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Abstract

Conventional database management systems have proven to be insufficient to
model and perform non-standard applications such as spatial information systems,
CAD/CAM, etc. The object-oriented approach overcomes some crucial deficien-
cies with refined methods for data abstraction and suitable tools to structure data
allowing the usage of complex object types. For the implementation of an object-
oriented database management system appropriate tools in programming languages
are needed. A Geographic Information System (GIS) which treats spatial data asks
for additional object-oriented extensions such as storage clusters to provide fast ac-
cess on spatial objects, concurrent management of spatial and non-spatial data, and
treatment of properties of spatial objects in query languages.

1 Introduction

Geographic information systems (GIS) contain substantial amounts of data which
must be stored in computer readable and accessible form. Computer scientists
have studied database management systems (DBMS) for.several years and database
management systems for commercial usage are currently available; however, sev-
eral studies have shown that these systems are not suitable for non-standard appli-

cations, such as GIS, Land Information Systems (LIS) [Frank 1981] [Frank 1984],

*Work on these concepts was partially funded by a grant from NSF under No. IST-8609123
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and CAD/CAM [Eastman 1980] [Stonebraker 1982]. Several experimental database
management systems have been tried, but a complete system is not yet available
commercially and additional research is needed.

During the last years, research in software engineering has promoted an object-
oriented design method by which real world objects and their relevant operations are
modelled in a program. This approach is most useful for application areas like GIS,
because it naturally supports treatment of complex, in this case geometric, objects
{Kjerne 1986]. Unlike conventional data models, an object-oriented design is more
flexible to describe the complex data structures, primarily by refined technigues for
conceptual modeling, such as generalization and inheritance.

Spatial information systems will benefit from the use of object-oriented databases
in various forms:

¢ The system architecture will become clearer and easier to maintain so that
software systems will have a longer life cycle.

e Programmers need not worry about aspects of the physical location where to
store data: instead, a unified set of commands provides the functionality to

store and retrieve data,

¢ By using a database, data is treated by its properties; by using an object-
oriented database, these properties are logically combined to objects which can
be often very complex.

The paper starts with a review on existing database systems and their deficiencies
in serving as a suitable tool for modeling space related applications. In particular,
the theory for data structuring techniques is compared to the tools in programming
languages available to implement them. Following this chapter, an object-ortented
data model is introduced which is built upon the three major abstraction methods
of classification, generalization, and aggregation. The important concepts of hier-
archical and multiple inheritance are explained. Software engineering aspects are
investigated in chapter 4. Tools, such as programming languages and programming
environments, are seen as especially crucial to implement object-oriented designs.
In chapter 5, properties and requirements of object-oriented database management
systems suitable for GIS are discussed. The implications of object-oriented struc-
tures to query languages are sketched. The paper closes with a summarization of
the GIS requirements for a database management system.

2 Databases for Non-Standard Appiizations

Databases have become an accepted tool for storing data in readable and accessi-
ble form, and systems for CAD/CAM or spatial information (Geographic or Land
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Information Systems) integrate a database system into a larger software system
[Frank 1983].

Unlike conventional systems, spatial information systems deal with data describ-
ing the real world, and they combine several domains which have not been studied
sufficiently. Think of a Geographic Information System in which a large variety of
diverse tasks, such as

» sophisticated treatment of real-world geometry

¢ measurements of different resolution and accuracy

e uncertain measurements and attribute classifications
e legal aspects

e management of time series of veriable attributes

* representation of data in different generalization levels

are combined in a single system. This combination of difficult areas may be a reason
why spatial information systems have been so slow to come and only similar, but
more restricted applications are used successfully [Tripp 1987] [Beckstedt 1987).

Spatial information systems can benefit from using database management sys-
tems because these provide a unique form of storing and accessing structured data.
The problems of low-level data management are removed from the programmer's
and end user's responsibility, and data can be descibed by their properties, not their
physical structure.

Unfortunately, existing commercial database systems are not sufficient for ap-
plications to engineering tasks, often called non-standard applications, such as
CAD/CAM for VLSI design or cartographic and geographic information systems.
Each of these areas struggle with the same kind of problem: they contain sub-
stantial amounts of ‘real world' data including geometric aspects which must be
managed by a computer. Their composition is too complex to be managed in con-
ventional database systems efficiently. Interactive systems require a certain degree
of performance, independent of the size of the data sets—a demand which cannot
be fulfilled by existing systems.

2.1  Deficiencies of Conventional Database Systems

Members of the CAD/CAM-community have complained that there are currently
no database systems which are appropriate for their demands [Buchman 1985]
[Sidle 1980] [Udagawa 1984]. They state that standard database systems do not

fulfili requirements which are crucial for engineering applications:
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o Performance is unacceptable when a database is populated with large amounts
of data [Wilkins 1984] [Harder 1985] [Maier 1986]. Dealing with spatial data,
this deficiency is particularly visible during interactive graphic sessions.

e The treatment of complex objects [Lorie 1983], such as molecules in chemistry
[Batory 1984], spatial objects in GIS/LIS [Frank 1984], or circuits in VLSI is not
supported. Spatial objects, for example, should not be forced to be artificially
decomposed in smaller parts.

e Appropriate mechanisms for data structuring [Johnson 1983, especially for
structuring real-world data, are missing.

Most conventional database management systems are built on the relational model
[Codd 1982]. In the relational model, data are organized in tables or relations.
Columns of the tables are called attributes and all values in an attribute are elements
of a common domain: rows are records, tuples, or relation elements.

While this concept is suitable for modeling commercial data, such as bank ac-
counting, it is too simplistic for modeling data describing the real world. Geographic
data cannot be modelled as strings, reals, and integers in table format—the neces-
sary data types are more complex. One property of complex object types is that an
object type can be part of another (more) complex object type. Data types for two-
dimensional coordinates, for example, consist of an x- and y-value. A more complex
object type includes some error value stating the accuracy of the coordinates. Such
‘error-affected’ coordinate types may be part of a point type which combines the
coordinates with a number and a theme.

Moreover, the relational model lacks the powerful concept of recursion which s
crucial for modeling complex situations such as spatial data and their subdivisions:
areas can be decomposed into several sub-parts which themselves can be continu-
ously decomposed further. For example, the area of a town is composed of several
other areas, such as the house lots, streets, etc.

Only recently, the design of databases for spatial information system has become
a research topic [Lipeck 1986] [Schek 1986] and only a few experimental database
systems exist which pursue new concepts [Frank 1982a] [Dayal 1986] {Batory 1986].

In existing GIS software systems, a trend towards sophisticated software engi-
neering methods [Aronson 1983] and architecture [Smith 1986} can be observed,
stressing object-oriented concepts for geometric data handling [Herring 1987}; how-
ever, database management systems, and especially object-oriented ones, have not
yet been incorporated into commercial GIS systems.

What are the technical reasons that database systems have failed to support
complex non-standard situations? First, database requirements are not a hardware
problem. It is commonly known that hardware currently develops much faster than
software: however, faster and less expensive CPUs, larger hard disks, and more
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memory do not overcome certain problems in datahase technology for engineering.
Solutions which can be achieved by exploiting additional and faster hardware are not
the problems which will be addressed in this paper. For example, new technologies
for hard disks provide more storage capacity at less expensive costs, but the disk
access has not become faster. This is important for database management systems
which struggle with growing data collections which get too complex to be managed
efficiently.

Rather than hardware, software engineering is an impediment for better-suited
engineering databases. We claim that theoretical and conceptual problems are the
subject of major improvements. For example, even with much faster access to
storage devices, internal data structures organizing spatial data will be needed in
order to provide adequate performance for range queries.

2.2 Deficiencies of Software Engineering Tools

Programming is still seen as an art in which the programmer can accomplish a goal
by whatever means he believes to be suitable. The contrary is true: each program is
a very formal piece of code following strict rules; programs must not only be com-
patible between hardware, but also ‘compatible’ among programmers, i.e., different
programmers must be able to read and understand each others' code. By following
strict rules and restrictions, these goals can be achieved. Programming languages
tend towards offering a large variety of tools, while the opposite is needed, namely
restrictions, such that several programmers come up with very similar solutions.

The other deficiency observed is that concepts in software engineering do not
match with database models or are not suitable for them. Theory in software
engineering provided some suitable techniques, such as the concept of abstract data
types [Guttag 1977) {Parnas 1978] [Zilles 1984], in which each module encapsulates
an object type with all its pertinent operations. Standard database systems, based
on networks [CODASYL 1971] or the relational [Codd 1970] data mode! do not it
easily into this concept.

2.3 Deficiencies of Implementing Data Structures

A number of methods to capture more semantics in the data model have been
proposed in the literature (for an overview and critique see [Brodie 1984] which
contains an extensive list of references), but most of these methods have not been
implemented, and none of them is readily available. Complex tasks require complex
structuring tools. 'Complex’, however, need not mean ‘complicated’: the support of
data structuring must be powerful without sacrificing the ease of use, and it must
be extensive without becoming excessive.

In the past, considerable efforts were made to enrich existing data models with
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facilities to treat complex objects. "QUEL as a Datatype' [Stonebraker 1983aj and
ADT-INGRES [Stonebraker 1983] extend the relational model with features to define
more complex types; DAPLEX [Shipman 1981} is a functional language which in-
cludes hierarchical relationships and transitive closure; the NFZ model [Schek 1985]
supports composite attribute types being tuples or relations performing a hybrid of
relationa! and hierarchical data model. Recently, it was investigated, how geometry
could be modelled by using these extended data models [Kemp‘er>1987], and it was
shown that only partial remedies are provided with these extensions.

3 An Object-Oriented Data Model

This chapter introduces the notation of objects and the abstraction tools. An entity
of whatever complexity and structure can be represented by exactly one object tin
the database [Dittrich 1986}, meaning that no artificial decomposition iato simpler
parts should be necessary due to some technical restrictions. Complex data types
for large objects, such as an entire city (with its details about streets, houses, and
their details such as owners, neighbors, etc.), do not overcome the problem of data
structuring.

The object-oriented data model is built on the three basic concepts of abstrac-
tion [Brodie 1984a}: classification, generalization, and aggregation. Furthermore,
inheritance describes how the properties of a class are derived from properties of
related classes.

3.1 Classification

Classification can be expressed as the mapping of several objects (instances) to a
common class. The word oljeet is used for a single occurrence (instantiation) of
data describing something that has some individuality and some observable behavior.
The terms object type, sort, type, abstroct deta type, or module refer to types of
objects, depending on the context. In the object-oriented approach, every object
is an instance of a class. A type characterizes the behaviour of its instances by
describing the operators that can manipulate those objects {O'Brien 19861. These
operations are the only means to manipulate objects. All objects that beloug to the
same class are described by the same properties and have the same operations.

For example, the model for a Lo may include the classes residence, commercial
building, street, parh, ete A single instance, such as the house with the address
‘30 Grove Street', is an object of the corresponding object type, i.e. the particular
object is an instance of the class residence. Operations and properties are assigned
to object types, so for instance the class residence may have the property nunber
of bedrooms which is specific for all residences. Similarly, the class street may have
an operation to determine all adjacent parks.
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In the implementation, classes translate to abstract data types or modules.

3.2 Generalization

Generalization is a well-known term in cartography for varying representations of ob-
jects according to the level of detail needed in a given scale. Similarly, generalization
as an abstraction mechanism provides views in different levels of detail.

Several classes of objects which have some operations in common are grouped
together into a more general supercluss [Dahl 1968] [Goldberg 1983]. The converse
relation of superclass, the wnbclass, describes a specialization of the superclass.
Ancestor and descendant are often used as equivalent terms for superclass and
subclass. Subclass and superclass are related by an is_e relation. For example,
the object type residence is a building: residenee is a subclass of building, while
huilding is its superclass.

3.2.1 Inheritance

The properties and methods of the subclasses depend upon the structure and prop-
erties of the superclass(es). Inheritance defines a class in terms of one or more other
classes. Properties which are common for superclass and subclasses are defined only
once (with the superclass), and inherited by all objects of the subclass, but sub-
classes can have additional, specific properties and operations which are not shared
from the superclass. Inheritance is transitive propagating the properties from one
superclass to all related subclasses, to their subclasses, etc. This concept is very
powerful, because it reduces information redundancy [Woelk 1987]. For example,
huildiny shares properties and operations with residenee, such as having an wrew and
being n.cighbor of some other building. The class residence inherits all operations
from its superclass building without the need to redefine them explicitly. Additional
properties, such as the number of bedroowns, are specific for the residener. Spe-
cializations of residences, such as rural residences and city restdenees inherit the
specific properties of the rusidences, i.e. nwmber of bedrooms, and by transitivity
the properties of the super-superciass huilding, i.e., arra and neighbor,

Operations of the superclass are compatible between objects of the superclass
and subclass. Every operation on an object of a superclass can be carried out on
the subclass as well; however, operations specifically defined for the subclass are not
compatible with superclass objects. For example, neighbor is an operation of the
superclass fruilding, and it is thus compatible with objects of the type residenee.
On the other hand, the operation number of bedronns is specific fo the subtyue
restdence and thus not applicable for objects of the superciass huzlding.
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Hierarchies: Inheritance can be strictly hierarchical as in the example of building,
residemees, ete. Hierarchical inheritance implies that each subclass belongs only to
a single group of hierarchies; one class cannot be part of several distinct hierarchies,
i.e.. in hierarchical generalization, 2 class can have only one direct superclass.

building

|

residence

city residence  rural residence

Multiple Inheritance: The structure of a strict hierarchy is an idealized model and
fails most often when applied to real world data. Most ‘hierarchies' have a few
non-hierarchical exceptions in which one subclass has more than a single, direct
superclass. Thus, pure hierarchies are not always the adequate structure for inher-
‘tance: instead, class lattices [Woelk 1987] with acyclic directed graphs are more
suitable. This concept, allowing a multitude of distinct superclasses for a single
class, is called multiple inheritance [Nguyen 19806].

Forexanuﬂe,fﬁyhmmysand channels are wriificial tramsporiaiion ways, while
ripers are natural transporietion systems however, chanmnels and riwers both be-
long to another hierarchy, the mater system. as well. So, channel and riner partici-
pate in both water systems and transportation welys, WO distinct hierarchies which

cannot be compared with each other.

transportation systems

\ water system

artificial natural
transportation transportation
highway channel river

3.3 Aggregation

Several objects can be combined to form a semantically higher-level object where
each part has its own functionality. This is different from the way generalization is
defined: operations of aggregates are not compatible with operations on parts.
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Aggregation establishes a relation which is often called a ‘part-of -relation since
aggregated classes are 'parts of' the aggregate. For example, the class coundy is an
aggregate of all related settlements, forests, lukes, sireets, etc,

3.3.1 Dependencies Among Values of Different Object Types

Complex objects often do not own independent data, but properties which rely upon
values of other objects. in GIS and LIS, for example, a large amount of attribute
values is propagated from one level of abstraction to another. When combining local
and regional data, this concept must be used to pursye the dependencies among
data of different levels of resolution [Egenhofer 1986]. The population of a county,
for example, is the sum of the population of all related settlements; therefore, the
Property population of the ageregate county is derived by adding ali values of the
Property papulniion owned by the class selilemend.

While inheritance is the propagation of operations, functional dependencies de-
scribe how walues of one class are derived from values of another class. Often, a
value is directly Propagated from the property of one class to another property of
a different class. In the object-oriented model, objects may have properties with
values which rely on values of other objects. Dependent values must be derived.

If more than a single value contributes to the derived value, the combination
of the values must be described by 2 function. Common Operations are minimum,
maximum, sum, average, and weighted average.

3.4 Tools for Modeling

Even for relatively smali models of a mini-world, the structure can become too con-
fusing to be presented with pure alphanumeric means. Graphical methods have
Proven to be suitable tools for a better and clearer understanding of data struc-
tures; representations such as entity-relationship diagrams [Chen 1976) are essential
tools in an object-oriented design. By using the power of graphical representation,
modeling becomes more clear and understandable compared to pure alphanumerical
descriptions.

The concept of multiple inheritance must be incorporated into the entity-relation-
ship model by using some simple graphical means,

4  Software Engineering Aspects

A database is only one part in the large effort to produce a CAD/CAM system,
a land information system, or any of the other non-standard applications. It is
thus necessary that database methods and techniques fit well within a software
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engineering environment. Theoretically founded methods have proven to be well-
suited for modularization based on abstract data types.

4.1 Abstract Data Types

The software engineering method for abstraction and data structuring is based on
the work on formal specifications using abstract data types. An abstract data type
(ADT) or a muiti-sorted algebra is 2 mathematical structure which fully defines
the behaviour of objects, i.e., the semantics of the object-type and its operations.
Abstract data types are specified as an algebra describing what sorts of objects
(types) are deait with and what kinds of operations they are subject to. A set of
axioms determines the effects of the operations. It Is up to the designer to assure
that the sorts and their operations form a reasonable and meaningful object.

Abstract data types can be combined in layers, where higher-level abstract data
types are first described independently (speciﬁcations) and it is then shown how
this behaviour can be achieved using other, hierarchically lower abstract data types
(called an ‘abstract implementation’ [Olthoff 1985] [Frank 1986]). Such abstract
implementations can be formally checked for correctness, by proving that the ax-
jomatically specified behaviour of the upper abstract data type follows from the
abstract implementation and the axiomatically specified behaviour of the lower ab-
stract data type.

Abstract data types are very useful in the design of large systems. They aliow
a much more comprehensive and complete way of specifying routines together with
their axioms than an extensive programming language does.

4.2 Object-Oriented Programming

The programming language must support the abstraction methods. The devel-
opment of object-oriented databases has had problems, mostly because suitable
software tools are missing of old and inappropriate tools have been used. Certain
programming tools must be available to implement object-oriented databases and

data structures.

« ln order to implement complex objects, language tools, such as RECORD struc-
tures in Pascal {Jensen 1978], Ada [Ada 1983, etc., are needed to create user-
defined object types. For example, in a spatial information system a large
amount of the data are points with coordinates, -either 2-dimensional or 3-
dimensional. By combining the coordinates to a RECORD, a complex data
type, such as 2 pointType, can be created.
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TYPE pointType = RECORD
X, ¥, z: coordType;
END;

In object-oriented programming, objects consist of a type definition and a col-
lection of operations. Objects can be only accessed or manipulated by using
these operations. For example, the object type pointType, as introduced
above, has a specific operation to-shift a point in x-, y-, or z-direction (trans-
" lation); the user can access a point only via the interface of the pointType.

Object-oriented programming needs (1) tools to tie types and their opera-
tions closely together (modularisation), and (2) methods to hide internal parts
of the routines from unauthorized external usage (encapsulation). Modula-2
[Wirth 1982], Smalltalk-80 [Goldberg 1983], and C4-+ [Stroustrup 1986] are
examples for languages which support modularization and encapsulation. En-
capsulation provides implementation-independent code outside of 2 module.

Genericity [Cardelli 1985] has proven to be a suitable and powerful method to
reduce redundant definitions of ADTs. A generic type or object is a definition
which is a backbone for a series of detailed and specified definitions. A P,
for instance, is a generic object type which combines two objects; pair can
be applied to two integers forming a pair of inteqers. Operations which are
common for all puirs, such as equality, are defined only once, while their
implementation might vary from type to type.

Programming code is considerably reduced by using generic types, because
operations which apply to all instances are coded only once.

Only recently, inheritance has been recognized as a crucial issue in object-
oriented approaches. Two categortes of inheritance are identified, hierarchical
(or straight) and multiple inheritance.

Hierarchical inheritance deals with a strict structure in which for each child
only a single direct ancestor exists. Some programming languages, such as
Smalltalk-80 and C4++, support straight inheritance, other languages with vari-
ant RECORD structures, such as Pascal or Ada, can at least simulate hierarchi-
cal inheritance of types, but not of operations. For example, two-dimensional
and three-dimensional coordinates are bhoth representations for points. From
this superclass, they both inherit operations such as calculating the distance
between two points. The implementation of these operations may be different,
however, from outside they look the same. With a variant RECORD structure,
the inheritance can be implemented as follows:
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TYPE pointType = RECORD
CASE dimension: dimensionType of
twoD: (x, y: coordType);
threeD: (x, y, z: coordlype);
END;

Multiple inhernitance allows one object to be part of several distinct hierar-
chies. Only a few languages, such as some LISP dialects (CommonObjects
[Snyder 1986], Zeta Lisp [Weinreb 1981}), ObjectLOGO [Davidson 1987}, and
Trellis/Ow! [O'Brien 1986] allow the definition of multiple inheritance.

These concepts for object-oriented programming do not include a message-passing
paradigm {Goldberg 1983]; message-passing is based on passive objects which can
receive messages directing what actions can be executed on an object. Message-
passing is often cited as necessary for an object-oriented design; in our opinion it
is not an essential feature, but certainly a desirable and helpful paradigm. It was
outlined that message-passing is rather a pedagogical than a semantical difference
to conventional routine calls, and any procedure call in an Algol-like language could
be seen as message-passing [Storm 1986].

Object-oriented programming of object-oriented applications depends on the choice
of the programming language; only a few languages support object-orientation suf-
ficiently. We claim that object-oriented applications cannot be achieved without
object-oriented tools and concepts.

4.3 Support System

Database systems are large software systems which must be embedded tn some
environment supporting development and maintainance. Especially the latter is
crucial for the life cycle of a system. Such an environment must be tailored to the
object-oriented approach by automatically propagating object definitions to other
objects, controlling which object uses which other objects, and which objects are
used elsewhere.

In software engineering, abstract data types may be represented by modules which
encapsulate a type and its operations. Facilities such as packages and use clauses
in Ada or modules and import cormmands in Moduia-2 allow the programmer to
easily translate abstract data types into executable code. For other languages with
capabilities for separate compilation of modules, these concepts can be applied by
using a precompiler which propagates the ADT-definitions to the modules where
they are used.
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5 Database Management Systems Tailored to GIS

This chapter investigates how the object-orientation reflects in the architecture of
a database management system for GIS. Ideally, an object-oriented database con-
sists of subsystems which can be added or exchanged to support specific tasks
[Batory 1986]. Before investigating the GIS-specific parts of a tailorad object-
oriented database, subsystems of standard database systems are compiled which
can be adopted from an object-oriented database. ’

5.1  Applicable Subsystems of a Conventional Database

=

5.1.1 Disk Storage Subsystem

A database must provide persistent storage for objects modelled in the information
system. Due to the large size of the data sets, use of magnetic or cptical disk
systems for permanent storage is required.

A storage subsystem must provide operations to store and retrieve data. The
storage subsystem does not know anything about other operations owned by the
objects or their internal structure. Disk access is expensive and improvements in
performance can be achieved by reducing the number of disk accesses by buffering
the storage elements.

5.1.2  Multi-User Facilities

In multi-purpose information systems, a database is shared by a large variety of users
who often want to access the same data in parallel. The known straight forwaid
techniques are sufficient as long as concurrent users only access the data without
changing them. This is, however, usually not appropriate to accomodate users and
their needs. Most organizations cannot restrict update operations to a single user
without severe distortion of their flow of work.

A database management system must provide control mechanisms in order to
guarantee concurrent access for multiple users to all data and to prevent users from
accessing data during inconsistent states, i.e., the database management system
guarantees that no user sees the preparative stages of a change until the change is
completed and made visible to all other users. This is done by a dedicated subsystem,
the so-called transaction manager. A transaction is a sequence of operations by one
user which transforms the database from one consistent state into another one, such
that outside of a transaction a consistent image of the mini-world exists at all times.
A transaction can either be committed, i.e., all modifications will be made visible, or
aborted, i.e., none of the modifications started during the transaction will become
effective. Modified data are isolated during the transaction preventing other users
from uncontrolled access. The transaction subsystem can fulfill with essentially
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the same mechanisms other goals as well. |t is usually assumed that a transaction
system will maintain all the consistency of the database across hardware or software
malfunctionings, and prevents loss of data. A transaction has the following four

classical properties (ACID) [Harder 1985}:

e Atomicity states that in a transaction either all modifications become effective,
or no change at all are made in the data set.

¢ Consistency is guaranteed before and after the transaction.
o Isolation preventes from unauthorized access during a transaction.

o Durability keeps comitted transactions permanently.

5.1.3 Distributed Systems

Central databases are important resources and access to them must be available
for many operations in parallel and at the same time. For organizational reasons,
large databases are often not centralized, but distributed over several computer
systems. This may improve their availability during local hardware failures, reduce
data transfer cost, etc. in our opinion, support for distribution should be built into
this layer of the subsystem.

5.2 Specific GIS requirements

In this chapter it Is proposed which additional concepts must be integrated into
an object-oriented database management system, such that it would fulfill the high
expectations and requirements on a persistent management system for very large
spatial data sets.

5.2.1 Performance Enhancements for Spatial Data

Large spatial data collections should be managed without artificially subdividing
them into several user-visible map sheets. Ideally, the user should have a single
database covering the entire area of his or her application; however, the performance
penalties are serious when very large amounts of spatial data should be managed.
Interactive graphic representations of spatial data with map output require especially
adequate performance.

Generally, database performance depends upon the number of disk accesses
needed to retrieve the data. Conventional systems do not pay attention to the
distribution of spatial data and store them ‘as they are collected’. This treatment Is
not appropriate for spatial data collections, because the access on a set of data to
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be drawn as a map will take a long time due to too many disk accesses. The larger
the data collection grows, the slower the system will perform.

Access on spatial data must be enhanced by integrating spatial storage clusters
[Frank 1983a]. Such techniques take advantage of the spatial distribution of data
and store them such that spatial neighbors are neighbors on the storage device. It is
assumed that (1) data used on one drawing are likely to be re-used soon for further
display or interactive modification, and (2) not only a single object, but several
adjacent objects will be used on a drawing. Spatial access is organized such that
not a single instance, but a set of adjacent data is read at a time from a storage
device and afterwards kept in main memory for future access. This buffering scheme
needs to be organized according to some rules, e.g., a least-frequently-used strategy.
In combination with spatial access methods, fast response time can be guaranteed
essentially independent from the size of the data collection.

It is worthwile to study how storage structures for heterogeneously distributed
spatial data can be improved such that access on less frequent objects performs well
{Egenhofer 1987].

5.2.2 Complex Geographical Objects

The complexity of geographical objects, primarily spatial objects, requires methods
to define and use appropriate data types and operations. The object-oriented mode!
is tailored to this task. Data structures for recursive object definitions, such as areas
being subdivided in other areas, and transitive closure operations are necessary.

Geometric and non-spatial data should not be forced to be physically separated
from each other or managed in different types of databases. Instead, both categories
must be integrated in one single system. This requires that

¢ user-defined, complex types can be stored in the database.

e a buffering schema is incorporated to reduce physical disk access; the geometric
neighborhood should be exploited for a system with primarily graphical output.

Since objects can be more complex, their transactions will last longer and may be
nested. A transaction concept is necessary which goes beyond the classical properties
atomicity, consistency, isolation, and durability [Harder 1985].

5.3 Object-Ornientation in Query Languages

Query languages have been disregarded for a long time, while they are one of the
most crucial issues of an object-oriented database. Query languages are expected
to benefit from the object-ariented approach by providing object operations at the
user interface. Standard query languages for conventional database mangement
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systems, such as SQL [Chamberlin 1976}, QUEL [Stonebraker 1976}, or Query-By-
Example [Zloof 1977], are not cuited to deal with spatial data, because they do not
include the specific properties of spatial abjects. Non-standard database manage-
ment systems must be furnished with query languages which support the treatment
of complex objects including their specific properties. Proposals have been made to
develop completely new query.languages which are tailored to their specific applica-
tion [Frank 1982]. A database system for GIS which is able to manage spatial objects
efficiently is incomplete if it does not support spatial data and their properties in
the query language.

We do not believe that natural language interfaces overcome the problems in
query languages for non-standard applications and rather promote structured, object-
oriented query languages.

5.3.1 Support of Spatial Relations

In order to treat spatial objects in query languages, properties must be included
which are specific for spatial data. Typical properties among spatial objects are
topological and metrical relations describing neighborhood, inclusion, distance, and
direction. Object-oriented spatial relations must be dimension-independent, i.e.,
such that they can be applied to any spatial object. 'Disjoint’, for example, is a
relation which can hold for any two spatial objects (two points, two lines, two areas,
two volumes, but also a point and a line, a point and an area, etc.).

Currently, we are investigating how the syntax of a standard query language
must be extended such that it includes an adequate treatment of spatial objects
[Egenhofer 1987a].

5.3.2 High-Level Object-Oriented Operators

Conventional query languages address subparts of cbjects explicitly and compare
them with standardized operations. This '« the reason for the ‘artificial’ style ot

queries such as

RETRIEVE all roads
WITH road.width > 12

ln natural language, humans would combine the operat;on ; with the type of the
object-subpart to some meaningfull term such as hroader than. The object-oriented
approach pursues this concept since the structure of the object and its operations
are closely combined. Consequently, query languages must apply this concept, too,
and express relations between objects such as
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RETRIEVE all roads
WHICH ARE broader than 12

By combining object parts with operators and mapping them onto high-level oper-
ators, an object-oriented view of operators can be presented.

5.3.3  Graphical Display

Conventional query languages deal only with alphanumerical data, consequently, the
graphical display for spatial objects cannot be specified. The specification is more
complex for graphical output than for alphanumerical output where the sequence of
columns in a table is described. Methods are needed to specify colors, patterns, and
symbols.

Furthermore, interactive sessions with graphical output need mechanisms for user
feedback, such as input via mouse on a drawing. The concept of direct manipulation
on objects is more advanced and object-oriented than conventional input methods,
because it does not reference a specific value, but screen coordinates which corre-
spond to some object.

The output system directed by a query language has some other tnteresting
problems, such as the selection of context {Frank 1982] which is dispalyed to make
the graphical output understandable. Other proposals investigate, how methods
from artificial intelligence like LOBSTER [Frank 1984a] can be incorporated into an
intelligent interface for query languages.

6 Conclusion

It has been investigated how object-oriented database management systems can
serve as suitable tools for spatial information systems. it was outlined that cur-
rent database technology is not sufficient for the specific tasks when dealing with
large amounts of spatial data. Recently, research in non-standard database envi-
ronments promoted an object-oriented model which looks promissing to overcom.:
some problems that make conventional database management systems unsuitable,
such as the lack of modeling power to adequatly describe complex objects and th:
unacceptably slow performance of current implementations. This paper presented
an object-oriented data model based on the abstraction concepts of classification,
generalization, and aggregation. Hierarchical and multiple inheritance are crucial
for modeling complex object types. The implementation of object-oriented data
structures was investigated from the software engineering aspects (object-oriented
programming languages).
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With respect to geographic applications, several components of an object-oriented
database system were identified which are mandatory for treating very large collec-
tions of spatial and non-spatial data. in particular, data structures for complex
spatial data types, internal storage clusters for fast access on spatial data, and con-
current treatment of spatial and non-spatial objects must be incorporated in the
database management system. Finally, the impact of the object-oriented design on
query languages was investigated. Query languages for spatial information systems
need high-level relations and operators for spatial objects, methods for specifying

graphical display, and language tools for direct manipulation.
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