Egenhofer, M., and A. U. Frank. "Panda: An Object-Oriented Database
Based on User-Defined Abstract Data Types." 15. Orono, Maine, USA:
Department of Civil Engineering, 1987.

PANDA: An Object-Oriented Database
Based On User-Defined
Abstract Data Types

Max J. Egenhofer
Andrew U. Frank

Report No. 67

gruber
Textfeld
Egenhofer, M., and A. U. Frank. "Panda: An Object-Oriented Database Based on User-Defined Abstract Data Types." 15. Orono, Maine, USA: Department of Civil Engineering, 1987.

ABSTRACT

Existing database systems do not fulfill the requirements and
needs of engineering applications such as CAD/CAM or cartography.
We report on solutions which were integrated into the PANDA
database management system, suited for such a use. PANDA supports
an object-oriented program design and is based on the concept of
a database kernel. It has been successfully used in research and
teaching for several years.

The paper stresses the consequences these requirements had on the
modularization of the software. It presents a software-
environment suitable for programming in the large and shows how
software engineering concepts influenced the database design.

An object-oriented data model is introduced which is based on
user-defined abstract data types and applies methods for data
structuring. All operations deal with objects and no lower
structured items- (such as attributes) are visible. In order to be
stored in the database, each abstract data type must contain
certain operations required to access objects. Most of these
access-operations are very similar and type-independent. We will
show that it is advantageous to internally create object-types
using combintaions of lower-structured parts: this helps to avoid
redundant coding and allows the reuse of object parts.

1 INTRODUCTION

Existing 'commercial’ database systems are not sufficient for
applications to engineering tasks such as CAD/CAM, or for
cartographic and geographic information systems. Systems for
CAD/CAM or for space-related information {Geographic or Land
Information Systems [Frank 1983]) integrate a database system
into a much larger program system. A deficiency we have observed
with the standard database management system is the lack of
support for modular program design. Following the concept of
abstract data types [Guttag 1977] [Parnas 1978] [Zilles 1984],
each module should encapsulate an object type with all its
pertinent operations. Standard database systems, based on
networks [CODASYL 1971] or the relational [Codd 1982] data model
did not fit easily into this concept. A number of methods of
capturing more semantics in the data model have been proposed in
the literature (for an overview and critique see [Brodie 1984]
which contains a large number of references), but most of these
methods have not been implemented, and none of them is easily
available.

Complex tasks require complex structuring tools. 'Complex’,
however, need not mean ’‘complicated’: the support of data
structuring must be powerful without sacrificing ease of use,
extensive without becoming excessive. Our approach was to decide
on a single method of solving a typical problem and to provide a
tool to solve it this way - rather than to provide for several
alternatives, which too often only confuses the programmer.

This paper does not specifically discuss some of the detail
problems, but rather concentrates on the overall design and the
.lessons we learned from applying software engineering principles
to database design. Moreocever, it does not rely on some

L

Page 2

hypothetical design, but rather is based on experiences acquired
during the design and implementaticn of PANDA. The PANDA database
system has been running for several years and is primarily used
for research and teaching. It has been revised a number of times,
each time it became simpler and clearer.

This paper begins with a brief overview of the requirements we
felt existing database systems lacked. It then presents the
software engineering methods we decided to use for our
LIS/GIS-implementation.

Subsequently, a data model is introduced which is suitable for
application to object-oriented design. We will discuss the
functionality of a storage- and retrieval-system of a database.
This sub-system is completely general and does not depend on the
type of data stored. As it does not deal with the semantics of
data, it seems too limited in functionality to be called
rdatabase kernel’.

The object-model was extended by the addition of access paths.
The internal operations will be discussed. In order to reuse
abstract data types, especially for the access-operations,
objects are presented as components of abstract data types. The
paper closes with a minimal set of operations an abstract data
type requires to be recognized as part of an object.

2 DATABASES FOR SPATIAL INFORMATION SYSTEMS

Members of the CAD/CAM-community complain that there are no
database systems which are appropriate for their demands
[Buchmann 1985], [Sidle 1980], [Udagawa 1984].

They state that standard database systems do not fulfill the
requirements of engineering applications in terms of performance
[Stonebraker 1982], [Wilkins 1984], [Haerder 1986], [Maier 19861,
treament of complex objects {Lorie 1983], [Brodie 1984b], [Batory
1984], appropriate data structuring [Johnson 1983], and have
suggested that there is probably no universally applicable
solution [Batory 1986].

Only recently, design of databases for spatial information system
has become a research topic and several proposals [Lipeck 1986]
[Scheck 1986] have been published. [Aronson 1983] has discussed
software engineering methods used in the ARC/INFO design, but
ARC/INFO, like other older GIS software, does not use database
principles for the management of geometric data.

After several years of experimenting with a commercially
available database management system, which followed the CODASYL
[CODASYL 1971] document, we built our own system. We felt that
the effort of working with tools geared toward a different class
of uses was so difficult and time-consuming that a more
appropriate system would allow faster progress.

Our list of goals included such principles as:
— the management of very large amounts of data without
performance penalty and

Page 3

- support of spatial storage clusters and spatial access to
provide fast response time [Frank 1983a]. This would permit
us to manage large spatial data collections without
subdividing them into several user-visible map sheets (’'a
single database for the whole of the users world’)

- no physical separation of the geometric from the non-spatial
data in different databases, but rather an integration of
both types of data into one system. This would reguire

- user-defined complex structured types in the database

- a buffering schema to reduce physical disk access; exploiting
the geometric neighborhood and the specific behaviour of a
system with primarily graphical output

3 A DATABASE WITHIN. AN ENVIRONMENT FOR PROGRAMMING IN THE LARGE

A database is only one part in the large effort to produce a
CAD/CAM system, a land information system, or any of the other
non-standard applications. It is thus necessary that database
methods and techniques fit within a software engineering
paradigm. We have selected a theoretically founded method for
modularization based on abstract data types. We then constructed
a support system which takes care of the mechanics but also
controls and enforces the method.

3.1 Programming In The Small Using Pascal

In 1982, when this effort started, Pascal was the only modern
language which was available on most computers. We decided to use
Pascal because

- it was reasonably standardized

- transporting code to other machines was possible

- high guality compilers and run time systems were available

- regular courses for learning the language were offered

- we were already familiar with this language

Using Pascal as the main programming language also allowed use of
the database management system in undergraduate teaching.

Portablility was achieved by conditional compilation features
which allow insertion of machine-specific code within
machine-independent code. Our experience with this has been good:
without major changes code was transferred from such vastly
different hardware and operating systems as DEC-10 (under
TOPS-10) to IBM 370 {under VM/CMS) and to VAX and microvaX {under
vMS and MicroVMS, respectively). With conditional compilation and
the isolation of machine-dependent features in special modules, a
transfer did not require undue effort.

3.2 Tools For Programming In The Large

Large programming efforts must be broken into separate modules. A
major goal is to design modules which are as independent as
possible. They should be capable of being built by different
individuals with minimal interaction. This is extremely useful in
a research environment, where code has to be changed quite
frequently, or for teaching, where students can combine existing
modules for various tasks without starting from scratch each
time.

Page 4

Along with the benefits of Pascal, however, we inherited all its
restrictions. The most limiting issue was that standard Pascal
does not include independent compilation. The syntax used to
achieve independent compilation is thus very different in
different Pascal compilers. We therefore had to build a
precompiler which satisfied varying requirements.

A major stumbling block for independent compilation using Pascal
is the common demand that the procedure or function heads of all
used external procedures are included in the compilation unit, in
order for the compiler to check the types of the parameters
passed. Our precompiler automatically copies the necessary
procedure heads from the defining compilation unit to the using
unit, thus assuring type conformity across modules. This is very
similar to the methods used for Ada or Modula-2 compilers [Wirth
1982], [aAda 1983].

3.2.1 Abstract Data Types

The software engineering method is based on the work on formal
specifications using abstract data types. An abstract data type
(ADT)} or a multi-sorted algebra is a mathematical structure which
fully defines the behaviour of objects, i.e., the semantics of
the object-type and its operations. Abstract data types are
specified as a theory describing what sorts of objects (types)
are dealt with and what kinds of operations they are subject to.
A set of axioms determines the effects of the operations.

It is up to the designer to assure that the sorts and their
operations form a reasonable and meaningful object.

Abstract data types are very useful in the design of large
systems. They allow a much more comprehensive and complete way of
specifying routines together with their axioms than an extensive
programming language does.

Abstract data types can be combined in layers, where higher-level
abstract data types are first described independently (with a set
of axioms to represent a theory) and it is then shown how this
behaviour can be achieved using other, hierarchically lower
abstract data types (called an fabstract implementation’ [Olthoff
1985]), [Frank 1986]). Such abstract implementations can be
formally checked for correctness, by proving that the
axiomatically specified behaviour of the upper abstract data type
follows from the abstract implementation and the axiomatically
specified behaviour of the lower abstract data type.

3.2.2 Support System

In software engineering, abstract data types may be represented
by modules which encapsulate a type and its operations.

Facilities such as packages and use clauses in Ada or modules and
import commands in Modula-2 or in our precompiler allow the
programmer to easily translate abstract data types into
executable code. .

Page 5

Qur precompiler for Pascal unfortunately does not allow coding of
generic or parametrized abstract data types [Cardelli 1985] in
single modules. Thus, several modules have to be written with
only slight differences in the code.

We have found that effective use of a software engineering
methodology is only possible with a comfortable, automated
support system. Programmers will conform to a standard if it is
made easy; our Pascal precompiler allows essentially only one
method of modularization and enforces coding standards, but
advantages for programmers are so obvious that these restrictions
are not resented.

4 AN OBJECT~ORIENTED DATA MCDEL

Our data model is built on the basic concepts of abstraction:
classification, generalization, and aggregation. We further add
the notion of access path to the data model, as we observe that
access methods are among the most important functions in a
database kernel [Haerder 1986].

4.1 Objects

We will use the word ’'object’ to describe a single occurrence
(instantiation) of data describing something that has some
individuality, some observable behaviour. Objects have some
operations associated with them, which can be carried out upon
them. The terms ’sort’, 'type', 'abstract data type’, or ’'module’
will be used to refer to types of objects, depending on the
context. '

4.2 Abstraction Methods

The abstraction methods are similar to the ones presented in
[Brodie 1984]. We recognize three methods which can be combined
to structure complex objects and their components.

4.2.1 Classification

Classification can be expressed as the mapping of several objects
(instances) to a common class, similar to types and instances in
programming languages. All objects of a common class share the
same operations. Classes translate to abstract data types or
modules in the implementation. Every object is an instance of a
class (is_a-relation).

4.2.2 Generalization

Several classes of objects which have some operations in common
are grouped together into a more general 'superclass'’ [Goldberg
1983]. Objects of the lower class inherit all the operations (or
attributes) which are in common from the superclass. We recognize
only hierachical inheritance betweeen classes and superclasses.

4.2.3 Aggregation
Several objects can be combined to form a semantically

higher-level object where each sub-object (part) has its own
functionality.

Page 6

Aggregation establishes a part-of relation between objects.
4.3 Implementation

Classes are coded as Pascal records with corresponding operations
encapsulated in a module. Objects are variables of this type.
Superclasses are also built as modules with record types
consisting of variant parts, one for each different subclass. All
the common operations in the superclass are exported by this
module.

Entities are Pascal records with variant parts. They represent
the different classes.

Several entities can. be aggregated to form a more complex type by
connecting them with CODASYL-type sets, here called aggregates.

To access inner parts of an aggregate object is an operation on
this object, which stands not only for itself (the CODASYL view)
but also represents all the objects aggregated with it.
Operations on the parts aggregated with an object are then
executed in'a 'for each’ loop [Liskov 1981] (implemented with a
fwhile’ construction). This seems to be the solution which fits
best within the framework of a statement-oriented language like
Pascal, whereas functional language could offer other concepts
[Backus 19781.

4.4 Assessment

This concept is similar to the reguirements established in
[Dittrich 19861: it is structurally, operationally, and
behaviourally object-oriented. The limitations imposed by the use
of a statement-oriented, traditional programming language like
Pascal could be mostly overcome by the use of the precompiler for
separata modular compilation. This concept, however, does not
include a message-passing paradigm but relies on function calls.
Message-passing is often cited as necessary for object-oriented
design, but in our opinicn it is not an essential feature.

5 FUNCTIONALITY OF A DB STORAGE AND RETRIEVAL SUBSYSTEM

We applied our software methodology not only to the desing of the
database interface but alse to the internal design of the
database management systems [Dittrich 1986]. Using modular
concepts there moves us toward the goal of database management
systems which can be combined from different components depending
on the applications requirement. In a first group we consider
basic building blocks for storage and retrieval of data.

5.1 Disk Storage Sub-system

A database must provide persistent storage for objects modelled
in the information system. Most of the applications considered
will create very large data collections which will require use of
magnetic or optical disk systems for permanent storage. Most
operating systems do not allow the user to directly access disk
storage, but rather allow access through the file system.
Operations required to store and retrieve data using such a file
system are

Page 7

- create a file with a given name

- make an existing file accessible and cancel access (open and
close)

- read a specific part of a file

- write something to the file

Database manageﬁent systems use random access for reading and
writing an arbitrary block. Disk access is expensive, thus input
and output are buffered with a least-recently-used-strategy.

5.2 Transaction Support

in order to keep complex data structures consistent, a
transaction concept is necessessary, providing for the extensions
of the classical properties ateomicity, consistency, isolation,
and durability (ACID) [Haerder 1985].

5.3 Support For Multiple Users And Distributed Systems

Central databases are important resources and access to them must
be available for many operations in parallel and at the same
time.)

For organizational reasons, large databases are often not
centralized, but distributed over several computer systems. This
may improve their availability during local hardware failures,
reduce data transfer cost, etc. In our opinion, support for
distribution should be built into this layer of the subsystem.

5.4 Entity-storing Sub-system

The database does not deal with blocks or pages. It rather works
on the objects we define using abstract data types with
corresponding operations. All abstract data types defined by the
user have in common

- to be of a generalized object type {'storage element’), .

- and then the operations ‘store’ and 'retrieve’.

All objects are treated as if their type were a subtype of a
general type ’entity’. This general type exports the basic
operation of the storage sub-system. The access operations of
this high-level abstract data type are defined as follows:

abstract data type: 'storage_element'’
operations:

STORE : storage element x length -> felp
RETRIEVE : felp -> storage_element

with the axiom

RETRIEVE (STORE (s, length)) = s

Felp stands for 'file element pointer’ and is a unigque tuple
identifier for each storage element. It is probably useful to add

operations to MODIFY and DELETE a storage—element, but it does
not alter the basics.

Page 8

The storage sub-system does not know anything about other
operations owned by the objects or their internal structure, It
only deals with storing and retrieving of entities.

Improvements in performance can be achieved by reducing the
number of disk accesses by bufferinng the storage elements.

5.5 Assessment

This subsystem is very important for a database management
system. It is obvious that it must be built in a modular fashion,
such that components may be changed in order to deal with other
specific requirements. However, this part does not deal with the
semantics of data in any way, and thus seems not to warrant the
label 'database kernel’.

6 THE DATA MODEL MAPPED INTO THE DATABASE

The database must include the ideas represented by the data
model. This part of the system has the task of combining the
user’s view of the database (including different objects and
special operations) with the generic database system.

The major difference of this model from previously proposed
so-called semantical or functional data models [Shipman 1981], is
the absence of the notion of attributes in entites. In our view,
attributes are an internal part of an entity definition and thus
hidden, not accessible to the database. However, the defining
module for the entity must export some operations to be used by
the database if support for a special access method is desired.

6.1 Managing Meta Data

With the data definition language (DDL) the user defines the
meanings of the objects and their combinations which the database
is to handle. The manager for the meta-data has the task of
simply translating the semantics expressed in the data defintion
language into a form which can be systematically processed. He
Filters the meaningful information and only leaves a schematic
form visible to the database. Some simple checks can be done to
detect obvious errors in the data definition language.

6.1.1 Entities

Entities are the basic abstraction upon which our object-oriented
data model is founded. All the other steps of modelling are
related to or based on entities. Entities are all of the same
super-type, a generalized object type the database deals with.

Entity types are defined by the user as modules (Pascal record
types with operations). Their internal structure is of no
relevance on this level of the data model.

6.1.2 Aggregates
Aggregates are formed with links between entities (

l:m-relations). They are used to establish aggregations,
meaningful connections between objects.

Page 9

6.1.3 Access Paths

Paths degscribe how to access objects with either specified values
or within ranges of values. Access paths are defined for object
types which need to export certain operations to be used by the
access mechanisms.

Accesses are rather necessary, as sequentially searching through
the whole database is too expensive and unacceptable for
performance reasons. A database kernel must, therefore, offer a
number of methods for higher performance access. Each access
mechanism regquires internal specific support for both storage and
access by some searching algorithm [Knuth 1973)]. These structures
have to be maintained and managed by the database for each path
separately, i.e., any change in the data set implies checks and
modifications on the access structures. The structures must be
consistent and their maintenance embedded in the transaction
concept.

Most access mechanism needs to reorganize its structure after a
number of modifications in the database. It would be advantageous
if the system could manage the reorganization by itself without
notably decreasing performance. '

We have included several different types of access paths, but
others may be added according to application needs. Each path
requires its special, internal structure and performs a different
access-function in a higher object-oriented interface.

6.1.3.1 Sequential Access

The sequential access is the trivial case of an access path. The
internal structure, if any, is an aggregate collecting all the
existing objects.

6.1.3.2 Access To Objects Using Unigue Keys

We will call access by means of unique keys ’'direct access’ as it
allows to retrieve single objects directly, unrelated to any
other object. This access path allows retrieval of objects if a
unique identifier is known, and adds a consistency constraint to
the database.

In applications, this access-method is likely to be the most
frequently used for starting work. It requires exact knowledge of
one part of a single object.

The restriction of working with a unique key sometimes causes
this access path to be problematic. The requirement of unique
keys is a very strict constraint, which in reality is often an
idealized assumption. It does not allow duplicates, i.e., no two
or more objects in the database may have the same value. This
consistency constraint has to be enforced by the sorting
algorithm. As an experiment we added a generalized direct access
path where non-unique key values are permitted.

Page 10

In our present implementation, direct access is supported by a
hashing algorithm and tables. Two operations are required to
support this path: (1) calculating a hash-value and (2) checking
for equality. Both operations are needed, as several different
instances may have the same hash-value. Direct access is
functionally composed of calculating a hash-value and then
identifying the desired object among the objects owning the same
hash-value. Of course, the two operations are correlated, since
being identical implies having the same hash-value (but not the
reverse).

6.1.3.3 Access Using Unique Keys Within Aggregates

We will call the access using unique keys within aggregates
raccess within aggregates’ as it allows retrieval of an object as
part of a higher construct.

Access within an aggregate is semantically less strict than
direct access, as keys must only be unique within the aggregate.
However, its supporting structure has to enforce the unigueness
of identifiers this path is defined on, too.

Indirect access can be structured with B*-trees where the
super-part is the root and the sub-parts are in the leaves,
sorted on some specified criterion. This path uses two
operations: a monotone mapping of the value to an integer which
is the sorting criterion within the B*-tree and a check for
equality.

6.1.3.4 Sorted Access On Aggregates

Sorted access allows retrieval of the sub-parts of aggregates in
a sorted sequence. The sequence is fixed by a ’before’-operation
which includes the sorting-criteria for the object. Generally,
the sorted access can be based on the same structure as the
access within aggregates.

6.1.3.5 Spatial Access

As opposed to the access paths above, spatial access is a range
access. The choice of objects is not based on equality but on the
criterion of lying within a range or overlapping with another
spatial extensien. This requires an operation which checks
whether a given object lies between some upper and lower limits.

For the support of spatial objects, there are guite a large
number of proposals for different structures [Pamminen 1981]
[Nievergelt 1981} [Frank 1983a] [Guttman 1984]. The spatial
access path is based on checking whether an object lies within a
certain spatial extension. In our case [Frank 1983a], the spatial
structure is based on a minimal bounding rectangle each spatial
object owns. Therefore, the operation for spatial access checks
whether the bounding rectangle and the area overlap.

Very similar to aggregates, searching within a range results in a
set of objects requiring a ’'for each’-loop te access the whole
set of included objects.

Page 11

7 ENRICHING THE DATABASE WITH VALUE-ABSTRACT DATA TYPES

A pathless database requires only cone aspect of the abstract data
types, namely the type-definition, i.e., the length of the
entity-record. The database can perform all the operations such
as store, aggregate, and delete just on the object types. No
knowledge is required as to how to operate on object-details.

For the concept of paths, the database needs to have some
specific operations for the abstract data types the paths work
onn. The different path-structures need to know what operation
should be used to establish the structure. These operations, of
course, are part of the abstract data types. Thus, the task is to
combine a standardized managing mechanism (the database) with
some user-defined abstract data types.

Very similar {or even the same) code must be written to provide
the operations for the access paths which are dependent on the
object-type. Each spatial object-type, for example, requires a
routine test to see whether it lies within a specified region or
not. All these routines have the same structure, in fact: they
act on a part of the object with the same type, regardless
whether the object is a node or an area. It is appropriate to
consider types as abstract data types defining value types which
can be combined to compose entity types.

7.1 Attributes

We have noticed that not every object-type has its own,
independent characteristics. A great many of them are based on a
very small set of abstract data types which are repeatedly used
in different combinations. The principle of reusing software
atoms [Batory 1986] is crucial to object-oriented databases.
However, writing the same hashing algorithm, for example, for
different object-types several times does not support
reusability. A better way has to be found to compose objects out
of parts which can be used in several object-types.

Most object types are composed of less complex parts which
represent properties and values. All these value-ADTs together
form a set of abstract data types objects can be composed of.
This 'toolbox'’ can arbitrarily be extended with any new
user-defined abstract data type by either combining existing
abstract data types to more complex and powerful ones or creating
a new abstract data type.

This leads to introducing attributes as parts of object-types.
One attribute can contribute to several different object-types.
The object-oriented concept is not violated by the attributes.
Attributes must rather be seen as a tool to avoid highly
redundant and similar coding. The operations still work
exclusively on objects.

7.2 Values: The Abstract Data Types For Attributes

Abstract data types objects can be composed of ’'values’.

Page 12

For example, all the essentially identical path-operations for
spatial objects can now be based on one single value with its
operation checking to see whether two objects overlap. Nothing
has been changed in the way the path is defined as it still
pertains to an object.

Similar to the spatial access we can £ind many parallels for
other access paths where the coding of the equality-criterion is
restricted to a single value. Once this operation has been
defined it can be used by the all the access paths acting on the
same kind of object-part. Direct access to objects, for example,
based on a unique integer-number, can be established with the
operations related to the integer-type, coded only once.

Values are not integrated into the database, i.e., there is no
static dependency between the types available and the database
kernel. As values can be added by the user, additional
object-types can be provided and the power of the database-kernel
is not restricted to a one-time state.

7.2.1 A Minimal Set Of Operations Of Values

The set of operations a value-ADT has to provide to the database
is influenced by the kinds of paths in which it is used.

A minimal set of operations consists of routines for

- checking if two instances of the same attribute-type are
identical (equality).

- computing the hash value. This routine has to interact with
the equality-checking: if two objects are regarded as equal,
their hash-values must be the same, too.

- sorting, i.e., checking if one object comes before another
one in an ordered sequence.

Apart from the path-based operations, it will be useful to define
another set of standard operations which will be needed either in
higher layers of the database or in the application programs.
Such operations include
- parsing an abstract data type
- converting an abstract data type to an output-abstract data
type
- drawing an abstract data type if it is a spatial object
- identifying an abstract data type provided by a
'pick’~-operation

8 CONCLUSION

We have presented a data model which is object-oriented and thus
suitable for non-standard databases. The data model includes
concepts and applications of user-defined abstract data types.
This model is based on the abstraction methods of classification,
generalization, and aggregation, and includes entities (objects),
aggregates, and access paths. It does not include attributes, as
they are hidden inside the objects.

Page 13

Providing abstract data types to the databases implies providing
operations. We stated that most of these operations are similar
or even identical for different object types. In order not to
produce a large amount of code, the operations can be reduced on
some parts of the objects we call attributes., Their existence
does not change the object-oriented design and interface of the
database. Operations included in the abstract data type provide
complete freedom to specify how objects are treated. We have
shown that a dynamic set of user~defined abstract data types can
be combined with the attributes. This extension provides both the
necessary test-operations and basic abstract data types which can
be used to create higher abstract data types, object-types. They
inherit the operations from the lower abstract data types.

PANDA, an existing database, acts along these ideas.
9 REFERENCES

ADA Reference Manual for the ADA Programming Language,
Springer-Verlag, New York, 1983

Aronson, P., Morehouse, 5., The ARC/INFC Map Library: A Design
for a Digital Geographic Database, Auto-Carto VI, 1983

Backus, J., Can Programming be Liberated from the Von Neumann
Style? A Functional Style and its Algebra of Programs, CACH,
Vvol. 21, No. 8, Aug. 1978,

Batory, D.S., Buchmann, A.P., Molecular Objects, Abstract Data
Types, and Data Models: A Framework, proceedings 10th VLDB
conference, 1984, Singapore

Batory, D., GENESIS: A Project to Develop an Extensible Database
Management System, International Workshop in Object-Oriented
Database Systems, Pacific Grove, California, 1986

Brodie, M.L., et al. (Eds}), On Conceptual Modelling, Perspectives
from Artificial Intelligence, Databases, and Programming
Languages, Springer Verlag, New York 1984

Brodie, M.L., On the development of data models, in: Brodie,
M.L., et al. (Eds), On Conceptual Modelling, Perspectives
from Artificial Intelligence, Databases, and Programming
Languages, Springer Verlag, New York 1984

Brodie, M.L., et.al, CAD/CAM Database Management, IEEE Datbase
Engineering, VOl. 7, No. 2, June 1984

Buchmann, A.P., de Celis, C.P., An Architecture and Data Model
for CAD Databases, llth VLDB conference, 1985, Stockholm

Cardelli, L., Wegner, P., On Understanding Types, Data
Abstraction, and Polymorphism, ACM Computing Surveys, VOl.
17, No. 4, 1985

CODASYL 1971, Database Task Group (DBTG) report, April 1971 (and
Journal of Development 1973, 1978)

Codd, E.F., Relational data base: a practical foundation for
productivity, Comm. ACM, Vol. 25, No. 2, Feb., 1982

Dittrich, K., Object~-Oriented Systems: the Notation and the
Issues, International Workshop in Object-Oriented Database
Systems, Pacific Grove, California, 1986

Frank, A., Data Structures for Land Information Systems -
Semantical, Topological and Spatial Relations in Data of
Geo=-Sciences, Ph. Thesis, Swiss Federal Institute of
Technology, Zurich (Switzerland), 1983

Frank, A., Problems of Realizing LIS: Storage Methods for Space
Related Data: The Field Tree, No. 71, Swiss Federal
Institute of Technology, Zurich (Switzerland), 1983

Page 14

Frank, A., Kuhn, W., A Provable Correct Method for the Storage of
Geometry, Proceedings of the 2. International Symposium On
Spatial Data Handling, Seattle, 1986

Goldberg, A., Robson, D., Smalltalk-80, Addison-Wesley, 1983

Guttag, J., Abstract data types and the development of data
structures, Comm. of the ACM, June 1977

Guttman, A., New Features for a Realtional Database System to
Support Computer Aided Design, Memorandum No. UCB/ERL
M84/52, Electronic Research Laboratory, College of
Engineering, University of California, Berkeley, 1984

Haerder, T., Reuter, A., Architecture of Database Systems for
non-standard Applications, (in German)}, in: Database Systems
in Office, Engineering, and Science Environment, editor:
A.Blaser, P.Pistor, IFB 94, Springer Verlag, 1985

Haerder, T., New Approaches to Object Processing in Engineering
Databases, International Workshop in Object-Oriented
Database Systems, Pacific Grove, California, 1986

Johnson, H.R., Scheitzer, J.E., Warkentine, E.R., A DBMS Facility
for Handling Structured Engineering Entities, Proceedings,
ACM Engineering Design Applications, 1983

Knuth, D.E., The Art of Computer Programming, Vol. 3: Sorting and
Searching, Addison-Wesley, Reading MA, 1973

Lipeck, U.W., Neumann, K., Modelling and Maipulation of Objects
in Geoscientific Databases, Proc. 5th International
Conference on the Entity-Relationship Approach, Dijon, 1986

Liskov, B., et al., Lecture Notes in Computer Science, CLU
Reference Manual, Springer-Verlag, New York, 1981

Lorie, R., Plouffe, W., Complex Objects and Their Use in Design
Transactions, Proceedings, ACM Engineering Design
Applications, 1983

Maier, D., Why Object-Oriented Databases Can Succeed Where Others
Have Failed, International Workshop in Object-Oriented
Database Systems, Pacific Grove, California, 1986

Nievergelt, J., et al. The GRID FILE: an Adaptable, Symmetric
Multi-Key File Structure, Report No. 46, Institut fuer
Informatik, Swiss Federal Institute of Technology, 1981

Olthoff, W., An Overview on ModPascal, SIGPLAN Notices, No. 10,
1985

Parnas, D.L., Share, J.E., Language facilities for supporting the
use of data abstraction in the development of software
systems, Naval Reasearch Laboratory, Washington, 1978

Scheck, H.-J., Waterfeld, W., A Database Kernel System for
Geoscientific Applications, Proc. Second International
Symposium on Spatial Data Handling, Seattle, 1986

Shipman, D.W., The Functional Data Model and the Data Language
DAPLEX, ACM Transactions on Database Systems, Vol. 6, No. 1,
March 1981

Sidle, T.W., Weakness of Commercial Database Management Systems
in Engineering Applications, Proc. 17th Design Automation
Conf., 1980

Stonebraker, M., Guttman, A., Using a Relational Database
Management System for CAD DATA, IEEE Database Engineering,
Vol 5. No. 2, June 1982

Stonebraker, M., Rubenstein, R., Guttmann, A., Applications of
Abstract Data Types and Abstract Indices to CAD Databases,
Proceedings, ACM Engineering Design Applications, 1983

Tamminen, M., Management of Spatially Referenced Data, Report
HTKK-TKO-A23, Helsinki University of Technology, Laboratory
of Information Processing Science, Helsinki, 1981

Page 15

Udagawa, Y., Mizoguchi, T., An Extended Relational Database
System for Engineering Data Management, IEEE Database
Engineering, Vol.7, No.2, June 1984

Wilkins, M.W., Wiederhold, G., Relational and Entity-Relationship
Model Databases and VLSI Design, IEEE Database Engineering,

Vol.7, No.2, June 1984

Wirth, N., Programming in Modula-2, Springer Verlag, Berlin, 2nd
Ed. 1982

zilles, S.N., Types, algebras and modelling, in: Brodie, M.L., et
al. (Eds), On Conceptual Modelling, Perspectives from
Artificial Intelligence, Databases, and Programming
Languages, Springer Verlag, New York 1984

15.

17.

18.
19.

24.

27.
28.
30.

31.

32.

33.

PUBLICATIONS
Surveying Engineering Program
University of Maine

The following is a current list of publications by the Surveying Engineering
Program at the University of Maine. Copies, unless specifically designated as No
Longer in Print (NLP) or available from some other publisher or agency, are
available from University of Maine, Surveying Engineering Program, 120

Boardman Hall, Orono, ME 04469. (A fee to cover the costs of processing, -

printing and mailing is indicated after each available publication.)

Land Information Systems for the Twenty-First Century, E. Epstein and W.
Chatterton, Real Property, Probate and Trust Journal, American Bar Association,
Vol. 15, No. 4, 890-900 (1980). ($5.)

Legal Studies for Students of Surveying Engineering, E. Epstein and J.
McLaughlin, Proceedings 41st Annual Meeting, American Congress on Surveying
and Mapping, Feb. 22-27, 1981, Washington, D.C. ($5.)

Storage Methods for Space Related Data: The FIELD TREE, A. Frank in: Spatial
Algorithms for Processing Land Data with a Minicomputer, MacDonald Barr (Ed.).
Lincoln Institute of Land Policy, 1983. ($15.)

Semantische, topologische und raumliche Datenstrukturen in Land-informations-
systemen (Semantic, topological and spatial data structures in Land Information

Systems) A. Frank and B. Studenman, FIG XVII Congress Sofia, June 1983.
Paper 301.1. ($5.)

Adjustment Computations, A. Leick, 250 pages. (§25.)

(;eomcm'c Geodesy, 3D—Gcodesy, Conformal Mapping, A. Leick, 420 pages.
($30.)

Macrometer Satellite Surveying, A. Leick, ASCE Journal of Surveying
Engineering, August, 1984. (35.)

Adjustments with Examples, A. Leick, 450 pages. ($30)
Geodetic Programs Library, A. Leick, about 400 pages. ($25.)

Macintosh: Rethinking Computer Education for Engineering Students, A. Frank,
August, 1984, ($5.)

Surveying Engineering at the University of Maine (Towards a Center of
Excellence), D. Tyler and E. Epstein, Proceedings MOLDS Session, ACSM
Annual Meeting, Washington, March, 1984. ($5.)

Innovations in Land Data Systems, D. Tyler, Proceedings Association of State
Flood Plain Managers, Annual Meeting, Portland, Maine, June 1984. ($5.)

Crustal Warping in Coastal Maine, D. Tyler, et. al., Geology, Vol 12, pp. 677-
680, November 1984. ($5.)

50.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.
63.

Instrumentation Needs (GPS and Related Matters), Alfred Leick. Workshop on
Fundamental Research Needs in Surveying, Mapping, and Land Information
Systems, Virginia Polytechnic Institute and State University, Blacksburg, Virginia,
November 18-20, 1985. (35.)

Expert Systems Applied to Problems in Geographic Information Systems, Vincent
Robinson, Andrew U. Frank, Matthew Blaze, presented at the ASCE Specialty
Conference on Integrated Geographic Information Systems: A Focal Point for
Engineering Activities, February 3-5, 1986. ($10.)

Integrating Mechanisms for Storage and Retrieval of Data, Research Needs,
Andrew U. Frank, challenge paper forWorkshop on Fundamental Research Needs
in Surveying, Mapping, and Land Information Systems, November 17-19, 1985,
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061. ($10.)

Formal Methods for Accurate Definitions of Some Fundamental Terms in Physical
Geography; Andrew U. Frank, Bruce Palmer, Vincent B. Robinson. Invited paper
at the Second International Symposium on Spatial Data Handling, July 5-10, 1986,
at Seattle, WA. ($5.) .

Cell Graphs: A Provable Correct Method for the Storage of Geometry; Andrew U.
Frank and Werner Kuhn, Invited paper at the Second International Symposium on
Spatial Data Handling, July 5-10, 1986 at Seattle, WA. ($10.)

LOBSTER: Combining Database Management and Artificial Intelligence
Techniques to Manage Land Information; Andrew U. Frank. Invited paper No.
301.1 for the XVIII. International Congress of FIG, Toronto, Ontario, Canada,
1986. Commission 3, Land Information Systems. ($5.)

PANDA: An Object-Oriented PASCAL Network Database Management System;
Andrew U. Frank. ($5.)

GPS Network Adjustment with Apriori Information and Orbital Determination
Capabilities; Kamil Eren and Alfred Leick. Proceeding of the Fourth International
Geodeti§ Symposium on Satellite Positioning, Austin, Texas, April 28-May 2,
1986. ($5.) :

MAINEPAC (1): Processing GPS Carrier Phase Observations; Alfred Leick,
University of Stuttgart, Federal Republic of Germany. ($10.)

Mathematical Models within Geodetic Frame; Alfred Leick, Journal of Surveying
Engineering, Vol. 111, NO. 2, August, 1985, (paper No. 19952). ($5.)

Deformation Measurements Workshop, Guenter Wittman. ($5.)

Three Dimensional Conceptual Modeling of Subsurface Structures, Eric Carlson,;
Appropriate Conceptual Database schema Designs for Two Dimensional Spatial
Structures, Max Egenhofer; both papers were presented at the Eight American
Congress of-Surveying and Mapping, March 29-April 4, 1987 in Baltimore,
Maryland. ($10.)

717.

78.

79.

80.

81.

82.
83.

84,
85.

86.

First Steps in Modernizing Local Land Records, Harlan J. Onsrud, Surveying and
Mapping, Vol. 45, No. 4, pp. 305-311 (December 1985);

Research for Validating Cadastral Data, Harlan J. Onsrud, Proceedings of the IGIS
Conference, Crystal City, Washington, D.C. (November 1987); Technical
Standards for Boundary Surveys: Developing a Model Law, Harlan J. Onsrud,
Journal of Surveying Engineering, Vol. 113, No. 2, pp. 101-115.

The Education of Surveyors and Cartographers in an Information Age, Harlan J.
Onsrud, Technical Papers of the XTI Surveying Teachers Conference, Madison,
Wisconsin (July 1987); Challenge to the Profession: A Formal Legal Education for
Surveyors, Surveying and Mapping, Vol. 47, No. 1, pp. 31-36.

Data Structures to Organize Spatial Subdivisions, Ian Greasley (Graduate Student
in Surveying Engineering) 1987. Paper presented at the ACSM-ASPRS 1988
convention at St. Louis, MO. ($5.)

The MainePac Series, Alfred Leick. Paper presented at ACSM-ASPRS
Convention, St. Louis, Missouri, 1988. ($5.)

Maine Crustal Project: Final Report. Steven R. Lambert and David A. Tyler.
Final Report to the Maine Geological Survey on Grant No. NRC-G-04-82-009.
1987. ($10.)

Designing a User Interface for a Spatial Information System. Max J. Egenhofer.
Paper presented at the ACSM-ASPRS 1988 convention at St. Louis, MO, Partially
funded by grants from NSF No. IST-8609123 and Digital Equipment Corporation,
principal investigator Andrew U. Frank.

($5.)

Graphical Representation of Spatial Data: An Object-Oriented View. Max I.
Egenhofer. Paper presented at the third International Conference on Engineering
Graphics and Descriptive Geometry at Vienna (Austria). Project was partially
funded by grants from NSF No. IST-8609123 and Digital Equipment Corporation,
principal investigator Andrew U. Frank. ($5.)

A Precompiler For Modular, Transportable Pascal. Max J. Egenhofer and Andrew
U. Frank. This paper has been submitted to SIGPLAN Notices. Project was
partially funded by grants from NSF No. IST-8609123 and Digital Equipment
Corporation. ($5.)

Integrating a Database Management System into an Object-Oriented Code
Management System. Max J. Egenhofer and Andrew U. Frank. Project was
partially funded by grants from NSF No. IST-8609123 and Digital Equipment
Corporation. ($5.)

Requirements for Database Management Systems for Large Spatial Databases.
Andrew U. Frank. Paper presented at the COGEDATA meeting in Dinkelsbuehl,
F.R. Germany, December 2, 1986, program for digital mapping in geo-science.
($3)

