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ABSTRACT

~ Several methods have been proposed for the storage of geometric
properties in Geographic Information Systems, but many are based
on the storage. of metric data (coordinates) and " analytical
geometry. Because of the well~-known limitations of implemenations
of the algebra of computer real numbers, such systems cannot
preserve topological relations such as incidence and inclusion
during affine transformations.

We propose an approach in which topolegical relations are
separately recorded and independent of metric positions. The
method is based on the use of simplices, which are the simplest
polyhedrons of each dimension, The zero-dimensional simplex is
the point, the one-dimensional one the line, ete. In order to
allow for non-straight 1lines as connections between points, we
actually wuse cells, which are the homgomorphic image of
simplices.

In order to store topological relations, we use two completeness
principles: Completeness of incidence and completeness of
inclusion. We can show that in such a geometric configuration
topology is invariant to affine transformations, independently of
the method selected for recording metric information.

For formal treatment we form a multi-sorted algebra (abstract
data types). The axioms for this algebra must be selected such
that the above-mentioned bPrinciples are maintained as invariants.

We rely on an arbitrary method to learn about the topological
relations initially. "This "oracle" may use the calculation of a
distance and a threshold, query the uset or decide randomly, but
it cannot influence the consistency of the resulting geometry, as
it is consulted only if the same information was not previously
available and thus cannot lead te an inconsistent situation.

Reasonable performance is expected, as this method imposes a
'neighborhood’ structure on the data. All operations use and
change only data of objects in immediate proximity. Databases
suitable £faor handling spatial data should permit clustering of
data by proximity.

1 INTRODUCTION

Geometric objects and properties are not directly observable but
are a product of an abstraction process applied when observing
and describing reality. Geometric modelling in disciplines
treating spatial information is done in two different modes,
producing either raster or vector representations. Raster
represenations are primarily used in picture processing, whereas
the modelling for GIS and CAD systems is often based on vector or
analytic geometry.

Several methods have been proposed for the storage of geometric
properties in vector oriented Geographic Information Systems.
Most are based on the storage of metric data (coordinates) and
analytical geometry., Due to the well-known limitations of
implementations of the algebra of computer real numbers, however,
such systems cannot preserve topological relations such as
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incidence and inclusion during affine transformations. We propose
an approach in which topological relations are separately
recorded and independent of metric positions. '

1.1 scope Of Paper And Major Results

It has been recognized that systems which store only metric data
are mnot capable of preserving topological properties such as
incidences of points and lines or inclusions of points in
polygons. But investigations into the theoretical reasons for
this failure have been rare. We demonstrate that the preservation
of topological invariants such as incidence and inclusion
requires a number system which is, if not continuous, then at
least countably infinite. Consequently there 1is no point in
further investigating alternative algebras, since infinity is
impossible to achieve in a digital computer.

In this paper we disregared the meaning of a geometric
configuration and deal only with the geometry. The points, lines,
and areas can then be used to carry the meaning in real world
terms. This is a separate step which is not considered in the
pure dealing with geometry in this paper.

Our approach is to search for a method which does not attempt to
extract topology from stored metric data, but provides an
independent representation for topological relations. For
two-dimensional geometry, we propose a methed based on a mesh of
irregular triangles which is called a simplicial or cell complex.
A simplex is the elementary topelogical cell in any given
dimension, i.e. the zero dimensional simplex is 'the point, the
one-dimensional one the line, the two dimensional one is the
triangle, and so on. In order to allow for non-straight lines we
actually use cells, which are the homeomorphic image of
simplices. :

In order to preserve the fundamental topological relations of
incidence (i.e. when a point lies on a line or two points
coincide) and inclusion (i.e. when a poeint lies within a polygon)
during topological transformations, we extend and specialize the
well-known 'closed world assumption’ [REITER 1984] to two
completeness principles:

- Completeness of incidence: the intersection of two simplices
is either empty or a boundary simplex (of lower dimension).
This rule excludes the intersection of lines at peints which
are not start- or end-points of the lines.

- Completeness of inclusion: all simplices of dimension n are
boundary simplices of a simplex of dimension n + 1. This
rules first demands that all points be endpoints of lines
{i.e. no isolated, non-connected points) and second, that all
lines be boundary lines of an area (i.e. there are no lines
which are not part of a boundary).

The mathematical construction known as a simplicial complex
fulfills these requirements.
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It is important to retain this information with minimal
redundancy (and further this redundancy must be known), not only
because redundant data uses storage space, but more pointedly
because redundant data bears in it the danger of contradiction
and inconsistency.

As a method for formal treatment of this concept, we describe an
abstract algebra (multi-sorted algebra) constructing simplicial
complexes (precisely: cell complexes). We need {at least) the
following operations:

- c¢reate an initial cell complex

- add a point to a cell complex

- connect two points in a cell complex (with a 1line of

arbitrary shape)
~ delete a point
~ delete a line

For simplicity in this presentation, we do not include operations
.to delete points or lines nor do we fully treat the problems
related to non-straight lines.

This method relies on initial knowledge of a topological relation
together with its metric. If the user does not specify for a new
element how it topologically relates to previously stored ones,
the system makes the initial decision using the metric positions
as an indication. This decision is arbitrary - we call it oracle
~ and may be used only once. It is only needed to complete the
data and preserve consistency in a manner that does not require
explicit treatment of unknown situations.

This formal treatment reveals a relatively simple, elegant
solution. The goal of the exposition in this paper {given its
limited size), is more the introduction of the formal methods and
an attempt to convince the reader of their usefulness. A more
complete treatment, including proofs, will £follow in another
publication.

The implementation so far has been easy, as the formal
specifications were shown to be correct., We expect reasonable
performance, as this method imposes a ’'neighborhood’ structure on
the data. All operations use and change only data of objects in
immediate proximity, and our database implementation already
clusters data by proximity.

1.2 Contribution Towards The Larger Problem Of A Spatial Theory

The problem treated in this paper should be seen in the larger
context of an emerging ccherent spatial theory.

In 1983 a NASA-sponsored group of experts discussed 'Problems and
Directions for Large Scale Geographic Information System
Development’ and concluded:

"There is at present no coherent mathematical theory of spatial
relations,

The lack of a coherent theory of spatial relations hinders the
use o0f automated geographic information systems at nearly every
point. It is difficult to design efficient data bases, difficult
to phrase queries of such data bases in an effective way,
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difficult to interconnect the various subsystems in ways which
~enhance overall system function, difficult to design data
processing algorithms which are effective and efficient. AB we
begin work with very large spatial data bases or global data
bases the inabilities and inefficiencies which result from this
lack of theory are likely to grow geometrically.

While we can continue to make some improvements in the wuse of
automated geographic information systems without such a coherent
theory on which to base our progress, it will mean that the
developments will rest on an inevitably shaky base and progress
is likely to be much slower than it might be if we had a theory
to direct our steps. It may be that some advances will simply be
impossible in the absence of a guiding theory." [BOYLE 1983]

In a recent Ph.D. thesis at the University of California at Santa
Barbara it was argued "that the lack of symbolic representation
and reasoning (of spatial knowledge) is a key factor in
explaining the shortcomings of Geographic Information Systems”
[ PAZNER 1986].

Various branches of mathematics have rigorous theories which can
be applied to spatial objects, e.g. Euclidian and analytical
geometry, topology and graph theory. Other sciences, most notably
geography and geomorphology, have developed their own concepts,
but usually lack a consistent formal definition. They generally
discuss different aspects of human understanding and human
perception of space.

A spatial theory can help to formally explain a human expert’s
work in such areas as geography, spatial analysis, urban and
regional planning, computer aided design or the dispatching of
forces in a command environment. It is thus a logical
prerequisite to the construction of expert systems in those
disciplines.

We hope that the method presented here unifies metric and
topologic operations and thus provides a more coherent view of
geometry. We consider this an initial contribution to the
emerging spatial theory.

2 PROBLEM DEFINITION, MATHEMATICAL BACKGROUND AND TERMINOLOGY

One of the main reasons for the appearance of unexpected "slivers
and gaps” in information systems is that a precise (preferably
formal) definition of the information to be stored has never been
attempted or has remained incomplete. Humans interpreting system
output may perceive relevant properties which are actually not
known to the system.

Consequently, if the system does not contain information about
such properties, operations may not preserve them and the basis
for the human interpretation may suddenly disappear. It is 1like
perceiving figures in clouds: no physical law assures that they
are preserved, and a gust of wind can blow them away.
Unfortunately, in many GIS certain geometric properties are not
much more than an accidental cloud formation. :
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2.1 Our Understanding Of Geometry

At least since the work of Felix Klein (Erlanger Program) {[KLEIN
1872], geometry is predominantly seen as the study of invariants
under certain transformations [BLUMENTHAL 1970]. The idea of
invariance is deeply rooted in the human conception of space, as
the process of measuring distances, angles and volumes relies on
the comparisen of unknown quantities with measuring tools which
are considered to have invariant size. Euclid’s congruence
theorems constitute an early incorporation of the idea of
invariance into geometry.

The nature of the shortcomings of today’s geometry-handling
systems, namely the loss or change of certain qualitative
properties of a geometric situation under common transformations,
suggests that the construction of such systems could benefit from
an axiomatic (as opposed to a computational or procedural)
treatment of geometry which investigates invariance properties of
the necessary operations.

Such an algebraic approach to the definition of geometry further
coincides with modern techniques of software specification
[GUTTAG 1977] [PARNAS 1972] [ZILLES 1984). We are using abstract
algebra extensively in order to achieve both a formal and
unambiguous problem description and at the same time a convenient
basis for implementation.

2.2 Dimension-independent Formulation

Traditionally, many definitions for spatial  objects and
properties are given for situations of specified dimensions - or
are at least formulated and thought of this way. Different terms
are used to denote mathematically similar objects of different
dimensions (e.g. point, line, area). We have observed that it is
usually not too difficult to generalize definitions slightly,
such that they become independent of dimension. This is a method
generally used in topology, and we will apply it in the sequel.

Regardless of the attempt to generalize definitions and make them
dimension-independent, the presentation in this paper
concentrates on the 2-dimensional case, which is most relevant to
geographic, spatial data processing.

2.3 Topology: Some Elementary Concepts

Topology has been called the general study of continuity. It
investigates topological structures of point sets. Algebraic
topoleogy uses algebraic means to treat these sets, whereas
analytical topology is based on real analysis, using concepts
from analysis {such as open sets, neighborhood, convergence)
which are independent of the algebraic structure of the point
sets. Qur treatment of geometry will make use of concepts from
both branches.

As in geometry as a whole, interest in topology is focussed on
properties which remain invariant under certain transformations,
The most important transformations in topology are
homeomorphisms. A homeomorphism is a bijective and bicontinuous
function, i.e. both the function and its inverse are unique and
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continuous. TwWO sets are said to be homeomorphic, or
topologically equivalent, if a homeomorphism exists between them.
- A topological invariant is a property preserved by a
homeomorphism.

A metric space is obtained from a point-set X by supplying it
with a distance function d: X x X -» R. This function is subject
to the following conditionsg :

(1) 4 (P,Q) >= 0 ‘

(2) d (P,Q} = 0 if and only if P = Q
(3) d (P,Q) =d (g,pP)

(4) d (PIQ) + d (Q:R) »= d (PrR) -

The convex hull of a set Y of points in an n-dimensional vector
space is the smallest subset in this space which contains, for
all v,w in Y, the segment vw = {av + bw | a,b »>= 0, a+b = 1}.

Graph theory is a special discipline within algebraic topology.
It investigates the topological problems which can be described
by a (finite) number of points (nodes or vertices) and their
connecting lines (edges). Graphs are particularly suited to
represent incidences between points and lines, but since they
lack a two~dimensional concept, they are not powerful enocugh to
treat relations involving areas. In a GIS, where areas delimited
by edges are usually reaningful and questions about the inclusion
of points in areas occur, it is therefore inadequate to use
graphs for the representation of topological relations.

2.4 The Geometry Tc Be Treated

2.4.1 Objects - The objects in our geometry are called FIGURES
and their ensemble is a CONFIGURATION. A figure is either a
point, a line, a polygon, or an area.

A POINT is defined by its coordinates, i.e. a tuple of real
numbers. Two points with the same coordinates are identical.

A LINE is a segment of a plane analytic curve which does not
intersect itself. It is defined by the two points bounding it
{they do not belong to the line), an analytic description of its
shape and an orientation.

A POLYGON ig a connected alternating seguence of lines and
points.

An AREA is a connected region bounded by one or several (in the
case of "islands") closed polygons.,

2.4.2 Operations - Fundamental geometric operations are: to
insert a point, to join two points by a line, to build polygons
from lines, to define an area by its boundary and to apply affine
transformations to the whole configuration., Additional operations
include the subtraction of one area from another, intersection
operations ete.
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2.4.3 Properties - The metric properties of the figures are: the
position of points, length of lines, surface of areas, distance
between two points or between a poeint and a 1line, and angles
between intersecting lines.

Further we have an order relation for the peints on a line to
orient the line,

The topological relations are:; coincidences of figures,
incidences of points with lines, inclusions of points in areas
and intersections of lines.

2.4.4 Invariances - The properties which must remain invariant
under all operations are the topological relations of
coincidence, incidence (points with lines) and inclusion (points
in areas). Theoretically, they are preserved by all our
operations, since affine transformations are {the most general}
bijective mappings which preserve incidences and inclusions.

2.5 Correctness Ang Consistency

By correctness we mean the correlation between reality and the
facts stored in the information system, mathematically described
by ‘an isomorphism between operations on reality and on the data.
As an information system can not perceive reality independently,
it is not possible for the system on its own to determine, nor
enforce, correctness of the data stored.

Consistency is a weaker restriction on the data, regquiring only
that no contradiction between the facts and rules stored in the
system persist. Database theory provides more elaborate

discussion of the logical problems associated [GALLAIRE 1984]
[REITER 1984].

The importance of consistency is not only that it helps to avoid
eérrors during data entry and reduces the effort to maintain the
data in its correct form, but more important, it maintains
certain properties for the data collection upeon which the
exploiting procedures may rely (e.g. an area always has a closed
boundary, therefore the calculation of the size of the surface is
always permitted).

Consistency and correctness are independent. In fact, data may be
correct (i.e. in accordance with reality) but inconsistent with
some rules included in the data collection. This is especially
true for so-called plausibility rules, which are often included
a8 consistency rules but are sometimes violated in reality (e.g.
if house style = ’cape cod’ then number of stories less than 4)

2.6 Different Kinds Of Inconsistency

2.6.1 Well-formedness - the geometric configuration must be
built according to certain ruies. For example, an edge can only
connect existing nodes. If those rules are violated, the object
is not a graph and cannot be treated.
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2.6.2 Topological Inconsistency - Topological inconsistency is
encountered if the stored information on connectivity does not
describe a possible configuration, i.e. if areas are not closed
or the edges cross such that the graph is not planar.

2.6.3 Inconsistency Between Topology And Metric Data — The
position of a node may not be consistent with the requirements of
the (topologically consistent) simplicial complex. A node may be
topologically treated as laying in one cell, whereas its metric
position indicates its inclusion in another one. Nevertheless,

the topology alone may be consistent, but contradicts the metric
position. :

3 PROBLEMS ENCOUNTERED IN GIS

Geographic information systems are often suplied with data from
different sources. The integration of such data is sometimes more
difficult than expected, and reveals inherent limitations of the
system. Some systems simply treat lines and do not work with
areas - the concept of area is only formed later in the mind of
the observer. In such a system a simple geometric transformation
may cause gaps to open between lines etc, Other systems primarily
operate on closed polygon data, and combine different data using
overlay methods. If the data layers combined are not precigely
registered using accurate geodetic coordinates, spurious small
areas {(so-called gaps and slivers) are formed by the overlay
calculations. Several methods are used to reduce these, but none
seems to work completely satisfactorily.

3.1 Analytical Geometry

In order to treat spatial data in computer systems, analytical
geometry is wused. The basic objective of analytical geometry is
the mapping from the two-dimensional plane to the space of tuples
formed by two numbers {(or a corresponding mapping for higher
dimensions). The underlying number system is commenly the algebra
of real numbers, though the choice of other algebras {(fields) is
conceptually possible.

The mapping from the two-dimensional plane to pairs of real
numbers produces a homomorphism between the operations on beth
sides. Essentially, the classical constructions using ruler and
compass are modelled by corresponding operations on real numbers.
The results of all operations with ruler and compass (and also
those of more general operations) can be computed analytically.
Metric properties (distances, angles etc.) AND topological
properties (incidences of points with lines, inclusion of points
in polygons etc.} can be deduced from analytical computations.

Analytical geometry has the advantage of providing powerful
mathematical tools which simplify common operations.
Unfortunately, this mapping from points to tuples of reals and
the corresponding operations require properties of real numbers
which the approximations used in computers cannot provide.

3.1.1 Finiteness Of Computers - Number systems in computers are
necessarily finite, as a finite seguence of bits can only
represent a limited selection of different numbers.
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Mapping of geometric data {coordinates) onto computer numbers has
been a problem since the beginnings of computational geometry.
- However, the theoretical reasons for, and practical implications
of this difficulty, and the shortcomings of most existing
solutions, have only fairly recently gained widespread
recognition (e.g. [WHITE 1983}, [FRANK 1983}, [FRANKLIN 1984],
{CHRISMAN 1984]). In addition, researchers into computational
geometry have also become aware that many of their theoretically
well-founded algorithms are extremely difficult te implement, and
require the consideration of many special cases [FORREST 1984].

3.1.2 Alternative Underlying Algebras - Franklin’s [ FRANKLIN
1984} contribution to this issue is that of having separated the
concept of analytical geometry from real numbers, and of having
examined other algebras. He has attempted to discern which number
systems are most suitable for the performance of analytical
geometry wusing a finite mwachine, and has found none to he
satisfactory. His conclusion is that even most complex algebras,
such as the calculation of exact rationals with a general root
operator, are not powerful enough to represent geometry, and
would be very inefficient to use.

In Franklin's opinion, the current practice of using real numbers
of increasing precision to reduce the number of problem cases is
'part of the problem, not part of the solution’. Rounding errors, .
together with inevitable measuring errors in coordinate values,
hinder geometric processing and produce artefacts (known as
slivers and gaps) which must be weeded out by human operators.

In CAD systems, for example, these problems make it difficult to
detect illegal intersections of solids automatically ([SEGAL
1984]. Human experts are usually not hindered by inaccuracies in
their wunderstanding of spatial situations. However, the large
volume of data in a GIS does not permit reliance on human
intervention to maintain consistency in the database.

3.1.3 Minimal Requirements For A Number System For Analytical
Geometry - Regular Euclidian geometry maintains that a
line can be divided into smaller parts. In order to be able to
perform such an operation in analytical geometry, we need a
number system which is continuous: otherwise we reach a point at
which a given small line segment can no longer be subdivided.

However, noc finite set of numbers, as representable in a
computer, can be used to model an infinite, continuous set of
numbers. Therefore a computer system cannot be used to completely
model analytical geometry based on Euclidian geometry.

In this article, we do not treat the question of what an
analytical geometry using a finite number system (a 'geometry of
the discrete plane’) would look like. Obviously it would omit
some axioms of Euclidian geometry.

3.2 Impossibility Of A Consistent Deduction Of Topology

It is a standard operation in analytic geometry to deduce a
topological property £from given metric data {(point coordinates
and 1line shapes). Consequently, computational gecmetry has
developed efficient algorithms for such questions as: does &
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newly entered point coincide with cne previously stored? What 1is
the relative position of a point with respect to a line? (i.e.
does the point lie to the right or to the left of the line?}).
Does a point lie inside or outside of a polygon?

In principle, there is no restriction on deducing incidence uging
a test on the distance between points or between a point and a
line. If the distance between two points is zero, then the points
are identical; if the distance between a point and a line is
zero, then the point lies on the line.

However, i1f metric positions are expressed using a finite
representation, this type of deduction is not consistently
possible. For example, the conclusion that a point 1lies to one
side of a line might not hold true after rotation or scaling (see
example in [PRANKLIN 1984]).

It is not possible to decide with certainty whether a point 1lies
on a line or whether two pairs of coordinates represent one and
the same point. Additional precision in the coordinates (i.e.
additional bits for the implementation of reals) can reduce the
number of cases which cannot be correctly decided, but this is
not a general solution to the problem.

We conclude that methods based on analytical geometry and using
metric operations to deduce topological properties cannot
preserve the invariance of these properties under such common
transformations as rotations and scalings. Operations on spatial
data in such systems therefore have a tendency to introduce
topological inconsistencies, which are often referred to as
*slivers and gaps’.

3.2.1 1Influence Of Measuring Errors - The finite approximations
used in computer systems, and the inevitable measuring errors
associated with data collection, have essentially the same
effects. Point coordinates are approximations resulting from
measuring operations (which are inherently subject to errors) and
computations (which use some equally approximate coordinates of
base points). Statistically speaking, coordinates are not
'estimable guantities’, but the original measurements or adjusted
measurements are.

This kind of problem is most obvious if we have to merge data
from two different sources, which contain a number of common
points and lines represented by slightly differing coordinates.
Conventional processing is then plagued by discrepancies and
"slivers’, small areas which are caused by small differences 1in
the coordinate values used, but which de not correspond to
reality. These must subsequently be eliminated in a tedious
manual editing process.

The addition of estimates for the errors associated with the
coordinate values can help to reduce the number of cases which
cannot be easily decided, but cannot solve all such cases.

4 A TWO LEVEL APPROACH

In order to separate the problems related to metric relations and
to clearly vrestrict their influence, we will divide the problem
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into two levels:

1. a layer that stores the necessary topological relations, the
operations assume that the wuser - knows the topological
relations of newly stored objects

2. a layer that maintains a consistent geometric configuration,
without receiving the topological relations. It deduces them
from approximations to positions using ’oracles’. :

5 CELL COMPLEXES

This section describes the data structure which we use to store
topological relations explicitly. We call this structure a Cell
Complex. Our terminology is mostly based on [MOISE 1977] and
[GIBLIN 1977]. Elementary topological notions have been
introduced in section 2.3. For some intuitively clear concepts
{(such as "in general pasition") we give no definitions here and
refer the reader to the two references mentioned. We will first
introduce the basic notions of a simplex and a simplicial complex
on which the definitions of cells and cell complexes are founded.
As a means of building aggregates of primitive elements, chains
will be introduced at the end of this section.

All definitions refer to a two-dimensional space. However, the
concepts introduced have their direct equivalents in higher
dimensions. Generalization ig therefore straightforward.

5.1 Simplices

A simplex is the elementary geometric object in a given
dimension, i.e. a building block from which all figures in this
dimension can be constructed..

The O0-dimensional building block is a point. It is called
O-simplex or sometimes vertex or node.

A l-simplex (also called segment or edge) is the convex hull (see
section 2.3) of two nodes in general pesition.

Similarly, a 2-simplex (also called triangle) is defined as the
convex hull of three nodes in general position.

A face of an n-simplex is the convex hull of a nonempty subset of
n nodes in general position (in the n-dimensional space). Thus a
triangle has three edges and three nodes as its faces. Together
they form its boundary.

5.2e Simplicial Complexes

As mentioned before, simplicial complexes are a generalization of
graphs. They include graphs as a special case in which the
elements of the complex are 0- and l-dimensional building blocks
only (nodes and edges, but no triangles). The defining
characteristic of a simplicial complex is the intersection
condition:
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A simplicial complex is a collection K of simplices such that
(1) K contains all faces of all elements of K

(2) The intersection of two simplices in K is either empty or
else a face of both simplices.

This means that if a simplex is an element of a simplicial
complex then all its faces are elements as well. Second, the
simplices in a simplicial complex do not "overlap".

5.3 Cells

Simplices are defined as convex hulls but we would 1like to
represent non-convex areas and non-straight lines as well. This
can be achieved by a slight generalization of the simplex
concept.

5.3.1 Definition Of Cells ~ An n-cell is a space homeomorphic to
an n-simplex. Loosely speaking, if the faces are also
homeomorphic to the corresponding faces of ¢th n-simplex, the
n-cell 1is called. a combinatorial n-cell. In the subsequent
discussion, n~cell stands for combinatorial n-cell. The notions
of node, edge and triangle will be taken over from the simplex
terminoclogy and used alternatively for {combinatorial) 0-, 1-,
and 2~-cells.

We establish the convention that every n-cell is open, i.e. does
not contain its boundary. By doing so we achieve the condition
that every point of the plane belongs exclusively either to a
O-cell or to a l-cell or to a 2-cell. This disjoint partition of
all points in the plane allows for easier semantics of the
operations on cell-complexes. ,

5.3.2 Metric Description - So far, we have used only topological
ctoncepts to define n-cells. The point sets forming these cells
can however be described by metric properties. For O0~cells or
nodes, this is trivial: The two reals associated with a O-simplex

and consequently with a O-cell are called the coordinates of the

For l-cells or edges, we use egquations to describe shape. A
convenient form is the parametrization using the arc length s as
2 parameter, This simplifies computations and avoids the
Singularities which occur when using explicit equations.

The shapes and coordinates of bounding cells are sufficient for
the metric description of 2-cells.

5.3.3 Orientation - Every cell has an orientation. Thig is guite
natdral for an edge, where the direction leads from the start to
the end-node, making two orientations possible, We will define an
orientation as an ordering of the cell’s nodes, and consider all
even permutations of this ordering to he equivalent.

Based on this definition, nodes have one {unique) orientation. It
may be somewhat surprising that triangles {(and cells of higher
dimensions) have, like edges, exactly two possible orientations-.
For a triangle, we may define the clockwise sequence of nodes as
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Dositive orientation and associate with it a positive wvalue for
the surface area. :

5.4 Cell Complexes

Cell complexes are defined as collections of cells in the same
way that simplicial complexes have been defined above,

A cell complex is connected if any two given nodes are connected
by a path of edges. o :

The join of a node n in a cell complex consists of all edges that
are bounded by n,

We will require that our cell] complexes be closed gurfaces.
Informally, this means that isolated nodes, edges or triangles

are not permitted, and that every edge bounds exactly two
triangles.

5.5 chains ,

A path in a cell complex can be represented as a chain of edges -
this is a one-dimensional chain (1-chain). The notion can be
generalized to an n-chain which consist of n-cells, and to formal
sums of cells which are not connected (e.g. the above-mentioned
join of a node can be seen as a l-chain).

A chain ¢ of dimension n is defined as a formal sum

11 s1 + 12 52 + 13 s3 +.... + 1n sn
where the 1i are integers (positve or negative)
and the si are all cells of dimension n.

Given a fixed set of cells, the chains form an abelian group with

the operation addition, fulfilling the following axioms [GIBLIN
1977]):

A is an abelian group with elements a if:

1. for all a,b,c in A : a + (b + c) = {a + b) + ¢

2. there exists a neutral element 0 in A such that, for all a in
Ara+0=04+a=a

3. for each a in A there exists b in A such that a + b w b + a3 =
0

4. for all a,bindA : a+b=">b+ a

A chain can represent a path of edges (and by analogy a path
between nodes), and thus it is important to indicate whether we
forward on the edge (from start to end) or backward (from end to
start). The coefficient 1i is defined as 1 for forward and -1 for
feverse. Note that we are permitted to travel over an edge more

tharr once, so the coefficient of an edge may be a number other
than -1, 0 or 1.

Using chains supplies us with a reqgular, well-understood
algebraip structure on which to build more complex operations.
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6 A MULTISORTED ALGEBRA FOR CELL COMPLEXES

The informally described concepts of cells and cell complexes,
and the corresponding operations, can be described as a
multisorted algebra or abstract data type [GOGUEN 1978] |[GUTTAG
1977] [PARNAS " 1972] [ZILLES 1980] [ZILLES 1984]1. This is a very
precise method of formally describing the meaning of data types.
It is based on the familiar concept of an algebra (e.g. the
algebra of real numbers) and extends it to new data types. 1It
seems to be one of the few methods useful to formally capture the
meaning (semantics) of a newly defined data type (i.e. without
relying on the connotations of the names of variables and
procedures).

Multisorted algebras (or abstract data types) are based on common
mathematical concepts and they can be used in formal proofs to
show, for example, that the defined operations preserve certain
desirable properties. They are, on the other hand, similar enough
to computer programming that the translation of their formal
definitions into a program expressed in a procedural language (we
use Pascal) is easy and straightforward. A description of an
application in terms of abstract data types allows the detection
of weaknesses or inconsistencies in concepts at an early stage,
before any program code has been written. Our experience leads us
to believe that the time and effort spent on formal definitions

are easily recouped through faster program development with fewer
errors. '

An abstract data type (ADT) is described in three parts:

l. the sorts (data types) invoelved, e.g. integer, point, chain;

2. the operations, usually written as functions, together with
the data types of their arguments and results;

3. the axioms, which define equivalences between seguences of
operations. The axioms are understood as preceeded by all
quantifiers for all variables (read "for all x, Ye 2.0 V),

This section will deal exclusively with the topological relations
between cells, and will not include any provisions for metric
data. The positions of points and the parameters describing the
shape of a line are included in another layer of our description.
This permits a complete separation of concerns, and clearly
identifies the point at which the problems of realizing metric
operations on finite computers arise.

6.1 Operations On The Cell Complex

The structure which we use to represent topological relations
explicitly is a cell complex, as explained in a previous section.
Since a cell complex is nothing more than an irregular, complete
triangulation of the plane, any operations on it have to preserve
this invariant, i.e. they can only densify the triangulation. (We
do not yet treat deletion operations.) Thus, an algebra on cell
complexes is very simple; it consists of an operation to create
an initial complex and of two possible subdivision operations:

new: . => complex
subdivl : node x edge x complex ~> complex
== an edge is split by adding a node and in conseguence
-— the two adjacent triangles (identified by their common edge)



Fage 15 .
-— are split into four
subdiv2 i node x triangle x complex -> complex

~~ a node is added inside a triangle-and in conseguence
-— the triangle is split into three triangles

A7 A

Figure 1: (a) subdivi, {(b) subdiv2

Indeed the last two operations can be seen as one, namely:
subdiv : cell x cell x complex -> complex

The axioms for these operations are the conditions for the
simplicial (or cell) complex (see above section 5.2).

These two operations (new and subdiv) alone already constitute
the complete set of operations manipulating the topological
structure. The addition of an edge to a complex is split into the
repeated addition of nodes which then, by the rules governing the
simplicial complex, triggers the addition of the desired edge.

Additionally, some observer operations may be defined, such as
the "join" which finds all edges incident with a node.

These operations are only useful if the inherent topological of
the newly inserted cell are known. This is often the case for
constructive operations. For example, the algorithm constructing
the mid-point of a line ’knows’ that the new point must lie on
the line. Such knowledge is preserved in the cell complex and
remains available later.

6.2 Creation Of Nodes (0-cells) And Edges (l-cells)

Subdivisions of a cell complex will require some elementary
operations to create the new nodes and edges. These are defined
here. Note however that they are only used by the subdivision
opetations: this is to assure the consistency of the complex, as
otherwise arbitrary cells could be created, violating the
intersection condition and/or the purity of a complex.

6.2.1 Nodes - Nodes are distinct points in which we are
interested. Every node is different from any other known node
(this is essentially the unique name assumption [REITER 1984)
mentioned before). '
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Operations on nodes:
new: .« —» node

‘ —— to create a new node

equal: node x node -» boolean :
—— this is ngt a test on sequality of coordinates, but on the
—— equality of the entity

axiom: let n := new ();

eqgqual (n, n) = true

equal (new(), new{()) = false

- ~— any two nodes created are different, a node is only equal to
~— itself

6.2,2 Edges ~ An edge is a line segment connecting two nodes. It
consists of an infinite number of points, but has only two nodes
(i.e. distinct points of interest). Edges cannot exist without
the adjacent nodes, and there may not be more than one edge
between two nodes. This is asserted by the definition of equality
of two edges but also by the restricted use of the new-operation
in the operations on the complex

new: node x node -> edge
—-— create an sdge between two nodes
—- this implicitly defines the orientation of the edge
start: edge -» node
~— get the start-node of the edge
end: edge -> node
-~ get the end-node of the edge
equal: edge x edge -> boolean
-~ test two edges for equality

axioms:
start (new (nl, n2)} = nl
end (new (nl, n2) ) = n2

equal (el, e2) = if (start{el)=start(e2) and end{el)=end{e2))
or (start(el}=end{e2) and end(el)=start(e2))
then true else false
-- the equal operation on nodes is abbreviated by "="
—~- two edges are equal if they run between the same nodes
—~ this excludes multiple edges between the same pair of nodes

6.2.3 Generalized Cell - To simplify the description of
dimension-independent operations, we introduce some generalized
operations for cells. The dimension operation allows us to
determine what kind of cell we are dealing with (i.e. whether it
is a node, an edge, or a triangle). Another general operation
(boundary) will be introduced below.

dimension: cell -> integer

axi'oms:
dimensgion (node) = 0
dimension (edge) = 1
dimension (triangle) = 2

6.3 Operations On Chains

In order to treat special aggregates of cells (e.g. the three
edges bounding a triangle, or a path of edges between two nodes),
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we define the ADT chain. Its formal definition very much
resembles an algebra of polynomials:

new : integer x cell ~> chain '
—= create a new chain with one element
null: . -> chain
-~ make an empty chain
is_empty: chain -> boolean
-~ test if a chain is empty
dimension: chain -> integer
-- get the dimension of the chain
sum: chain x chain -> chain
—-— this is the addition operation of the abelian group

coeff: cell x chain -> integer
length: chain -> integer
axioms:

dimension (new {i,c}) = dimension (¢)
~— the dimension of a chain is the dimension of the first cell
-— entered
dimension {null) = error
coeff (¢, new (i,c)) = i
coeff (c, null) = 0
is_empty (chl) = if coeff (cl, chl) = 0 then true
—— & chain is empty if the coefficient is zero for all cells
sum (chl, ch2) = if dimension {chl) <> dimension {ch2) then error
-~ to add two chains of different dimensions is an error
dimension (sum (chl, ch2}) = dimension (chil)
~— the dimension of the sum of chaing is the same as
-- the dimension of each of them
coeff (cl, sum(chl,ch2)) = coeff {cl,chl) + coeff (cl,ch2)
length (chl} = integer.sum for all cl: coeff {(cl, chl)

it follows:

is_empty (null) = true

is_empty (new (i,c)) = false

sum (null, chl) = sum {chl, null) = chl
sum {(chl, ch2) = sum (ch2, chl)

length {null) = 0

it does not follow:
length (sum (chil, ch2)) = length {chl) «+ lenght (ch2)

6.3.1 The Boundary Relation On Cells - The important relation
between the cells in a cell complex is ‘bounding’, a
generalization of the incidence relation between edges and nodes
in a graph. Each cell is bounded by several cells of lower
dimensions. We will see that this relation between the cells
representing a configuration is sufficient for the deduction of
all topological relations of the figures (points, lines and
areas).

We can define an operation "boundary’ on a cell, which returns a
chain of the bounding cells. The dimension of the boundary chain
is always one less than the dimension of the given cell. The
boundary chain of a node is empty.

boundary: cell -3 chain
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axioms
dimension (boundary (c)) = dimension {c) - 1
is_empty (boundary (c)) = true if dimension {c) =0
boundary (c) = if dimension {c) =1 then-
sum (new(-1,edge.start (c}), new (+1,edge.end (c)))

Given a chain of edges we can construct a chain of nodes by
considering each edge as a chain of two nodes, the start-node
with a coefficient of -1, the end-node with coefficient +1. In a
similar fashion, we can construct boundaries of areas, by the
enumeration of the edges used for its limit; the coefficient 1is
+1 if, during an anticlockwise cycle around the areas, the edge
is traversed in its forward direction, -1 if traversed in its
reversed direction.

We can extend the boundary operation on chains as follows:
boundary: chain -» chain

axiom:

boundary (sum{chl,ch2)) = sum (boundary (chl), boundary (ch2))
is_empty (boundary {chain.null)) = true

is_empty (boundary (chl)) = if dimension (chl})=0 then true

We can test whether a chain of edges is closed by forming its
boundary chain of nodes. The chain of nodes of a closed chain of
edges must be empty. Such a closed l-chain is called a l-cycle,
but the concept easily generalizes to closed Z2-chains
{polyhedrons).

is_cycle: l-chain -» boolean

axiom:
is-cycle (ch) = is_empty (boundary (ch})

6.3.2 Triangles - A straightforward definition of triangles
requires the concepts of chain and boundary. A triangle (2-cell)
is create from a chain of three edges which its boundary. The
coefficients in the chain define the orientation of the triangle.

‘new: 1l-chain -} triangle
boundary: triangle -> l-chain
equal: triangle x triangle -> boolean

axioms

new (ch) = error if not length (ch) = 3 or not is_cycle (ch)
boundary (new (ch)) = ¢h

is_cycle (boundary (new {ch))) = true

equal (tl,t2) = chain.equal (boundary (t1), boundary (t2))
6.4* Abstract Implementation

The abstract data types defined above can be combined to form the
operations on the cell complex. In such an abstract
implementation we explain how operations of the higher level {the
cell complex) are built from the operations of the lower level
{nodes, edges, chains, and triangles). Then we are able to
formally prove that the axioms defined for the upper level
operations follow from the axioms Ffor the lower level operations.
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Unfortunately, the proofs are presently guite tedious and
lengthy, but we hope future work will provide us with more
‘compact formulation. Work on these proofs was very instructive
and draw our attention to many details of the axioms showing us
how they interact.

7 EXTENDING THE ALGEBRA BY METRIC

The abstract algebra formulated for cell complexes in the
previous section assumes that the topological relations between
new cells and the previously established cell complex are known.
It copes with the problem of storing a known topology explicitly,
but it does not include operations to determine topology, e.g. to
find out which subdivisions of the complex are required when
storing a new figure. When a new figure is added to a
configuration, the cell complex which records this fiqure's
topological relationship to existing figures has to be updated.
This process uses knowledge of the metric properties of existing
cells, i.e. coordinates of nodes and shapes of edges, as well as

additional information for cases in which we do not rely on
metrics.

The concept determining topology in view of wuncertain metric
information, i.e. by using the ‘"oracle" only once and in a
potentially arbitrary way without loss of consistency, has been
mentioned before. This section defines the related operations. At
the same time, the steps needed to update the cell complex when
storing a new point or 1line are explained. Axioms for the
operations in this section are omitted.

7.1 Integer Vs. Real For Coordinate Representation

Coordinate values can be represented in a computer either as
integer or real values. Either way, there is only a finite number
of different values available. Given a number of bits per value,
the same number is available whether reals or integers are used,
but the distribution of these bits over the number space is
different.

If we select reals, we must bear in mind that the operations on
computer reals do not always follow the standard laws of
arithmetic (e.g. a -b + b is not necessarily a). If we use
integers, we lack a division operation. Whatever the choice,
these limitations require some judicious decisions to avoid major
problems. In what follows, we will assume that coordinate values
are expressed as ‘values’ and point out where limitations of
finite number schemes may cause problems.

7.2 The Operations On Points

Storing a point associates the node with a tuple of coordinate
values which determine its position in metric space.

operations:
create:” node x value x value -5 point
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7.2.1 Distance Between Points - A function to determine the
distance between two points is needed. We use an approximation to
the regular Buclidian distance.

distance: point x point -> real

axioms: see above section 2.3

It is presently not known, whether a Euclidian metric using
sgrt (sgr (delta x) + sqr (delta y))

as a distance function can be realized using finite
approximations to values.

7.3 Lines

Lines are the metric counterpart of edges. For each 1line, a
corresponding edge is created. These edges consist of start- and
end-point, with all intermediate points being accessed wusing a
parameter form:

create: point x point x form -> line

start : line -> peoint '

end : line -» point

point of line : line x real -> point
—- this is a form for a parametric representation
~—- the real value varies between 0..1

7.3.1 Distance Between Line And Point -~ The distance between a
line and a point is defined as the minimum distance between the
point and a point on the 1line, This definition not only
represents the regular concept of distance between an infinite
straight line and a point, but also makes it applicable to
non-infinite and non-straight lines .

distance: point x line -> real

axiom:
distance (p, 1) = minimum (distance (start (1), end(l),
point of line (s,1))
-- distance between line and point is defined using the minimum

7.4 Oracles

In order to determine whether two given positions refer to the
same point or not, or to determine whether a point lies on a
line, we need additional input. This can either come from a human
user who knows more about the real situation, or £from an
algorithmic decision procedure. We rely - in absence of other
information - on the distance, but we could easily include
considerations for the type of data, the quality of the source,
etc. Heuristics may alsc be used. A reasonable implementation is
along the following lines: the calculated distance is compared to
a threshold, and if it is larger, it is decided the the positions
refer to Different points, if it is smaller then we can assune
that the two positions indicate the same point.
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Small wvariations in the coordinate values, introduced by
measuring or rounding operations, may influence this decision,
This does not endanger consistency, because an oracle may be used
only once and the outcome of it is recorded in the way the point
is stored in the cell complex. The oracle is never used if the
cell complex already contains an indication and the cell complex
records all previously deduced information.

Besides the decision as to whether two points are the same, we
also need a decision a5 to whether a point lies on a line, This
is also decided using distance.

same-point: position x positon -3 boolean
point-on-line: positon x line -5 boolean

With this limited use of the cracle, no consistency constraints
are imposed on the oracle. The thresholds may be changed
arbitrarily without influencing the overall consistency of the
stored confiqurations, If other heuristic methods are used for
the oracle, they may also not affect the consistency - indeed a
purely random decision would still maintain consistency. However,
if the decisions are made such that metric information is
contradicted, we may observe contradiction between metric and
topologic data (a small amount of such contradiction will be
inevitable, as introduced by measuring and rounding errors),.

7.5 Operations On The Cell Complex And Their Use Of Oracles

Here we define operations on the cell complex to find out about
the topological relations between new figures and figures already
represented in the complex. The operations assume a disjoint
partition of the plane by triangles, edges and nodes: The
position of a new point can lie either on a node, on an edge or
inside a triangle. The same is true for the infinite number of
points forming a line.

7.5.1 Determine In Which Cell A New Point Lies - We need an
operation to determine the cell which occupies a given position.
This is similar to a "pick" operation in a computer graphics
program: its result is either a node, an edge or a triangle. If
the oracle must be used, the oracle alone may indicate more than
one candidate. In this case, one candidate must be selected,
either by rules or by random choice. For a fast implementation,
it may be reasonable to first search for coincident points; if
none are found, then we search for incident lines, and only if
none of these are found, we check for inclusion in a triangle.

containsPos: point x complex -»> cell

Once this cell is determined, the cell complex can be subdivided
accordingly using the operation introduced initially, If the cell
is a node, no subdivision occurs (because a node representing
this position already exists). Otherwise, depending on whether an
edge or -a triangle occupies the pPosition of the new point, the
corresponding subdivision operation, as defined in the previous
section (see section 6.1), is invoked. Once this has been
accomplished, the cell complex contains the topological relation
decided by the oracle, and it will not be necessary to invoke the
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oracle again. The oracle operations do not contribute directly to
the consistency of the subdivision operations, which are
independent of them.

7.5.2 To Add A-Line To A Cell Complex -~ In order to add new
(straight) 1lines to our configuration, we need operations to
determine their situation within the complex. The problem of
storing lines is solved recursively.

Figure 2: adding a straight line to.a cell complex.

*

)
-

First, the two endpoints are stored using operations to detefﬁine
which cells must be subdivided and to include the appropriate
edges to keep the cell complex consistent.

A test then determines whether the new line is now included in
the cell complex; if it is, the recursion stops.

For the start-point of the new line, we determine which cell
contains the beginning of the line. This amounts to determining
which cell contains the direction of the line’s tangent at its
start point: :

containeDir: line x complex -» triangle

The triangle found must contain the start-node of the line in its
boundary.

Next we determine the intersection point of the new line with the
boundary of this triangle (there must be an intersection) and add
this point to the cell complex.

intersect: line x chain -» point

We have now stored the new line from the start point to this new
intermediate point and we apply the same steps recursively until
the complete line is stored.

The two operations ’containspir’ and ’'intersect’ are part of " the
oracle. Because their implementations using approximations for
cocordinate values cannot be exact, we must avoid their repeated
usage, as this may introduce inconsistency. In this proposal,
they are only used once: when a line is initially stored. The
topological information is stored in the structure of the cell
complex afterwards. '
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8 IMPLEMENTATION STRATEGIES

‘A cell graph can be implemented either as a specialized
datastructure using pointers or wusing a suitable database
management system. We use the PANDA DBMS [FRANK 1982], which is
based on the extended network or entity-relationship data model
[CHEN 1976). 1In principle, the use of a purely relational
database management system should work. Performance of the
necessary operations to retrieve the boundaries of cells,
however, might be a problem, as these involve costly relational
join operations.

The system should contain some support to quickly find cells with
a given location (spatial search), as demanded by databases
suitable for GIS [FRANK 1984]. We use an operation to find all
cells of a given dimension which lie (completely or partially) in
a certain region bounded by a rectangle with sides parallel to
the coordinate axis. The result is a chain of nodes, edges or
triangles, depending on the dimension.

within: rectangle x dimension x complex -> chain

The PANDA database system improves the performance of this

operation by wusing physical clustering of data on the storage
disk.

9 AREAS OF APPLICATION

Cell graphs, forming an irregular triangulation (tesselation) of
a surface have a wide field of applications. Trianqular irregular
networks (TIN} have been studied [PEUKER 1973] for modelling of
surface elevation models, and have been found to provide more
accuracy with less data storage. TIN have been used in
engineering applications to determine the surface runoff of urban
areas in order to design sewer systems and for soil conservation
studies [GRAYMAN 1978] [JETT 1979) [GRAYMAN 1982].

Cell graphs can be seen as an improved modelling structure for
surfaces as they allow the inclusion of lines, whereas triangulat
irregular networks in the past were built only from points. It
seems advantageous £or many applications to include lines, as
these are obviously part of the reality to be modelled. 1In
combining data from different sources, lines often form one layer
(e.g. roads), delimit areas in another layer (e.g. land usge), or
are break lines for the surface elevation model.

10 EXTENSIONS AND FUTURE WORK
10.1 Treatment Of Objects With Meaning

Cell graphs must be completed with a layer to treat meaning of
the cells stored. The separation into one layer which treats
geometry and another which deals with the meaning of the cbjects
treated reduces the complexity of the necessary programs and
makes them independent of each other. It is clearly desirable,
for example, for the oracle operations to include heuristics
which make wuse of the known meaning of the objects. The
application of methods from artificial intelligence are
appropriate here. We intend to build rules wupon which decision
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can be based in a PROLOG-like language [CLOCKSIN 1981] which can
access data in the database [FRANK 1984a].

10.2 Dpeletion Operations

We currently treat deletions as the removal of all meaning from a
cell, but do not delete the cell completely. It may be wothwhile
to study how the deletion of cells would work. Such operations
could be implemented, either executing immediately or as a later
clean-up operation, removing all unnecessary cells from the cell
graph.

10.3 Dealing With Errors 1In Observations

Some of the problems associated with coordinate values, which are
statistically speaking ‘non-estimable quantities’, could be
resolved by storing the relative measurements between the pooints
(as is 1legally required under the common law for property
descriptions) and recomputing the coordinate values for peoints
whenever better approximations can be obtained. In such a system,
coordinate values can be change over time. If thig happens, it
may be necessary to check whether the expressed topological
relations between nodes and edges and the corresponding relations
between metric positions agree. Discrepancies may not be resolved
automatically, but can be ligted for individual attentiom by the
user,

10.4 Extension To Three Dimensions

Cell graphs can be extended to three dimensions and might be
usable to model the geometry of geological layers.

10.5 Provigions To Deal With Hierarchies

The major performance problem we expect stems from the division
of cells into an ever-increasing number of ever-smaller pieces.
This problem is not new to cell graphs, but occurs naturally in
many situations where hierarchical or similar subdivisions on
several levels are applied (e.g. subdivision of counties down Fto
single parcel level}. It should he possible to treat aggregates
on higher levels as objects in their own right, without incurring
the penalty of teconstructing them each time from all their
components. We expect that the theory of partially ordered szets
and lattices will provide some hints on how to solve this
problem.

11 EARLIER AND RELATED WORK

The work done at the Bureau of the Census which led to the DINME
and TIGRE data structures is directly related to the proposed
cell graphs. Since the task of the census was to edit and
maintain the large files describing statistical units throughout
the U.S., the need for a mathematical concept was felt early on,
In [CORBETT 19797, concepts of combinatorial topelogy were
applied to the problem of error detection in DIME files. It is
difficult to judge why this work did not have more influence on
later research.
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The work proposed can also be seen as a continuation of my
previous work [FRANK 1983} [FRANK 1984]. It attempted to
construct a mathematically sound base for modelling geometry
using graph theory, and 1led to a classification of geographic
features which can be used to express consistency constraints for
spatial data bases.

12 coNCLUSION

We have presented an extension to the triangular irregular
networks which includeg line objects. The cell graphs are firmly
based on mathematical topology: in particular, on the theory of
simplices and simplicial complexes. The presentation stressed
formal definitions building multi-sorted algebras (or abstract
data types).

We have further discussed the limitations of geometric operations
using finite computers and approximations to real numbers. The
cell complex is a method wereby these limitations are confined to
a number of oracles, which are implemented using approximations.
This identifies 1levels at which limitations influence the
treatment, and makes it possible to guarantee that an oracle is
used only once and thus cannot introduce inconsistency into the
cell graph. The cell graph stores a most complete record of the
topological situation in its structure, which is independent and
not influenced by metric operations such as map transformations.
Therefore cell graphs avoid the "gaps and slivers’ often found
during query processing in overlay systems. The treatment based
on multi-sorted algebra permits formal reasoning and simplifies
later the implementation,
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