 27}.

size based decision

fit based decision

Figure 27

As apparently more objects will be forced down to lower levels,
the 'fit'-based method should perform better.

Finally we can arrange the lower level grid cells in a manner
such that they are always fully included in one higher level
grid cell, This snsures a reqular (quaternary) tree structure
for the fields and facilitates the programming of reorganization
algorithms.

Before it is possible to discuss the choice of the different
parameters for the definition of the grid in center/side space,
more investigation into the statistical properties of real world
objects location and extension is required.

21l methods of this type however can be expected to perform
spatial retrievals in a response time which is essentially
linear in the number of data elements stored for the query



window. The next paragraph will discuss an additional consid-
eration for improvement. To conclude this paragraph a previously
published mesthod for spatial retrieval [Frank 1981] should be
comparad.

This method is based on an overlaying of square fields with
sides doubled for each level; the overlay is, however, not
symmetric {as Figure 27) but each set of fields is slightly
translated (Figure 28). Any number of levels of such fields may
be overlayed without the boundaries of fields of different
levels ever coinciding.

For this type of division it has been proven that any object may
be placed undivided in a field with a side smaller than 16 times
the maximum extension of the object; this is an upper bound
as most objects may, of course, be placed on smaller fields.

The previously used analysis tools applied to this method reveal
a number of complications resulting in clumsy programs.

Projected on one dimension and transformed to center/side space
(Figure 29), the grid shows that some object may only be placed
in fields of level 1 and 3, but not in level 2. This results in
cases during reorganization when an object may not be trans-
ferred from level 1 to 2, but only directly to level 3 ("“jumping
over a level". If we take into consideration the combined
effects of both coordinate axis which are not independently
treated in this method, even great "jumps' are possible.

Nevertheless, this method was fully programmed and tested and
resulted in performance in the expected range. The programs
written in COBOL, however, were long clumsy and difficult to
maintain (approximately 3180 lines of code). This may be com-
parad to the approximately 40¢ lines of PASCAL code given in the
appendix, fulfilling essentially the same role.
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Figure 29

6.7.3 Improvement Using Types - In 4.3 it was pointed out that
type based conditions may have a high selectivity in the spatial
retrieval. It is important to speed up inquiries concerning
large areas but only requiring data of a few landmarks. The
previously developed method results in slow response in such
cases, as the response time is essentially linear in the amount
of data stored for the area of interest., This is slow for
gueries regarding large areas, even when these retrieve only a
few data elements of landmarks.

It is reasonable to expect that queries for large areas will
select the data to be retrieved in first line on data tvpe (e.q.
'RETRIEVE ALL counties WITHIN Maine', or'RETRIEVE ALL school-
buildings WITHIN Penobscot County’) and that the types of data
which will be required in such 'overview' retrievals can be
identified beforehand.

For each data type an 'importance' is fixed which indicates the
area which we expect data of this type will influence. This
importance number fixes the minimal side of the field data of
this type may be assigned to.

For retrieval it is then not necessary to search all fields to
the bottom of the tree but only down to the minimal size of
fields as indicated by the importance of the type searched for
{as conventional in computer science, 'up' in the tree is the
root and the leaves - our fields -~ are 'down'). The response



time for such queries is then only linear with the amount cf
data stored for that area with size or importance larger than
this cut-off limit. If the importance numbers are well chosen,
this will result for usual queries in about the same amount of
data and therefore in constant response time.

level 1
Tevel 2
cutoff for query /
using data E{ Ej
importance > level 2 0 level 3
a level 4
Figure 30

6.8 Storage and Retrieval

After the extensive discussion of the storage structures, the
formulation of the algorithms used for storage and retrieval is
simple.

6.8.1 Storage - Each object is always stored on the smallest
field possible. The smallest field possible means:

- the object is not cut by the field
boundaries

- the field size is large encugh for the
object's importancs (of 6.8)

— the field exists.
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This leads to the algorithm

1. Descend the tree as long as a smaller field
exists, in which the object fits and which is
larger than the importance of the object
demands.

2. Store the object on that smallest field.

This in itself would never make the tree of fields grow, so we
have to add 2 rule, when to open a new field:

~ If the tree is empty open the first,
largest field; this is the root of
the tree.

— If the field on which to store the object
contains alrxeady a certain number of
objects (i.e. the data for the new object
will not fit in the storage bucket),
reorganize the field.

Reorganization is the means by which all fields are equally
filled with data; if a field becomes overfilled becauss more
data about that part of the world is stored in the LIS, it has
to be divided into fields of the lower level and the data must
be distributed on these smaller fields provided it 'fits' there
in order to mazintain the rules stated about placement of ob-
jects.

The division of fields and the ensuing distribution of data
previously stored with the larger field to the smaller cnes
reduces the amount of data stored there, opens new fields and
makes therefore the tree grow.

To assure best performance of the algorithm all fields should
be filled exactly. Division of fields guards against overfill-
ing. Fields which contain too few data have a deteriorating
influence on performance too., Provisions in the division
procedure may check that only those fields of the lower level
are opened for which a certain amount of data are already
stored. (This results in grid cells in center/side space which
are not convex; it has no negative effect but marks a differ-
ence to the EXHASH method which relies on convex grid cells.)
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With overfilling and underfilling limits well chosen, average
storage utilization may be kept reasonably high.

With the experiments carried out we have not been able to formu~
late the relationship among reorganization strategy, storage
utilization, and performance. The new system now built should
facilitate more revealing tests.

As the overfilling of a field is only a defect in physical
clustering but not in the logical data organization, spatial
retrieval yields correct answers in spite of overfilled fields.
We can, therefore, postpone reorganization and set a mark only.
The effective reorganization may be carried out later (e.g. at
night when computer utilization is low).

6.8.2 Retrieval - The recursive algorithm for retrieval is
simple,

1. Initialize: start with the root of the
field tree

2. Test a field {recursion)
If the fi=ld under con51derat10n is above
the minimal level of importance for
objects which must be retrieved, test if
the field touches the query window, if ves,

- the objects on the field must be
included in the answer and

- all sub-fields of this field must
be tested



7. EXAMPLE IMPLEMENTATION

This paragraph explains an example implementation First the
specific method choosenand the corresponding parameters are
explained and then the most important points in the modules
discussed. Before the central module can be presented, a number
of logically lower level auxiliary modules are introduced. The
PASCAL code of these modules is avallable from the author.

7.1 EGpecific Method

For the circumscribing figure a rectangle with sides parallel to
the coordinate axes was felt to result in simplest code. The
fields were chosen as squares, with a level @ field of side
length 86 km (coordinates throughout are expressed as integers,
unit is one millimeter).

The ratio of distance of middle-points of fields to half side
of fields was chosen as 2:1.

The decision where to place an object is based on the left lower
corner of the objects and on the fact that an object 'fits' in
the field.

field

?ZV area for left corner

Figure 31

As a rule this says:

each object is placed in the smallest field



in which it may be contained undivided
and its left lower corner is therein.

This field has for no object a side length larger than the
maximal side length of the cbject.

As long as fields are not overflowing, objects may be stored on
larger fields,

Retrieval is guided by the rule:

Check all fields which touch the search window.

For experimental purposes the number of objects per field
(overfill 1imit) was set very low (16) and reorganization was
not allowed to open a new lower level field before more than 5
objects to be placed there were already stored on the larger
field. These are arbitrary settings whose effect on performance
will be discussed below.

2%2’/éézi__u_.____ﬂ—————————~——-W1ndow

I W/l

Figure 32
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7.2 RAUML

The functions of this module are used for storage and retrieval
of objects, as described in 4. These are the highest level
functions and may either be used directly by the application
program or be built in a generalized database management system,

Three operations provide for storage, update and deletion of
ohjects for which access based on location is required.

rin: Store the object with given viereck

rDelete:  the object from the spatial access system

rChange: change the objects viereck and move the
object to the correct grid cell

Two functions are used for retrieval. The first one to
initialize the search, passing the query parameters like window,
and object-types required. The second function must be called
as long as it returns the value true - it delivers then for each
call one cobject. This seems to be the simplest way to implement
a function which returns a varying, but large number of objects.

rSearchinitialize: set parameters like window (a viereck), set
of object-types requested, and initialize
the search

rSearch: as long as TRUE, returns an object for each
call

The semantics of these operations are that rSearch returns all
the objects previously stored and touching the query window set
by rSearchInitialize.

The implementation can be as follows (to keép explications
simple 'importance levels' and object-type related considera-
tions are left out):

rin: find smallest existing field on which to place the
object (use fFind)
while there is no room for the object (fSpace)
distribute the objects on this field (rDistribute)
find the smallest existing field again
(this may have been changed thru the
growth of the tree by distribution}



Store object on that field (establish a logical
connection between the field and the object and
cluster the objects of one field physically).

update free space of field (fStore).

rDelete: destroy the logical connection between the object
and make its space available for further use
(fDelete)

rChange: do a rDelete followed by a r/n.

rSearch: controls the use of two internal operations, one
to get the net field (fNextField) and one to get
the next object on the present field (rNext Object)

The code for rSearch would be essentially two nested loops
while fNextField do
While rNextObject do
treat ohject;

if it were not necessary to return with each object to the
caller; this is a typical application for Jackson's program
inversiocn.

rSearchInitialize: Initializes the query window and initializes
the search in the field-tree (fSearchinit).

rDistribute: Is an internal routine which distributes the
object of a field onto the smaller subfields.
An implementation may choose to count first
the objects which may be pushed down
(fwhichpPart) and then only open the fields
which will receive a minimal number.
faddrield is called to create the new fields.

7.3 FIELD
The module FIELD manages the fields.
fStore: are usad to control the space utilization

fhelete: on the field
fSpace:



frind:

fwhichpart:

fSubField:

£Search:

faddTree:
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Starts with the field tree's root and descends
the tree until it finds the smallier existing
field where the given viereck fits (uses
fSubField at each mode to salect the next lower
field).

uses gwhichPart to decide into which subfield of
a field a given viereck fits (if any).

uses gWhichPart to find out into which subfield
a viereck fits and returns then that subfield.

is similar as rSeach returning each time rcalled
the next field in the tree. It is basically a
tree walking algorithm as describsd in [Knuth
1973], where for each field gInWindow is called
to decide where this field (and all its subfields)
have to be included. A recursive Fformulation
would be:

fSearch (field, window):
process field;
for each possible subfield of field
if subfield exist then
if gInwindow (subfield, window) then
fSearch (subfield, window).

Coding complications arise from the fact that
each field found has to be handed back to the
caller; more sophisticated forms of Jackson's
inversions are needed.

adds a subfield to the tree (use gPartGrid to
make the respective grid cell).

FIELD uses throughout the services of QTREE to move in the
quaternary tree structure and to maintain it.

7.4 Module GRID

GRID contains the code to manipulate the grid cells.
are described by center point location and level.

Grid cells
For a given

set of parameters, the relation between level and side length is

fixed.



The functions and procedures used externally are:

gviereck: returns the field of the grid cell as a viereck

gInWindow: tests of a grid cell touches a window
and has therefore to be searched for
objects

{uses gviereck and vierCut)

gwichPart: decides in which smaller grid a viereck
may fall
find which quarter of the grid cell the lower
left corner of the viereck falls in, then check
if the upper right corner is contained in the
same grid

gPartGrid: makes a specific smaller grid

Internally GRID uses two functions

gvier: to return the viereck describing the area where
the left lower corner of an object has to be
placed (the decisions in this implementation

are left corner hbased cf. Figure 26)

gExtend: to return the viereck indicating the area where
the right upper corner of the object may lie;

The viereck returned by gExtend is few times as large and
includes the viereck from gvier (ef. Figure 31).

7.5 Module QUREE

This module manages the tree of grid cells. It is based on a
standard, CODASYL-like database management system [Frank 1982].
In such systems it is not allowed to connect many entities of
one type to one entity of the same type and therefore trees must
be represented by a two entity-type structure, one entity-type
for the tree's leaves, another for the downward connection
(Figure 33). If the connecting entities are stored on the same
page as the upper level fields, a test if a subfield exist is
possible without accessing any additional page.
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Figure 33

This is however completely hidden in this module and the adapta-
tion to another database system should only need changes here,
The functions and procedure needed are

gRoot: find the root of the trese of fields

gNextLower: return in turn each of the grid
description of the lower level grid

cells
gGetNext: access a lower level grid cell
ghdd: add a grid cell as a new leafe to a
given one in the tree
gupp: ) )
} to move up in the tree, one to find each of
gupf: the two entity-types needed.

7.6 Module VIERECK

VIERECK is the data abstraction for the circumscribing figure
for the object gecmetry and at the same time for the query
window.

The functions and procedures used here are:
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vierMake: make a viereck given two opposite
corner points

vierCorneriL: for a given viereck return a corner point,
vierCornerliR: either lower left or upper right

vierInVier: test if a viereck is within another one
vierCUT: test if two viereclk are overlapping.
7.7 Results

The test implementation mainly confirmed the general principles
as they were laid out in paragraph 6. For testing purposes the
bucket was chosen extremely small (1§ objects) and the minimal
number of objects required to open a subfield high (5 objects).
These settings resulted in a high utilization of storage space;
on the average 65% of the space in a bucket was occupied. The
additional cost for maintaining the structure of the field tree,
namely the distribution of objects of filled fields to subfields
seemed relatively small - only 88% of the records stored were
affected by distribution operations. This means a storage
operations cost on the average twice as much in a field tree as
in a storage structure without spatial access path.

Performance for retrieval showed an average of more than 58% of
the objects brought into main memory useful. With a more
practical bucket size of e,g. 180 objects per field, this will
result in retrieval of 2009 objects for a screensized map in
about 6f accesses to mass storage (2.. X200 seconds depending on
hardware and the operating system).

Additional research is needed before the influence of the
differentt parameters can be quantitatively predicted, and
guidelines for optimal selection can be established.

8. CONCLUSION

This discussion has first elaborated on the general properties
of space-related data collections. It was possible to identify
abstract properties of data stored in such a system. Based on
the properties, generalized operations, namely space related
storage and retrieval operations, were formulated,
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The second part investigated which storage structures will sup-
port fast and efficient retrieval of space-related data. Final-
ly, a method is described which implements this method with
fairly simple programs. By choosing values for certain para-
meters, this method can be adapted to the statistical properties
of specific land related data., WNot enough investigations have
been carried out so that systematic advice on the selection of
these parameters could be given.

As the method is based on very general properties of data, it
can be easily adapted to any type of data where spatial retrie-
val is needed. It is best to incorporate it in a generalized
database management system. The author is currently building
such a system which runs on different commuters from mainframe
to supermicro. Results so far are encouraging enough to con-
tinue this work.

GLOSSARY

Chject Data describing a real world object of which
location and spatial extension is known. Objects
can be retrieved based on location.

Field An area in real world space data of which are
stored together. Fields are divided in subfields,

Grid Cell An area in center/side space which determines
clustering of data; each grid cell corresponds
to a field.

Bucket Contiguous space in mass storage, used to store the

data of objects in a cluster. (Sometimes also
called 'page'.)
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