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ABSTRACT: The powerful logic-based concept ef Prolog has been integraled with a database suitable for spatial data
handling to form a database query language that is more fAexible and powerful than the currently used SQL. This
experimental implementation, called LOBSTER, allawed researchers to explore & number of areas of & GIS. Examples
from object-oriented modeling, geomorphology, and query optimization show the application of such a language.
T'roblems encountered during the application of LOBSTER include the absence of consistency checking during input of
rules and facts, and the lack of appropriale techniques to detect cyclic rule definitions. Nevertheless, the experimental
implementation showed that these techniques wers extremely valuable for GIS.

INTRODUCTION

TD DEVELOP A FLEXIBLE and powerful program system for
geographic information systems (GI5) is a challenging task.
It is particularly difficult to construct programs that can’ assist
users for all the different functions they expect from a GIS (Frank,
1984; Smith et al., 1987). During the past decade, advanced
methods and techniques from computer science have been in-
tegrated into GIS. The use of high-level programming languages
is commonplace today, and the designers of GIS software use
modern saftware engineering techniques {(Aronsen and More-
house, 1983). Database management systems and their princi-
ples have been applied and the specific requirements of spatial
data handling studied (Frank, 1988). Finally, it is recognized
that some methods from artifical intelligence (Al} could be ben-
eficial for GIS (Abler, 1987; Peuquet, 1987; Robinson et al., 1987;
McKeown, 1987).

Computer systems are essentially formal systems that manip-
ulate symbals according to formal rules. These systems do not
understand —in the sense that human beings’ understand — the

the instructions of their programs with blinding speed, but
without any “common sense.” Computer systems treat forma/
models which consist of two parts: (1) a theory with a collection
of expressions in a formal language and (2} an agreed-upon
inferpretation of formal expressions which link the symbols used
in the formal system with reality. The derivation of information
is the process of proving a specific proposition within such a
theory. The best-known language for a formal model is first-
order logic which expresses facts and rules in a single, formalized
matter (Gallaire et al., 1984) and derives knowledge by using
formal rules.

The deductive power of logic inference systems is typically
used in Al systems (Barr and Feigenbaum, 1982; Hayes-Roth ¢f
al., 1983). Geographic information systems need these methods
to help integrate data from different sources into a unified sys-
tem (Robinson and Frank, 1987a). A deficiency of any Al-based
system is the quantitative difference between Al/expert systems
and database management systems (Mylopoujos, 1981): while
database management systems are good for the storage of large
amounts of data elements (records} from a very few types
(structured data), Al systems store a smaller number of facts,
but of a much larger variety of types (unstructured data), In
this paper, methods from Al research are combined with data-
base management techniques to make both available to GIS. A
particular system has been implemented which allowed us to

conduct a number of experiments in promising areas for the
use of Al'in GIS.

The remainder of this paper is organized as follows: the next
section discusses the need for intelligent GIS query languages.
Prolog, an Al programming language, is proposed as a powerful
query language if integrated with a database management sys-
tem. LOBSTER is such a persistent language combining concepts
of the Prolog programming language with database manage-
ment techniques. The integration of DBMS and Al language are
discussed as well as the implementation of the inference ma-
chine. The last section reports on some of our GIS test appli-
cations using LOBSTER, such as the implementation of object-
oriented abstraction mechanisms, feature extraction in geomor-
phology, and query optimization in a distributed database en-
vironment. The paper concludes with a summary of drawbacks
encountered during the use of LOBSTER as a Pralog-based query
language.

GIS QUERY LANGUAGES

The production of spatial information on demand is the mo-
tivation for spatial query languages. A query language is a general

—Phey-follow—mear questinformation about thé contents of a database.

Users formulate their requests to the database by describing
their needs (“What to retrieve”) and the desired representation
of the result (“How to represent the results”). A spatial qiery
language is a tool suitable to interrogate spatial databases.

DaTaBase QUERY LANGUAGES

Database query languages are tools to facilitate access to a
database and have been investigated by computer scientists for
more than a decade. The term guery refers to a statement
requesting data to be retrieved from a database. Query languages
are best-known with respect to (relational) databases. SQL, an
acronym for Structured Query Language (Chamberlin et al., 1976),
is the standard relational query language (ANSI, 1985) and enjoys
popularity in traditional database applications, such as
accounting. Based on the underlying relational data model (Codd,
1970), sQL deals exclusively with relations, combinations of
relalions, and some “syntactic sugar” added to relational algebra,
such as arithmetic capabilities, assignment of results to relations,
and aggregate functions. Although 5QL is very popular and has
been standardized, there has been criticism that soQL queries
can be difficult to understand (Luk and Kloster, 1986) and are
particularly cumbersome to use for complex engineering
appilications.

The fundamental structure of SQL. is the SELECT-FROM-WHERE
block. The SELECT clause determines the attributes to display;
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the FROM clause describes the data sets needed to solve the
guery; and the optional WHERE clause specifies constrainis upon
the items to be retrieved. For example, the request for all lines
with start or end nodes within a box described by two pairs of
x- and y-values is formulated in SQL as follows:

SELECT line.id
FROM line, node
WHERE R0000 < xand x < 30000 and

RBOOC < y and y < 30000 and
{line.start = node.id or
line.end = node,id);

Asked against a database rontaining the relations node and
line (Figure 1), the result is a reladon with the two tuples B
and C which are automatically displayed on the screen in a
tabular format.

Quel, the query language for the Ingres database management
system (Stonebraker cf al.,, 1976), closely imitates the tuple
relational calculus (Codd, 1972} and has the same expressive
power as 5QL, i.e., any query asked in SQL can be also asked
in Quel.

The third major query language is Query-by-Example (Zloof,
1977). 1t supports users with skelefon tables to be filled out like
forms making the language more user friendly and easier to
learn {Reisner, 1981) than conventional one-dimensianal
languages as command strings. Some additional conventions
are used, e.g., an underscore character precedes domain variables
to distinguish them from constants. Figure 2 shows the same
query as above in Query-by-Example.

REQuIREMENTS FoR Gis QUERY LANGUAGES

GIs applications place specific demands on the expressive power
and capacity of their query languages. Conventional gquery
languages can certainly be used to access spatial objects stored
in databases; however, it is difficult for them to express queries
which involve particular spatial properties {(Frank, 1982a;
Egenhofer and Frank, 1988; Laurini and Milleret, 1989). The
following examples demonstrate typical GIS queries and
underscore the problems traditional {relatdonal) query langnages
have with their formulation and processing.

Frequently, GIS users ask for quantitative spatial information,
such as the distance between two objects. Traditional query
languages lack geometric concepts and do not support the
formulation of user queries with spatial terms. Users with limited
mathematical skills have difficulties in handling such a system.
For example, to retrieve not only the lines starting or ending in

peint  id % y line id start end
2 22399.20 22379.72 A 2 3
31 23874.3¢ 25471993 B 3 8
0 1942¢.R3 2987B.98 C 8 2

Fic. 1. The data sels point with the attributes id, x, and y;
and line with id, start, and end.

line | id | start | end
Pn| =
P.n X
point | id H ¥

x| > 20,000 and « 30,000 | > 25,000 and < 30,000

Fie. 2. A Quety-by-Example instruction to print (P.)
the lines starting or ending inside of the rectangle
{20,000 <x < 30,000, 25,000 <y <30,000).
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a box, but also those crossing through it, users must explicitly
formulate complex equations for line intersections. The
requirement of such detailed mathematical knowledge makes
"pure” SQL too complex to use for spatial applications.

Another complex query in the context of a GIS is to find the
largest connected forest area which contains a specific parcel.
This request for the fransitive closure translates into the two
operations: (1) to find the parcel X and place it in a set 5 and
{2) to repeat—until the set 5 does not grow anymore—the
operation: for each parcel P in 5 find all its neighbors N, and if
the parcel type is forest then add N to the set 5. Traditional
database query languages lacl the concepts of Joops and recursion
necessary to solve such queries, and, therefore, cannot be used
to formulate such queries.

Other GIS query language requirements include the graphical
representation of query results and the display of context to
make certain queries understandable (Egenhofer, 1989).

PROLOG AND DATABASE MANAGEMENT SYSTEMS
ProLoc

A Prolog-like language may be used as a query langnage to
a GI5 based on a database management system that can deal
with large numbers of (spatial) data records. Prolog (Clocksin
and Mellish, 1981) is an implementation of a subset of first-
order predicate logic (Gallaire ¢f al., 1984). It is based on facts
and rules which are expressed as Horn clauses. A clanse is a
canonical representation of predicates a,,...a,b,...b,, in the form

fy ORa, OR ... OR q, IF b, AND b, AND . . . AND b, (1)

The left hand side of the clause, called the consequent, is the
combination of all disjunctions (ORs) and the right hand side,
the antecedent, has all conjunctions {ANDs). In a Horn clause the
consequent pradicates, i.e., the a;'s, are restricted to zero or one
instance, that is,

ay IF ity AND b, AND . . . AND b, . (2)

The following example demonstrates the use a Prolog language
based on the set of points and lines in Figure 1. Predicates
tagged by asterisks denote the definition of clauses, while un-
tagged clauses stand for queries, and constants are capitalized,
whereas variables start with lower case.

*point (8, RR399.28, RABF7L.72).
*point (3, 23874.39, 26479.93),
“point (8, 19829.83, 26875.98).

*line (A, 2, 3).
*line (B, 3, B).
*line (G, 8, 2).

Given the implementation of the predirate inBox (x, y, xLow,
xHigh, yLow, yHigh), the following clauses define the rules
for the inclusion of start and end point within a box:

*linePoints (1, p) TF line (1, p, end).

*HnePoints (1, p) IF line (1, start, p).

*HneInBox (1, x1, ¥1, xh, yh) IF knePoints (1, p), node (13, X, ¥),
inBox (x, ¥, x1, y1, xh, yh).

Prolog's inference mechanism allows then for the derivation of
the query result:

lineInBox (lineld, 20000, 25000, 30000, 30000).

lineld = B
lineld = C
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ComMBINING PROLDG WITH A DATABASE MANAGEMENT SysSTEM

A Prolog system is often viewed as a programming language,
but it also contains certain aspects of a database management
system (Kowalski, 1979), such as storage and retrieval of data
and information. The use of Prolog or similar logic programming
methods for database management have been proposed (Gallaire
and Minker, 1984). Using a Prolog system as a database (Motro,
1984) allows users to store unstructured —or minimally
structured —facts without being aware of a database schema.
Data and metadata are stored in the same format, so that users
need not distinguish between and can search them the same
way. Another approach, coupling an existing database
management system with a separate Prolog system (Vassilou ef
al., 1983), makes the potential of the Prolog programming
language available for user interaction in an interactive
environment with existing, traditionally structured databases
(Jarke et al., 1584). In this combination, the database system
stores the structured data, while the Prolog system is used as
an expert system or a tool for an enhanced user interface. Such
interfaces to database management systems have been recently
integrated into some commercial Prolog systems. Specific
attention has to be paid to query processing. Performance will
seriously degrade if the inference engine frequently passes conbrol
and data from the Prolog system to the database and vice-versa
to process predicates one instance at a time.

PERSISTENT PROGRAMMING LANGUAGES AND PROLOG

The extension of a programining language with database
management capacities i5 frequently referred to as a persistent
programming language. Persistent programming languages have
been designed and implemented as extensions of object-oriented
programming languages, such as Smalltalk (Goldberg and
Robsorn, 1983) and C** (Stroustrup, 1986), but lack the simplicity
and inference power of a Prolog language.

Standard Prolog {Clocksin and Mellish, 1981) leaves the
provision for long term storage of facts and rules to file storage.
Hence, we combined Prolog with a database management system
to construct a persistent Prolog. Users can store data, structured
according to the database schema, with Prolog facts and rules
in the same database representing unstructured data.
Simultaneously, they can use the inference mechanism to exploit
the data.

Generally, most database management systems based on the
network or relational data model can be used to support an
inference mechanism of the form described. A database
management system then serves as a general storage and retrieval
system for clauses. This replaces the particular systems built in
present Prolog implementations. The major extension is the use
of disk storage and access methods; however, for GIS applications,
the database system must respond to a number of specific
requirements (Frank, 1988), for example:

® object-oriented database design (Dittrich, 1986),

® generalization/specialization as abstraction methods (Borgida ef nl.,
1984),

® suitability for modeling of geometric data (Harder and Reuter,
1985) with high-level abstractions of geometric objects, operations,
and classes (Egenhofer and Frank, 1988; Giiting, 1988), and

e fast access based on spatial location {Frank, 1981).

The change in the environment-database in [lien of
programming —aggravates some of the well-known problems
of Prolog:

® User input of new facts and rules must be checked for consistency,
e.g., comparing the spelling of new facts against previeusly stored
ones; and

# Execution speed with large spatial data collections must be improved
so that acceptable response times can be guaranteed.

521

LOBSTER

LOBSTER s a persistent Prolog interpreter (Frank, 1984) using
the PANDA database management system (Frank, 1982b). PANDA
incorporates many object-oriented concepts, such as generali-
zation and association, extensibility with user-defined abstract
data types, and spatial storage and access methods (Egenhofer
and Frank, 1989%a).

LOBSTER can be distinguished from the standard Prolog im-
plementation (Clocksin and Mellish, 1981) in several aspects:

® Persistency of rules and facts: The rules and facts users slore are
kept on disk in a permanent database and available for any future
work. In conlrast, standard Prolog demands that the used rules
and facts are loaded into main memory at the beginning of each
session.

& Organization of rules and facts'into groups: The persistency of alf
facts and rules requires that users have some tools to organize
them so that they can keep track of what they had previously
defined.

& Extensibility: New built-in predicates, written in a conventional
programming languages, such as Pascal, can be easily imple-
mented and integrated inlo the LOBSTER environment so that their
actual implementation is hidden from the users.

Newer commercial Prolog products do provide some similar
features, including access to relational database management
systems.

Central to LOBSTER is the combination of a Prolog interface
with a database management system to allow users to store GIS
data and use the Prolog language and interpreter for building
a query language. These two systems must be linked so that
the Prolog interpreter has access to the data stored in the da-
tabase management system and so that these data may appear
as facts in the Prolog system. The link between the two systems
is achieved in two steps:

® Operations for database access are coded and integrated into the
Prolog interpreter such that they appear as regular Prolog predi-
cates, so-called built-ins, providing a low-level access to database
facts from Prolog; and

@ Mappings are defined from the conceptual database schema to
Prolog predicates and then implemented as Prolog rules using the
built-ins for database access.

In order to store facts in a database, a database schema had to
be designed. Figure 3 shows a solution in an extended entity-
relationship diagram. The following example demonstrates how
a Prolog rule is stored in the database according to this struc-
ture. The rule

grandFather (x, y) IF father (x, xy) and father (xy, ¥)

is stored as a clouse and two predicates (grandFather, father)
and three symbols (x, y, xy) . The clause consisis of three afomic
formulae (grand¥ather (x, y) as the conscquent atom, father (x,

Predicate Symbol
name name
arily '
consequent antaceden! Symbol in Clause
varlable number
kind {bound/unbound)
Atom |
variables
Head consequent | Clause
number af rnumber of
antecedents antecedent variables

Fie. 3. Database schema of LOBSTER in an extended Entity-RAela-
tionship diagram.
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¥y) and father (xy, ) as the antecedent atomic formulae). For
each atomic formula, the corresponding variables are recorded
with their number in the clause (e.g., x=1, y=2 for grand-
Father). In the clause, each variable is connected with the re-
spective symbol, either as const for a constant or bound/unbound
for a variable before and after binding it to a value, respectively.

The implementation of LOBSTER follows the Prolog method
of a depll first search and uses the facts in the order they are
encountered in the linkage of predicates, atoms, and conse-
quent clause. For use as a database retrieval system, the inter-
preter has to return with each success so the application can
use the data in any way it is necessary, i.e., the Prolog inter-
preter works as though it was a co-routine. This excludes a
simple recursive implementation of the interpreter and requires
explicit storage of the state of the interpreter during query
processing to continue the search with backtracking after a so-
lution has been found and processed. The backtracking algo-
rithm is inherently sequential, using one data element at a time,
and its formulation in a navigational data manipulation lan-
guage makes no problems. It cannot easily take advantage of
the set oriented interface of a relational database. In order to
reduce the number of physical disk accesses necessary for each
step, physical clustering of records, as provided by PANDA, is
beneficial.

APPLICATIONS

In this section, some experimental applications will be pre-
sented which were built upon LOBSTER exploiting the pawer of
logic programming, the database approach, and the extensibil-
ity.

OBJECT-ORIENTED ABSTRAGTION MECHANISMS

Object-oriented modeling is an innovative approach to
designing software systems for complex situations in dealing
with real-world problems as they occur in GIS (Dittrich, 1986).
It pursues the integration of traditionally separated methods
used in DBMS, programming languages, and Al (Mylopoulos,
1981; Brodie ef al., 1984) and employs powerful abstraction
mechanisms, such as generalization (Borgida et al., 1984), association
(Brodie, 1981), and aggregafion {Smith and Smith, 1977). The
concepts of inheritance (Goldberg and Robson, 1983; Cardeili,
1984) and propagation (Rumbaugh, 1988), originating from
programming languages, play an important role for GI5S modeling
(Egenhafer and Frank 1989b). A system like LOBSTER is
particularly well-suited to demonstrate these sophisticated
abstraction mechanisms in a concise fashion. Data and metadata
are deseribed in a uniform way so that users may easily exploit
metadata for the formulation of rules and queries.

Inheritance is a method of defining a class in terms of one or
more other, more general classes (Dahl and Nygaard, 1966),
called an fsn hierarchy (Mylopoulos and Levesque, 1984).
Properties common for a superclass and its subclasses are defined
only once—with the superclass—and inherited by all objects in
the subclass. Subclasses may have additional, specific properties
and operations which are not shared by the superclass. Figure
4 shows a generalization hierarchy with three levels of classes.
The properties of a building, such as nddress and owner, are
inherited to the subclass residence, and also transitively to the
sub-subclasses rural residence and wrban residence.

LOBSTER has been used ta prototype these concepts so that
experiments could be run in a GIS environment (Egenhofer and
Frank, 1989b). Each property of a class is expressed as a predicate
of the form p (class, property) . Generalization is described as
the is.a- predicate of the form is a- (subclass, superclass). The
following facts describe the model depicted in Figure 4:

*p (Building, Address).
*p (Building, Owner).
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building

¥

residence

NN

lirban residencs

rural residence

FiG. 4. Properties are transitively in-
herited from a superciass to all its
subckasses, the sub-subclasses, eic.

*p (Residence, Resident).

*is..a. (RBuralResidence, Residence).
*ia_a (UrhanResidence, Residence).
*is_a (Residence, Building).

Inheritance is then defined by the predicate properties which
recursively derives the properties associated with a class and
all its superclassas.

*properties (class, property) IF p (class, property).
*properties (class, property) I¥F is_a (class, superclass),
properties {supsrclass, property).

All properties of the class nrbnnResidence can then be determined
with the predicate

properties (UrbanBesidence, prop).

which the following values for the variable prop fulfill:

prop = Resident
prop = Address
prop = Owner

In apgregation and association hierarchies, two types of
property values occur: (1) values that are specifically awned by
the composite object and, therefore, and distinct and independent
from those of its components; and (2) values of the compuosite
object which depend upon values of the properties of all
components {Egenhofer and Frank, 1986). The mechanism to
describe such dependencies and ways to derive values is called
propagation (Rumbaugh, 1988). Propagation guarantees
consistency, because the dependent values of the aggregate are
derived and need not be updated every time the components
are changed. For example, the property populntion of the class
county is the sum of the populntions of all related instances of
the class settlerment.

LOBSTER was used for a prototype implementation of
propagation. The following (simplified) facts describe the county
Penobscot as an aggregate of two settlements Bangor and
Orono—and some more in the rural areas—with the property
settlementPopulation.

*p (Orono, SettlementPopulation, 10,000).
*p (Bangor, SettlementPopulation, 50,000).
*p (Orono, PartOf, Panobscot).

*P (Bangor, PartOf, Pencbsecoi).

The population of the largest settlement in a county is derived
from the settlements as the maximum of their populations. This
dependency is expressed by the following rule, stating that the
population of a specific county is the maximum of the population
of all settlements which are part of it.

*propagates (PartOf, SettlementPopulation,
PopulationOfLargesiSettlemans, Maximum).
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The generic rule for propagation is the following predicate. It
describes the value of the property of an aggregate in terms of
the values of the components using a specific aggregation
function.

*p (aggregateClass, aggregateProperty, aggregaieValue)
IF

propagates (relation, componentProperiy,
aggragateProperty, operation),

P (componentClass, relation, aggragateClass),

P (componentClass, componeniProperyy, componentValue),

b (operation, componentValue, aggregateValusa).

For example, the value of the property countyPopulation is
then evaluated with

P (County, Popula.tionOfLa.rgestSetblemeﬁt., x).
and resulis in

% = B0,000
GEOMORPHOLOGY

The following experiment with LOBSTER describes how to define
complex properties that can be derived from stored base
properties. This example from geomorphology shows the
definition of complex application-related terms in a rigorous
manner so that users can understand them. These definitions
are easy to program but, more important, they make assumptions
explicit so that different experts’ opinions can be discussed. The
distinction between different types of landscapes is evident for
human observers but, at the same time, they are difficult to
express in formal terms. Verbal definitions of terms in natural
language for geophysical phenomena have the substantial
drawback that they are frequently based on other expressions
which are not exactly defined, but are assumed to be generally
understood (Frank ef al., 1986). .

Symbolic processing for the extraction of geomarphologic
features from landscape models has been proposed as a basis
for formal analysis of terrain features (Palmer, 1984). This method
uses a triangulated irregular network to describe a digital terrain
model. In such a tessellation, nodes have an identifier and x,
Y. and z coordinates, and edges are described by an edge-
identifier, the identifiers of the start and the end node, and the
identifiers of the left and right area. The definition of terrain
features is then based on the classification of an edge according
to the downslopes of their adjacent triangles {Frank et al., 1986):

® an edge is confluent if the slope of both adjacent triangles is towards
the edge;

® an edge is difflnent if the slope of both adjacent triangles is off the
edge; and

® an edpge is fransfluent if the slope of one adjacent triangle is towards
the edge and off the edge for the other triangle.

Two edges are connected if they share a common node and a
vnlley is then a sequence of connected confluent edges.

These rules can be easily expressed as predicates in first-order
predicate logic and implemented in a Prolog language {(Robinson
et al., 1987b); however, pure Prolog (Clocksin and Mellish, 1981}
lacks arithmetic operations, such as trigonometric functions,
necessary to calculate the slope and determine the direction of
flow over an edge. Such calculations can be easily performed
in a iraditional pregramming language, e.g., FORTRAN or Pascal,
and then integrated with LOBSTER. The definidons given here
can be directly executed. It is not necessary to manually translate
them into code with the usual risk of introducing errors and
misunderstandings. The predicates defined are also available in
an interactive setting for experimentations.

*connectedBdge (1, ek) IF edge (el, s, ) AND
edge (8], s, ee) AND notliqual (el, el).
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*connectedEdge (el, eR) IF edge (el, s, ) AND
edge (e&, ss, ) AND ncotEqual (g1, e2).

*conneciedBdge (el, eR) IF edge (el, s, ) AND
edge (=&, e, ee) AND notEqual (el, e2).

*connectedBdge (sl, eR) IF edge (el, &, ) AND
edge (eR, a8, 5) AND notEqual (el, e2).

*econfluentEdge (e) IF edgeFlow (e, In, In).
*diffluentBdge (e) IF edgeFlaw (e, Out, Out).
*transfluentEdge (e) IF edgeFlow (e, In, Out).
*transfluentBdge (g) TF edge¥Flow (e, Out, In).

The following two rules define a valley as a sequence of confluent
edges and draw the resulting valley using the built-in predicate
drawEdge as a co-routine:

*drawNextEdge (e) IF confluentEdge ()} AND drawEdge ()
AND connectedBEdge (e, ne) AND drawNexiEdge (ne).
*drawValley (e) IF confluentEdge (e) AND drawXdge (&)
AND connectedRBdge (e, ne) AND drawNextEdge (ne).

Query OPTIMIZATION

A common solution integrating multiple databases is the
definition of a unifying query language which provides users
with a view as if they dealt with a single system (Dayal, 1986).
This is a likely scenario for all those GIS which use a special
purpose data storage system for recording spatial data and a
standard database management system for non-spatial data.
Particularly important in such a distributed database environment
is the determination of an efficient query processing strategy.
The term query optimization refers to the process of calculating
various strategies to process a specific query and selecting a
plan which most likely provides the least expensive execution
time. Various factors must be considered, such as the size of
the database, the number of records involved in processing a
particular operation, and the time to access records which may
be distributed across different sites.

Query optimization is an important issue in a Prolog
environment with large amounts of facts. Assume a rule of the
form

a(x, &) IFb(x 2),c(z &)

If the first predicate b (%, =) is a large database relation then it
is not economical to use every fact stored to bind x and z , and
then to try to prove the rest of the clause. A more sophisticated
method mwust consider the approximate size of database relations
and the existence of access paths (Warren, 1981).

Based on the same principles as used in LOBSTER, a query
optimizer has been implemented for a distributed spatial database
(Hudson, 1989). It uses Horn clauses as an internal representation
into which the user queries are translated and then applies rules
to determine an optimal strategy. Because the sequence of
predicates within a clause is immaterfal to the logic of the clause,
the predicates may be regrouped. This reordering is based on

e the (estimated) size of the relation for which a predicate stands,

¢ the estimated size of the result of a predicate,

® the estimated cost of verifying a predicate, and

® the physical location of the data sels so that the transfer of data
between various sites is minimized.

Query processing in logic databases (Bancilhon ef al., 1986; Sagiv,
1988) and rule-based query optmization (Freytag, 1987; Graefe
and DeWitt, 1987) are ongoing research topics.

DRAWBACKS OF A PROLOG-BASED QUERY LANGUAGE

Prolog was designed to express logical relations in a short-
lived environment where users are aware of all facts and rules
stored. Facts and rules are stored in files and users recall them
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explicitly when they need them. This approach is dramatically
different from a database situation which is used over a long
time and users do not remember all previously entered facts
and rules. Furthermore, the database concept allows several
users to share facts and rules in a multi-user environment.

INTEGRITY CONSTRAINTS

The schema definition in a database usually contains integrity
constraints to prevent users from entering data which are not
in accordance with the stated goals. This restriction is necessary
so that vusers and application programs may rely on certain
properties of the data. Violations of these rules produce incorrect
resulls or fail to find data stored. Prolog contains no provisions
to prevent the entry of invalid or coniradictory data. Simple
spelling errors in the name of a predicate while entering a rule
will make that predicate fail and the result will be ““false.” Such
errors are extremely difficult to detect. If the database contains
large numbers of facts, visual inspection by browsing is not
possible anymore. ‘

If an expert system should work for a long time, integrity
consiraints must be included and new data entered must be
checked against them. Some examples may clarify this problem:

® Predicate names must be checked against previously used ones.

® New predicates are required to be explicitly declared by the user.
Prolog implicitly declares a predicate with its first use, similar ko
the crealion of variables with their first use in BASIC or FORTRAN
and their known problems.

® In order to assist users in avoiding redundant declarations of the
same or similar predicates (Kent, 1981), have the user enter a
description of the meaning of every new predicate declared. In
addition, a query mechanism must be provided so that users may
examine these descriptions later.

® The intraduction of type constrainis may help the checking of
variables in predicates.

In LOBSTER, such assistance has been integrated and users have
found ik helpful.

Cvouc RULE DEFINITIONS

Systems using Prolog inference mechanisms are not well-
protected against cyclic rule definitions, such as

a(x) IFDh (x);
b (x) IF a (x);

Collections of rules established for use during a short time, or
used as a package and not expected to be expanded by the user,
are generally checked by the programmer against cyclic rules.
LOBSTER contains some mechanisms that detect cycles;
however, checking for cyclic structures during run time is costly
in terms of execution time. More appropriate techniques for the
detection of cyclic rules, fur instance, during input of new rules,
are an issue of active research in the Prolog research community.

ORpeER oF RULES

Some Prolog programs rely on the order in which facts and
rules are entered into the database. The order of facts should
not disturb the execution of a Prolog program in a strictly logical
sense. It may produce the results in a different order, but the
results should be the same.

On the other hand, the order of rules is important for many
recursive rules, especially if a specific stop rule (containing a
citf) needs to be tested and the general recursive rule follows.
For instance, the order of the two rules in the following example
is crucial to correctly formulate the notEqual-predicate. This
rule says that if the two predicates x and y are equal, then
notEqual is false; otherwise, notBEgual is true.

notBgual (x, y) IF equal (x, y), cut, fail,
notEqual (x, y) IF.
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If the order of the two rules was exchanged, the intended logic
of the operation would have been changed.

notEgual (x, y) IF.
notEqual (x, ) IF equal (x, y), cut, fail,

For any two predicates x and y the resuit would be true from
the clause notEqual (x, ¥) IF., and the second clause would
never be tested.

It may be necessary to extend the data structure in Figure 3
to include a class program consisting of several rules which are
maintained and used in the given order.

CONCLUSION

We conclude that a GIS query language must provide a high-
level abstraction of spatial data and geometric operations so that
a user needs no explicit knowledge about their actual imple-
mentation; extensibility so that users may define new rules,
maybe in the same system where data are stored and accessed;
and recursion and loop constructs to formulate queries with
transitive closure.

The use of Al methods and techniques for GIS are necessary
to build flexible and powerful systems demanded by the user
community. This paper reported on the integration of a specific
Al method into a GIS programming environment. The result was
LOBSTER, a persistent programming language based on Prolog.
LOBSTER permitted us to study a number of areas in which Prolog
and database techniques could be beneficial for GIS. The use of
logic-based languages as GIS query languages has been explored
as an alternative to the currently popular SQL type query lan-
guages.

LOBSTER was found to be powerful and flexible. Like any
Prolog-based language, LOBSTER Lreats data and metadata in the
same way; therefore, users may extend LOBSTER with appro-
priate rules whenever necessary. Furthermore, the extensibility
of LOBSTER allows for definitions based on predicates that-may
be sometimes' difficult to implement in a pure first-order lan-
guage. The implementation of additional built-in predicates which
may be used within the language interface proved to be crucial
for the implementation of propagation. Users gained additional
possibilities to access information in a GIS through this combi-
nation. An experimental system for geomorphologic feature de-
tection demonstrated that LOBSTER can also be used to define
specific interfaces for applications in an easy but comprehensive
way.
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Cameras:

The Rolleiflex 3003 metric {35mm) and Rolleiflex 6006
metric (Mid-size) cameras are the most technically advanc-
ed and versatile small format cameras available f};r
photogrammetrie applications. By using the reseau prin-
ciple, these cameras offer accuracies comparable with
much larger and costly cameras without compromising
the flexibility and size of 0 madern hand-held camera
system. All cameros can be synchronized within micra
seconds, which allows precision stereophotography of
high speed objecis.

Far further information contact:

TERRA METRIC, INC.
PROCAM PHOTO PRODUCTS

NEW CONCEPT IN PHOTOGRAMMETRY

3470 Mount Diablo Blvd., Suite A-150, Lafayette, CA 94549 {415) B20-9334
26 Dathousie Street, Toronto, Ontario M5B 1A6 (416) 366-3136

Measuring system:

The Rolleimetric MR 2 System transforms digitized points
or lines from multiple overlapping Rolleimetric photo
enlargement into precise three-dimensional coordinates
using classic resection methads with an optional bundle
adjustment and  simultaneous camera calibration. Survey
control requirements are reduced fo o simple scale factor
measurement., The Rolleimetric MR uses PC computers and
peripherals. The system is easy to learn and offers oppor-
tunifies not previously available to photogrammetric ex-
perts or novices alike. This is photogrammetry without
optical-mechenical restitution instruments. interfaces ia
popular CAD program are alsa available.
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