Barrera, R., and Andrew U. Frank. "Analysis and Comparison of the
Performance of the Fieldtree." Orono, ME: Department of Surveying
Engineering, University of Maine, 1989.

Report 120

Analysis and Comparison of the
Performance of the Fieldtree

Renato Barrera
Andrew U. Frank

gruber
Textfeld
Barrera, R., and Andrew U. Frank. "Analysis and Comparison of the Performance of the Fieldtree." Orono, ME: Department of Surveying Engineering, University of Maine, 1989.

Analysis and Comparison of the Performance of the Fieldtree *

Renato Barrera
Andrew U. Frank
National Center for Geographic Information and Analysis
and
Department of Surveying Engineering
University of Maine
Orono, ME 04469, USA
RENATO@MECAN1.bitnet

FRANK@MECANT1.bitnet

Abstract

The Fieldtree is compared to the /tree and R*tree using published analytical examples posed in an
unidimensional environment and dealing with one or two populations of objects. All objects within a
population are uniformily distributed and have identical sizes. Two varieties of the Fieldtree (namely
the cover and the partition Fieldtree) are considered.

Comparisons are made for two kinds of questions: point location and range queriés. The behavior of

Ittiree is definitely better for point location queries and low overlap factors; however, that superiority

*This research was partially funded by grants from NSF under No. IST 86-09123 and Digital Equipment Carporation
(Principal lnvestigator: Andrew U: Frank). The support from NSF for the NCGIA under grant number SES 88-10917 is

gratefully acknowledpged.

is lost when higher overlaps degrade its performance indefinitely, while all other trees show a robust
behavior.

The cover Fieldtree and the Rtree behave identically for the case of one population. The cover
Fieldtree may display a better performance when two populations of widely different ohjects are consid-
ered,

The cover Fieldtree performance was consistently better than the one of the partition variety under
one dimensional point and range query. Further analysis shows that this superiority is preserved in the
two dimensional case.

As expected, no known file structure is optimal for all applications. The analysis reported in this
work indicates the convenience of the Fieldtrees for environments where range queries are common and

where object nesting and/or high overlap factors occur.

1 Introduction

This article, a companion of [Frank 1989], compares several implementation of the Fieldtree to the
Ittree and the i+ tree. The comparisons are based solely upon the number of page accesses needed,
are made for the one dimensional case only, and involve both point location and range queries. The
bidimensional behavior for point queries of different variants of the Fieldtree is also examined,

This paper is organized as follows: Section 2 briefly gives cost estimates for point lacation and range
queries for ¥ trees and the Rtrees that contain a single population of objects; the following section
examines the behavior of the Fieldtree under those type of queries. An analysis of the two dimensional
Fieldtree is performed in section 4. The last section contains a comparison between the behavior of the
cover Fi::ldtree and the f’tree for the case of several populations of objects. Finally, some conclusions

are drawn.

2 results on the Rtree and R tree

Faloutsos et al. [Faloutsos 1987] have computed analytical results describing the behavior of Rtrees and
I**Ttrees for point queries. Their examples, given in a one dimensional environment, consider ane or two
populations of objects. All objects in a population have identical size and their centroids are uniformily
distributed on the [0.0. 1.0] interval; the data leaves of the trees are supposed to be full.

The cited reference uses the following terminology:
(' Maximum number of data items in a data leaf.
1 Total number of data items.
o Size of a data item.
[Fan-out of the tree
(7 Number of data items that contain a point (O =alin+ 1)/(ll + a))

For consistency with the nomenclature of this paper, T/ and T I'T will stand for the cost of point
query that uses respectively an [itree or an H*ttree as its spatial access method. This cost will be

measured in page accesses.

2.1 Point Queries for the R*tree and the Rtree

Reference [Faloutsos 1987] obtains formulas for point queries that utilize fftree and /#*tree. These

formulas are:
TRY =~ | + fogr(nfC') + fog (L —anfey) (1}

an{f—/u)

ThH = i+i'u_qf(n/(")+7 T {2}

The following subsections will give formulas for range queries of length /, similar to (2), (1).

2.2 Range Queries for the Rt tree
Reference [Faloutsos 1987] provides a formula for f, the height of the Rt tree:
h=logg({n - C)/0) {13)

In addition to the effort involved in 3 point query, the system will have to perform two extra functions

to answer a range query:

i) Scan an additional #//(" data pages

i) Search through the /i levels of the tree for the addresses of such pages

The lowest level of indices in an R+tree contains references to approximately (€ — (J)/f objects,
the next level to ((' — O}/ /%, and thus, the expected numer of additional index visits s given by

%,—(Vi1, Substituting /1 by its value in (3) renders a total of (,’_’_’U(1 — L;Ql}/{f-— 1)

extra index pages.
Adding to (1) the accesses due to the extra data and index pages, substituting O by its value, and
supposing that » 3> ", T'r i+, the effort required to satisfy a range query in an R¥tree js

/
PrR = L n S/ | an m
rit -f-”!l_r((cf_m,))"i'fh[(+((.'—rru) -

(1)
2.2.1 Range Queries for the [itree

As in the case of an 7 tree, solving a range query in an fitree environment will involve scanning
new data pages and searching through It levels of the index hierarchy. In this case, a range query of
length ! will involve scanning through (/ + m)n/C" extra data pages. Supposing that v 3 | and that
(fO"> an), h =~ lngr(n/C") [Faloutsos 1987], those extra (/ + w)n/(" data page accesses will involve
fetching)‘{! + @l /{[C') pages at the leaf Jevel of the tree, (/ + Tin/(f*") at the following one, etc.,

so a total of

Ut a)nfCx (L[f+-- 41/

i

(I+aln)/Cyx (L= M/ (-1

(I+am)/Cyx (1 =C/u)/(f~1)

extra index page accesses will be needed. Adding the previous figures to those of (2) a formula for
the number of pages needed for solving a range query in an Rtree environment, called 7+, can be

obtained.

([=C/o) (I +a)n
(f—1) ¢

Tl =14+ log(n/C') + ()

3 Fieldtree Analysis: One Dimension, One Population

This section will deal on the obtention, for the one dimensional Fieldtree, of formulas similar to (2, 5).
Two Fieldtree variants will be considered: the cover and the partition Fieldtree [Frank 1989]. The later
variant wil] b; further analyzed under two conditions, depending on how overflow is handled (by fields
or by ad-hoc records).

For each tree, two implementations of the tree's hierarchy will be considered: indexing by point-
ers interior to the fields, and utilizing a H*tree-like structure and positional codes as the indexing
mechanism.

All our results are concerned only with disk accesses, for that factor is usually more critical than
others, i.e., processing time, storage needed, etc.

Subsection 3.1 will introduce some new nomenclature; the following two subsections will be dedicated
to the obtention of formulas for the two components of the access cost of a query that each tree variant
needs for satisfying point and range queries, namely: 1) Data page accesses and ii) Index page accesses.
Finally, subsection 3.4 will compare the results of the different variants of the Fieldtree to the /1*tree

and to the Ftree.

ot

3.1 Nomenclature

Using the same nomenclature as [Faloutsos 1987), C', », I @ will respectively stand for the |eaf capacity,
the total number of objects, the fan-out factor of the index and the size of an object. Three new variables

will be introduced:
! Size of a range-query window,
liy Height of the binary Fieldtree,
h Height of an Bt-tree, or an R+-tree or an It-tree, depending on the case.

To distinguish among the different implementations, variable names will be composed of two parts:
one referring to the type of access, and a posfix related to the type of tree. The part related to the type

of access will be one of the following:

[Ir # of index pages retrieved for point and range queries respectively,
Dy # of data pages retrieved for point and range queries.
T T Total # of pages retrieved for point and range queries.

The type of tree used in the solution of the query will determine a posfix in accordance with the

following list:

P Partition Fieldtree with no added overflow pages.
per Partition Fieldtree, ad-hoc overflow pages.
- Cover tree.

BY, R fittree, fittree respectively.

N

A subindex 24" appended to a prefix will denote 2 two-dimensional tree; its absence will denote
a one-dimensional case. A subindex 't appended to a posfix will denote that the tree hierarchy is

implemented by pointers among fields; its absence wili signify an implementation by muitiway trees.

6

As an example, Dr 70 will refer to the number of datapage accesses for a range query involving a

partition Fieldtree implemented by pointers, and 717 to the total number of accesses for a point query

to an [ftree.

In the analysis of all Fieldtree variants, two conditions should be satisfied:

i) Fit: Objects should be placed in fields in size according to its importance. When
all objects are of the same size, their preferred position will be in the leaves
of the tree

it) Capacity:There should be enough space in the Fieldtree to store all the objects. The

leaf fields will be filled to their capacity

Te extent of the initial field will be | 4+ ¢ in order to accommodate all objects of extent = with

centers in the ({1 |} tnterval.

3.2 Cover Fieldtree

Data access Qur analysis will consider only cases where (mufC" < 1), since for that range of values

the behavior of the /¥ 1, cr and the behavior of some versions of the partition field tree will be properly

defined.

J

exl,
V.l ==t
axt | /n /2
A— | —
canter_y, |(1+' U)Cln f f cenlgr ——w-
—._—’,

b} Number of objects covered In a
a) Conditfon of il range query

Fig. 1} Spacs conditions In the 1-d cover trea

Figure (1.a) will be used to show that whenever au /(" < 1 all data can be placed in the leaf

fields and still satisfy the condition on fit. That figure displays the loci of the leaf fields of the tree in
transformed (cenier, half-gxteni) coordinates: it shows that all objects whose half-extent is less than
0.5/(257) will fit into a leaf field, and thus, since ¢ < ('/n, all objects can fit into those leaves.

The capacity condition requires the existence of at |east n/C" fields. Since all of them can be leaves,

the height /i of the tree is fixed by the equation 25 = » /(" as:
th = l"()g-g(H/(»')

Fig. 1.b) shaws, again in transformed space, the loci of the of the fields needed for a range query
of length /. From that figure results that n(/ + @)/ fields must be visited for such query.

With that information, formulas can be deduced for the data page accesses in point and range

queries (10", Dr(!);

. o n
(' = —
1(I+(l+rr)C".

(m 4+ n
! = —
b l +(I.+rr)("

The following paragraphs will obtain the number of index page accesses needed, first when the index is

implemented by a multiway tree, and afterwards, when implemented by pointers iside the fields.

Index access - Multiway trees Access operations are divided into two phases: 1) getting the address of

the first field, and ii) obtaining the addresses of the remaining ones.
The first phase will descend to the leaves of the tree in /i = oy (0 /(') accesses; each additional
field to be accessed will take {/f 4 ---+ I/ /" = (1 - I/j"')/(j'-— =01 — /) /(] = |) extra index

accesses, and so the formulas for the index accesses for point and range queries (107, 1r() are:

(m) (njc" = 1)
(I+m) (f=1)

a (n/C -1}
(Lta) (f-1)

Ir(" = lognfC)+

1C = logg(nfC)+

[ndex access- Interior pointers This implementation, discussed in [Frank 1989], has each non-leaf field

pointing to two successors. Getting the address of the data record requires (/i; — 1) accesses, where hy
is given by loga(n /().

Two facts will be used in the obtention of the index acces cost for a range query involving ‘»'
consecutive leaf fields: i) a binary tree with x leaves has # — | intermediate nodes and ii) a balanced
tree of » leaves has a height of Toga(r).

The first fact implies that the traversal of leaves will involve » — | extra field accesses; the second
that such traversal will climb luga() levels in the Fieldtree. It should be accounted that an intermediate
field first traversed during the first leaf field access will be revisited for each level ascended. Taking ali
that inta consideration, the cost for the index accesses for point and range queries (1C, 1eC') is given

as:

1 loga(n/C) = L+ (DC = 1) = log, DC'

Irih, loganfC') = 1 {DrC" ~ 1) = Iog, DrC

fl

Cost for point and range queries Adding the index and the data part of the cost, the total costs for

point and range queries for the cover tree with a single population are:

an{f—C/n)

7¢ = l-{—]r}!j;(i‘l/(")-l-? 71
0, = h).flz(MJ + 2an/C

L+an/C

TrC = |+ logsin)C') + “(.;_({;IHH;-ST}”

{nfe')) .
W)-}.l(”-{-””/(

T:'(",, = fuy,l

3.3 Partition Fieldtree

Three more variables, in addition to those defined in the previous paragraphs, will be needed for the

analysis of this variety of the Fieldtree:

Fraction of the objects that will be stored at the leaves of the Fieldtree.
I Number of intermediate levels occupied by data in a Fieldtree.

w Fraction of the point queries that can be solved without accessing the Fieldtree intermediate nodes.

The conditions on fit and capacity cited in Sec. 3.1 will now be used to derive theta, b and w as a
function of . i and ¢,

Condition on fit. The Fieldtree has 2"/ |eaves spanning the interval 1.0 + 7. Fig (2) shows how
fields are displayed in (eeniir., half-c.ete nt) transformed space [Frank 1989]. By hypothesis, a portion
I — # of all objects will migrate to ancestar fields. Mt can be seen from that figure that the portion of
migrating nodes must be at least /b, Substituting «, b by the values given in Fig.2 gives the following

result:

ax e 1)< |~ ¢ (1)

next lave)

Fig. 2 Conditiong of

for the partition lree

An equation for w, the fraction of the point queries solvable with a single field access will now he
obtained, and for that, we will resort again to transformed (renter, half-cefent) space. In that space,
the loci of all objects that contain paint ry is a cone with its apex in (i, 0) and with edges at |5 In
figure 3 it ca;n be seen that all point queries in interval = will consult one field only. Since the length of
s b= i, a fraction (i —)/l of the queries will Tulfill that condition and thus the following equation

proceeds:

w=(2xH-1) (7}

1

nex} lavel
halT

exl.

f}al’

A —_

center h
1+ gz pla—Hpb b-a

0.5¢ o

— g

Fig. 3 Conditions for a single access In a point query ’

Condition on Capacity. This condition will be split into two parts: i) for the space inside the
leaves, and ii) for the space in the intermediate nodes.

The first part of the condition renders formula {8). This expression is obtained by considering that
a leaf can contain up to (' objects and that a fraction # of the n objects must he stored into leaves.

Since a full binary tree of height /i has 2" leaves, it follows that:
(i) < 2 ()

fl can be obtained as a corollary to the previous expression. If all leaves are to be packed, formulas (8,
8) should be equalities and combining them it follows that:
(l

= il TN
'+ T4e

g ("

A mathematical expression for the second part of the capacity condition can be obtained through
the following considerations:

The number of objects to be placed at intermediate nodes is n(L—@). If nfl objects are to be at the
2" leaves, there is room for 5" 1uf of them at ' next level. Thus, the I intermediate levels of of the
Fieldtree have a spare capacity for {54 . .. + 558 = (10— A¥)nf objects. Since that spare capacity
must be sufficient to hold the ohjects that migrate from the leaves { n(1 —f)), an expression follows:
* (1.0~ #)/0 < 1.0~ .55
As a corollary k is given by

(1

I

o
I

loga(8/(28 — 1)

{'—an

P4

Tlogy(1} (1)

Eqn (11) was obtained by supposing that o < [, and renders a set of values as:

(
- U< an/(l<0.5

b= J'z if 0.5 < an/C < 046666

3.3.1 Partition Fieldtree- no overflow pages

Bn /(" leaf fields will be available in this tree version, All objects that can not be positioned in that level,

either because of a bad fit or because of saturation of the leaves will migrate to ancestor fields.

Data Acesses For point queries, one field access will suffice for a fraction w of the queries; the rest will
require I + | accesses; thus a point query will require | + /{1 —w)= 14+2k{1 - #) and so, substituting

values, [} is:

ey
,) l).'?u ~ [
1 + '+
A range query of length / needs a visit to the initial point and then a traversal of + = ful

consecutive leaves. To do that +((.5 4+ ... + 0.5%) =a(1 — 0.5%)= intermediate fields with data will he
visited. A number of them, given by min(k, n{8/C'), would be revisited and thus, the formula for the

data page accesses is:
DepP™ = D 461 - U.-"l"')n."/f S anint e Joga(Bul o))

As a‘torollary of the analysis of the previous paragraph, the total number of data pages tuity .,
in a partition tree can be obtained by making .- = #n{ 1 +a) /(" if m < I, that number is approximately

n{2 — 0.5%)
('+an

N part =

{12}

12

Index Accesses- Multiway tree Again, access operations will have two phases: i} getting the address

of the initial and it) acquiring the remaining addresses. The first phase will cause logr{numy)
accesses. For a point query, the second phase will take (D™ — |)(] ~ L/ nunrg o3/ (f = 1)

accesses; for a range query it will require { Dy "o — DL = L/ muwmng) /O — 1) accesses, yielding:

1Pt — ff)g_f(”U”U_;mm‘) 1 (DP”O _ l)“ - I(./[Hrl.ﬂlf_;'_.nrn'f)

Iel" = Aog(numy) + (Drim - 1}(l —]({/,’””T‘)r"'"“")

Cost for Point and Range Queries Using the results of the previous paragraph, the effort to answer

queries for the multiway implementations can be quantified as:

[-
n(2~05%) ke (- Gl

C+an CH+an (f-1)

(2= 055 (ka2 - 0.5%)) nl - e

1.0 = 1+ log o b+ [T — min{&, Togy(o] 7N

e = log

The solution of point query in a partition Fieldtree with fields indexed by internal pointers only requires

a descent down the Fieldtree, and so, TR is given hy:

1

"

-.'1:”“) —_] .
TE, vy (4 an

)

The solution of a range query in a partition Fieldtree indexed by internal pointer requires two phases:
i) a descent down the tree, and ii) a visit to a total of RNy ey X (0l 4+ o) fields (n(l + a)f/C of
which are leaves). The second phase will imply reclimbing some levels of the tree; while doing that, a
lagaln(l +)8/ (")) fields would be revisited. Taking all that into consideration, the cost of that range

query is:

T, P |+ log !)+MLFJH—WM)
" —_— (#4148 ———— ————
" iy Tl E

13

3.3.2 Partition Fieldtree- overflow pages

There will be #n /(' leaf fields available in this version of the partition tree. If an abject cannot be placed
in a leaf field (for reasons of bad fit or because of saturation of the field) it will migrate to fields in the

next level; fields at that level will be provided with an overflow page in case of saturation,

Data access This tree will behave identically to the non-overflow version until no more available space
remains in the first intermediate level. At that moment, two thirds of the aata are stored at the leaves
(! = 0.666). For bigger loads, i.e., for values of @ in the range 0.5 < # < (.66, an overflow page will
.‘pQrovi-de enough storage and data need not migrate to higher levels.
Thus, for .G6iti < # < 1 a fraction (1 —w) of the queries will require two page access, the remaining
fraction needing only one. For 0.5 < # < 0.666 a fraction | — w will require three page access. The

formula for the datapage cost is:

L+ 2anf(C'+an) if 0<anf('<0.5
DI

L+den/(C+an) [0.5< anfC <1
For a range query of length {, a = fnl /(" leaf fields must be traversed in addition to the first
one. This traversal will need to access (0.5 intermediate leaves; one of this intermediate leaves will be

..., revisited and hence must be discounted. When 0.666 < @ < | each of those intermediate leaves will

have one disk access associated: otherwise they will have two. The resulting formulas is:

DPY 4+ 050l [(C4an) il 0 < an/C' <0.5
DrP

.DP”"-'—Q!/{("I"(T”) il 0_.’_’){(1‘”/('S 1.0

Access- Multiway tree The formulas, similar to those used for the case with overflow, are;

\} " = dog (LA an)) + (D™ ~))(L= ((('/[“_'FI;T)/]'M
11 = log ((L5u/(C + an)) 4 (Drpo — D “:j"_i;”/l"r”

11

with the understanding that D pPov (DrP") will not consider overflow buckets.

Cost for Point and Range Queries Based on the previous paragraphs, the formulas for the partition

Fieldtree with overflow pages and indexed by a multiway tree can be rendered as:

ey {f={C /*’+”J/' 5) if 0« an/C < 0.5
" ' ' =
]]mn = | + "”'If{rl_,_ L)+ f-

P LA S e g5 ¢ e < 1

e N P T
I r I,l” -— I + If)fff(r]+'””)+

”‘(’;’j',:”L““/”*"V' 2 05 < an/C < L0

The formulas the partition Fieldtree with overflow pages and indexed by internal pointers will now

be obtained:

A paint query will be solved by a total of loga(n8] " acceses; if 0.5 < an/C" < |, afraction (| —w)

of the queries will require accessing an extra page, so:

togaln (€ + an)) i O<ean/C <05
""3”" =
‘"

loga{n [{C" +an)y + 2an/(C' + any i (].5<&n/C’§l.()

A range query, besides the effort needed for 2 point query, will need to cover | + fnl /(" leaves and
hence, to traverse #n!/2¢" intermediate fields; one of them should have been previously visited during

L}

the first record access; thus

Togaln [4+ an)) + Ln)J(C+an) i 0 < /(<A
Trime =
I'

lc‘:gz(n/((\'—l-rrn})-i-(211/—{-20’)/((-'-{-0:;) il 05 <an/C'<10

3.4 Comparison of the results

We will consider a case taken from [Faloutsos 1987], where the population is of 100,000 objects, the
fan-out factor [is 50, and the field capacity (' is of 50 objects.

For the different trees considered Fig. 4 compares cost of a point query as a function of the parameter
anfC'. The Fieldtree versions that utilize internal pointers have been omitted since the comparisen is

very disfavorable to them.

71 ,
Partition tree, no overflow
6 -
a 5 -
@ Partition tree, overilow
it
o 4 -
= Cover tree, R+ treg
. /"/’:—"t R+ tree
* 3
2 T T T T T T T T T L T T T L | 4] n/c
0.0 0.2 0.4 0.6 0.8 1.0

Flg 4 Comparison for 1-d Pointl Queries

From the previous figure can be noted that:

» As expected, behavior of the Fieldtree with a multiway index is always superior to the one that

contains pointers inside the fields.
e As reported in [Faloutsos 1987] the i+ tree outperforms the Iftree.
* The Cover Fieldtree and the [7tree perform identically.

* The Cover Fieldtree outperforms both variants of the partition Fieldtree. The variant of the

1}

partition Fieldtree that provides overflow record outperforms its alternate variant

Fig. 5. shows the average number of pages needed to access (" objects in a range query as a

function of the size of the query window. Three sets of graphs are provided, corresponding to values of

anf¢' of 0.1, 0.3 and 0.5.

That figure shows that :

* For the one population Fieldtree case, implementation by multiway trees outperforms that of

pointers interior to the fields.

e [ftrees and Cover Fieldtrees that use multiway indexes again behave identically. They outperform

all other varieties.

I

) H"’trees._a.re outperformed by partition Fieldtrees for high values of an/¢"

2.0 5 (a)
] 1- R tree, mulllway cover trea
H 2- R+ lien
g 3- Cover 'res, polniers
<« 4 4- Parlitiont lreg, mulliway
#* 3 5- Partition ree, polnters
& 2
‘K 1
1.0 T T T Ty g nfc=0.1
0 2 4 6 8 1o
% of Uhlﬂts
g
] (b)
g 20- 3
3 1- A tree, muitiway covaer lrea
- 2- R+ tree
© 3- Cover tres, poinlers
* N~ 2 4- Partllion tres, mulliway
[5- Parlitlon Iree, painlars
>
< — 5
\ 4
1.0 — T — o nic=0.3
0 2 4 8 8 10
‘¥ of objecls
2
n & 3 c
- g 2-0 - — 2 ()
§ 1- R Irea, multiway cover tres
— ' 2- A+ tiee
o 3- Cover tree, poinlers
3 4- Partition Ires, mulllway
0 5- Pariillon tree, pointors
]
1.0 —r 0 g nfic=05
0 2 4 8 a 10

"% ol objecls

Figure 5: Comparison of Range Query performance

4 *Two Dimensional Behavior of the Fieldtree

In the one dimensional environment, the Cover Fieldtree showed a behavior superior to that of the

Partition Fieldtree both for point and for range queries. In a two dimensional case, a point query in

17

and H{rrep)2. The sum of the product of the factors times the number of field visited gives the number

of data records in a point query:

vn/(- njC
b4 a(l+ /() Tt a/njf!

0=

Dogl’ = | + ﬂ__* vH/C

I +oy/n/C (1)

4..2 Cover tree- 2 dimensions

—— — Medlan

EE] Hal sharad

I:] Sharad 1 nghbr
Shared 3 nghbra

Fig B8) Loci ol centsrs of objecls
shared with other fields

3R
Aanun
aaaan
Rty
an

The extension of a field to have full occupancy is simply

2—-h - \/(-7

Fig. 8 shows the regions the regions in space where a point query for a cover Fieldtree needs will meet
one, two or four fields. A portion of the queries will be satisfied with accessing one field, while fractions

will require respectively two and four fields. Adding up, the following formula results:

DygC = 1 4 2a\fn/C (1.1}

Farmula { 14) always renders less acceses than (13) for 0 < o/u/C7 < 1.0. Thus we can conclude
that the cover tree is still superior to the partition tree for two dimensions.
5 Two Populations Results: ?tree vs. Cover Fieldtree

Faloutsos et al. [Faloutsos 1987] consider the case of a 1 dimensional Iitree with two populations of

objects. The number and the extension of the objects in each population are called (ar.ny), (g, m2).

19

That reference also proves that in the case of two population of objects one of them dominates, i.e.:
all formulas are the same as if they were from a single population with the dominant characteristics.
If n.C"\.C'y are defined as n = M+ Ny, Cy=Cny o, O = C'uy/n, then the population dum that

dominates is:

Loif Tiparent,] > T2 perent,1
oy =

2 otherwise

where ST et = ;I;?f{-((-'; — 1) m

In the cover Fieldtree two situations can happen:

1. The importances of both types of objects are the same and, thus, their items are placed in the

same level of the Fieldtree. The formulas are calculated taking into account the greatest of Ty, 72

2. The importance of both types of objects is different and they are placed in the different levels of

the Fieldtree.

Situation (2) is particularly attractive for range queries since then both populations become inde-
pendent; no coupling at all occurs for the case of pointers interior to the fields, and very litte in the
case of multiway trees'. In this later c:ase, the coupling can be greatly diminished if the positional keys
of the objects are ordered “by levels", i.e., keys of fields a given Ieyel of the Fieldtree preceding all those
corresponding to descendant levels.

An example of i.e. the following: suppose that (' and [are the same as above, and the existance

of two populations such that

ey = |ling
m+ny o= [0°

o= % e
am/C = 0.2

20

, 20
o
8 | 1
e 1-Rires
g 2- Cover tree, pointers
. 10- 3- Cover liee, multiway
& 4- Cover tree, mulliway
a {(mod address)
. 2
Na— =2
0 ——— = 4 o nilc=0.1
T T r———

0 2 4 . 8 . 8 10
"% ol objects

Fig 9) Ave. number of Page accesses, "C" objects

Figure (9) shows the advantages of the Fieldtree for range query; it also shows that the superiority
of the utilization multiway trees over that of interior pointer becomes less marked for mixed populations.

Examples can be found, specially in the two dimensional case, where that superiority disappears,

6 Conclusions

The analysis reported in this paper demonstrates the following facts:

e The cover variety of the field tree behaves better than the partition variety for one and two

dimensions.

¢ The cover Fieldtree behaves identically ta the Iitree for the single population case. It outperforms
it for range queries in environments of mixed populations. The advantage is due to the capability

b} N .
of the Fieldtree of segregating objects according to their type, thus eluding the collection of objects

of undesired type.

3

The behavior of an access method is very much dependent of its implementation; however. it seems
that the Fieldtree is a good alternative to the Jftree [Greene 1989] for cases where range queries are

predominant and nesting and intersection of objects is common.

21

+7 Acknowledgements

The authors wish to thank Max Egenhofer and Douglas Hudsen for their discussions and their suggestions

to improve this paper, and Jeff Jackson for his assistance in its preparation.

References

[Faloutsos 1987] Faloutsos et al. Analysis of Object-Oriented Spatial Access Methods. In: Proceedings

of SIGMOD Conference, May 1987.

(Frank 1989} A. Frank and R. Barrera. The Fieldtree: A Data Structure for Geographic Information
Systems. Technical Report, Department of Surveying Engineering, University of Maine, Orono,

ME, March 1989. submitted for publication,

[Greene 1989] D. Greene. An Implementation and Performance Analysis of Spatial Data Access Meth-

ods. In: Proceedings IEEE Fifth International Conference on Data Engineering, Los Ange-

les, CA, February 1089,

22

