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ABSTRACT
Topological data structures have become an accepted method for modelling spatial
objects, with cells being the fundamental units of which objects are composed. Known
topological data structures offer only a single degree of spatial resolution for modelling
objects. Objects can therefore not easily be displayed in different resolutions. Complex
objects are typically composed of a large number of cells and their representation
requires a large amount of data. This causes their handling to be slow and inefficient.
Typically, in multipurpose geographic information systems (GIS) small spatial objects
coexist with very large objects. The complex needs of different user groups requires the
display of spatial objects in several resolutions. Topological data structures are
necessary, but not sufficient by themselves, for the implementation of multipurpose
GIS.Additional structures are needed to obtain the considerable cost savings of data
sharing.

To overcome these problems, a formal, dimension-independent approach for building
multiple, hierarchically related representations of spatial objects is proposed. The
representation is formed of layers of topological data structures that provide different
spatial resolution and amount of detail. The layers are interconnected by hierarchical
relations between their cells. The benefits of the structure are that objects can be
accessed in different degrees of detail. Small and large objects can be handled efficiently
and output of adequate resolution can be produced directly. This makes this multiple
topological representation well suited for the implementation of multipurpose GIS.

INTRODUCTION

Topological data structures have become an accepted method for representing spatial
objects [White 1985]. One such structure, the cell complex, shows promise of high
utility. discussions of cell complex methods may be found in [Frank 1986] and recent
implementation examples may be found in TIGER [Kinnear 1988] [Boudriault 1988]
and in the TIGRIS system [Herring 1988].

They explicitly model the basic topological relationships between all spatial objects and
are based on Corbett's topological model of the map [Corbett 1979]. Topological
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structures are designed to organize objects of a single degree of spatial resolution and
detail.

Spatial objects are organized as aggregations of cells--the fundamental units modelled in
the structure. As will be shown later, objects that are relatively large compared to the
spatial resolution chosen for the structure and compared to the size of other spatial
objects typically consist of a large number of cells. This means that it takes a relatively
large amount of data to represent them in the structure,

Problems arise when dealing with large objects which are composed of many smaler
ones. Handling large amounts of data in computers is time consuming. For topological
data structures this means, that large spatial objects are handled much less efficiently
than small objects. The system performance can become unacceptable when working
with large objects, while no problems occur with small objects.

These problems observed with topological data structures are a major impediment for the
implementation of multipurpose geographic information systems (GIS). Typically, in
multipurpose GIS the range of sizes for spatial objects is very large. Because of
different needs of different user groups, very large objects such as nations and
continents coexist with very small ones such as parcels. The performance of such a GIS
is not acceptable for the user groups dealing with objects in a large scale view. This
considerably limits the number of purposes satisfied by a single GIS and, therefore,
limits the cost savings possible through sharing data acquisition and updates among
several users. A second problem is the single spatial resolution offered by the
topological data structure. Different nser groups require different degrees of resolution
for the view of their objects. A single topological data structure cannot satisfy these
needs.

In order to overcome these problems of single topological representations, structures
have to be found that provide several representations of a spatial object [Bruegger
1989]. The representations differ in the amount of detail and thus detail describing the
spatial objects. This paper proposes a multiple representation of varying spatial
resolution. Figure 1 sketches the structure of this multiple representation. Several layers
of topological data structures form the representation. The same object is represented in
several layers in different degree of detail. The layers are interconnected by hierarchical
relations between their cells.
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Figure 1: Structure of the multiple representation proposed in this paper.



In the field of spatial data handling, hierarchical structures have often been proposed as a
means to relate multiple representations of different spatial resolution. Strip trees
[Ballard 1981], Quad- and Octrees [Samet 1984] are typical examples. This research
integrates their concepts and adapts them to topological data structures. The structure
proposed in this paper can be considered a generalization of strip trees. Jones and
Abraham propose a similar hierarchical structure which is not based on topological data
structures [Jones 1986].

This research on hierarchies over topological data structures is part of a more extensive
investigation of a spatial theory [Frank 1987b]. Earlier, a prototype using cell complexes
to organize spatial objects has been implemented [Jackson 1989] [Pullar 1988].
Experience with the prototype demonstrated the problems of single topological
representations.

This paper is organized as follows: In the introduction, problems encountered with
single topological representations are described. Chapter 2 explains the concept of
topological data structures and investigates the reasons for the problems described in the
introduction. In chapter 3, a special case of a multiple representation is proposed to
solve the problems. The conclusions stress the importance of the proposed solution for
the implementation of multipurpose GIS and describes the planned continuation of this
research.

TOPOLOGICAL DATA STRUCTURES

Spatial Properties

Topological data structures describe the geometry of spatial objects in terms of O-cells
(nodes), 1-cells (edges), 2-cells (faces), and 3-cells (volumes). The topological relations
between cells are explicitly modelled in the data structure and build the bases for the
extraction of topological information. In contrast, non- topological approaches derive
these relations from metrics, i.e. coordinates.

No intersections of cells are allowed in topological data structures, i.e., the intersections
have to be introduced as cells of their own, and the formerly intersecting cells have to be
split up into several cells [Frank 1986]. Thus, all the possible intersections of the cells
have to be determined as the new cells are introduced into the structure [Frank 1987a].
Figure 2 shows an example of two intersecting 2-cells. Cells introduced because of the
intersection are highlighted. The two intersection points of their boundaries are inserted
as new nodes, the intersecting 1-cells of the 2-cell-boundary are split, the intersection
area is introduced as a new 2-cell, and the original two 2-cells are modified, so that they
do not include the intersection area.

Figure 2: New cells introduced when two 2-cells intersect.
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In contrast to maintaining several thematic layers organizing only a subset of spatial
objects, it is recommendable for topological data structures to integrate all spatial data in
a single geometry layer*. Spatial analysis requires access to topological relations
between different spatial objects. The integration of all spatial data into a single layer of
such a topological data structure provides for quick retrieval of all these relations. The
integration is equivalent to the preprocessing of all overlays or the precomputing of all
intersections [Frank 1987a]. Therefore, fast interactive queries are possible even if
intersections of objects or overlays are asked for.

Reason for Performance Prohlems

The reason for the performance problems of single topological data structures was
shown to be the large number of cells contained in large spatial object. This paragraph
explains, why large objects contain large numbers of cells. Two factors determine the
number of celis describing a spatial object: (1) the degree of spatial resolution chosen for
the structure, and (2) the number of other spatial objects that are topologically related to
the object.

Topological data structures model all objects in a single spatial resolution, i.e., the
geometry represented approximates the real world geometry with equal status for all
objects. Objects are defined by component cells and their geometry; each cell
approximaring a section of the real world geomeiry. The geometry of a cell is described
by a shape type and shape parameters. The number of shape types is typically very
limited. For example, only 'straight line segment’ and 'arc' are available shape types for
1-cells. Figure 3 shows such an approximation of the real world geometry with straight
line segments and arcs as cells.

Figure 3: Approximation of the real world geometry with cells.

This way of defining the geometry of objects makes it obvious that an increase in spatial
resolution increases the number of cells defining an object. Similarly, a relatively large
object, on the average, contains more cells than small objects represented in the same
resolution.

The number of cells per object is further determined by other objects that are
topologically related to the object. As described before, cells are not allowed to intersect.
Instead, the cells must be split into several cells. If objects are topologically related, their
component cells as used in the definition of the geometry would intersect. The definition
cells can thus not directly be inserted into the structure, but have to be split first. On the
average, relatively large objects are topologically related to a large number of other,
mostly smaller objects. For example, a state is originally defined by a single 2-cell. It is

* This does not contradict the idea of multiple layers in a multiple representation, as the
topological relation of all spatial objects are organized in a single structure.



topologically related to all of its counties, all of their communities and all of their
parcels. In the topological data structure, the originally single 2-cell is therefore split into
a large number of 2-cells that correspond to the parcels contained in the state®.

HIERARCHIES OVER TOPOLOGICAL DATA STRUCTURES

After describing the problems of single topology-based representation, in this chapter a
hierarchical structure is proposed to overcome these problems.

Higher Level Cell

The concept of higher level cells is a possible solution to build a multiple representation.
Higher level cells are a ‘higher level view' of the cells known from single topological
representations. Like in other hierarchical structures such as strip trees and quadtrees,
the higher level cells are coarser and exhibit less detail. The multiple topological
representation proposed consists of several levels of single topological data structures.
The lowest level or so called 'base level' is identical to a single topological
representation organizing all spatial objects. The cells of this representation shall be
called 'base cells.’ Higher level cells' are cells of a topological data structures on a
higher level. Adjacent levels are interconnected over hierarchical relations between cells:
The relation maps one cell on the higher level to several cells of the same dimension on
the level underneath. A higher level cell can thus be interpreted as an aggregation on
lower level cells. Figure 4 shows higher level cells of dimension 1 and 2 with the
aggregations that form their lower level equivalent. The higher level 1-cell corresponds
to an open polygon of lower level 1-cells, and the higher level 2-cell is built by an
aggregation of adjacent lower level 2-cells. A higher level 3-cell (not shown in figure 4)
is totally filled with lower level 3-cells.

Figure 4 : Aggregates of 1- and 2-cells with their higher level equivalents.

Metric Inferpretation

Unlike the cells of the base level, higher level cells do not have a 'natural’ metric
interpretation, They do not have an actual shape like the base cells that are used to
approximate a real world geometry. Because of their relations to lower level cells,
however, they can be assigned an imaginary shape called 'composed.' Two metric
interpretations of a ‘composed' cell are possible: (1) The cell can be interpreted as the
simplest convex hull of the metric interpretations of the cell's boundary, i.e., as straight
line segment between the end points for 1-cells and as a surface between the bounding
edges interpreted as straight line segments for 2-cells. (2) The second interpretation

* If parcels are allowed to lie in more than one community, county or state, the component
2-cells are even finer than those corresponding to parcels.



maps the cell one level down to an aggregation of cells and leaves the decision open how
to interpret the cells of this aggregation. In the special case, where a cell is mapped
down to the base level, the metric interpretation with the best spatial resolution is found.

ration Interconnect Level
The cells on the different levels are connected by hierarchical relations. As common in
the field of abstract algebras [Guitag 1977] these relations will be expressed in the
following by a set of operations:

Consists_of is an operation that returns the aggregation of cells of the level below that
are equivalent of the argument cell. This operation accepts any cell as argument. If
consists_of is applied to a cell of the base level, the argument cell is returned as it cannot
be shown in greater detail. If the argument cell is a node, the resulting aggregate will
contain a single node of the level below.

The contained_in operation expresses the same relation between levels but connects the
cells upwards. The cell returned is defined on the the level above and contains the
argument cell. It will not always be possible to return a cell of the level above, as is
obvious for top level cells and because cells on other levels do not always have a higher
level equivalent. In these cases, the argument cell shall be returned, as no equivalent cell
of coarser resolution is available.

ShapeSimplification is an operation normally applied to 1- and 2-cells. It returns a
measure for the simplification of shape introduced using the metric convex hull
interpretation of the cell* instead of mapping the cell down through all levels and
considering the equivalent aggregate of the cell on the base level with all its metric
information. One possible way to measure the the simplification of shape is to
approximate the aggregate of cells on the base level by a box of the appropriate
dimension and compare it with the convex hull interpretation. In a two dimensional
embedding space this box is a strip that is, perhaps, familiar from the strip tree concept
of [Ballard 1981]. The measure of simplification can be expressed by the ratio of the
length of the straight-line-interpretation and the strip area. In a three dimensional
embedding space, the aggregations of 1-cells and of 2 cells are both approximated by
boxes. For 1-cells the measure of simplification is the ratio of box volume and the length
of the straight line interpretation. For 2-cells the ratio of box volume and area of the
surface interpretation is considered. Figure 5 shows how a strip approximates an
aggregation of 1-cells. Figure 6 demonstrates how the convex hull interpretation of a
higher level cell is compared to the aggregation on the base level.

* A metric interpretation for 2-cells is only of interest in three-dimensional embedding
space. The method of the cell complexes is the only topological representation referenced
in this paper that supports the third dimension. As 2-cells in cell complices are always
triangles, the metric interpretation is a simple plane segment.

* The convex hull interpretation is a straight line segment for a I-cell and a surface for a 2-
cell.
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A system dealing with the cells of a multiple topological representation can be entirely
described by a formal algebraic specification of its operations. The operations can be
divided into those dealing with cells within a level and those interconnecting levels. The
first group of operations is the same as in a 'classical' topological data structure. Frank
and Kuhn have specified these operations formally [Frank 1986]. In this paragraph, an
algebraic specification of the operations to interconnect levels is presented. The axioms
describing their semantics have not been included, as the semantics have been
sufficiently described in the last paragraph.

The following terminology will be used in the specification: i:d-cell refers to a general
higher level cell and is read as 'level i, d-dimensional cell'. i is an integer indicating on
which level of the structure the cell is defined. The base level is equivalent to level 0. A
2:3-cell, for example, indicates that the cell is a 3-cell (i.e., a volume) defined on the
third level of the hierarchy, i.e., after aggregating twice.

The following operations are necessary to interconnect levels in multiple topological
representations. The formulation is dimension independent, i.e., any dimension is
allowed for the dimension parameter d.

consists_of : id-cell -> aggregation of (i-1):d-cells
contained_in : id-cell -> (i+1):d-cell
shapeSimplification : ld-cell -> simplificationMeasure

Multiple Representation_of Objects

A description of one possible organization of objects follows. The geometry of spatial
objects in this multiple topological representation is defined as aggregation of cells on a
certain higher level. Implicitly, the objects are represented on all levels below this
definition level making use of the hierarchical relations between cells.

On the base level, spatial objects are available in maximal resolution and detail. On the
first level, objects can be represented without the detail introduced through the initial
metric approximation of the real world geometry with cells. Because of the very limited
number of shapes available, sections of the object geometry had to be split into several
sections in order to approximate their geometry with the cells available. The first Ievel
simulates arbitrarily shaped cells by undoing all these splits introduced for the metric
approximation. Of course, all the splits introduced by intersections of objects have to be
maintained. This relationship between the base level and the first level determines which
base level cells have to be aggregated to form first level equivalents. All objects are still



represented on this first level.

For determining the second and higher levels, an order relation can be found that
expresses the importance of object classes. Small spatial objects are usually relatively
unimportant compared to large objects. The order relation can be used to determine the
level on which an object shall be defined. The object is represented on this level and all
levels underneath, but not on the levels above. Small objects and details thus do not
exist on high levels. The number of objects decreases with the height in the structure.
Because fewer objects produce fewer intersections, the component cells of the objects
are split less and less on higher levels. The order relation over the objects obviously
determines which cells have to be aggregated to form higher level equivalents.

Multiple Resolution

The operations discussed allows views of objects in different spatial resolutions. The
key to this possibility are the two metric interpretations available for 'composed' cells.
Using the aggregation-interpretation, every component cell of the object can - starting on
the highest level - be mapped down to a level where the spatial resolution is appropriate.
On this level, the convex-hull-interpretation is applied for displaying the cell. For
example, the state of Maine shall be displayed on the screen. The system finds the edges
of the state boundary on the highest level and maps each of them down through the
levels using the 'consists_of’ operation until 'shapeSimplification' indicates that
sufficient resolution for the display is reached. This will typically happen on different
levels for different edges of the boundary.

Performance

The performance problems observed with single topological representations should not
occur in the proposed multiple representation. Large objects can now be handled on
higher levels, where they consist of fewer cells and can thus be handled efficiently. The
level chosen depends on the level of detail and the spatial resolution required.

CONCLUSIONS

The proposed multiple representation supports multiple spatial resolution and provides
higher levels where large objects can be described with a small number of cells. The
problems observed in single topological representations thus cannot occur in this
multiple representation. This opens the possibility for the implementation of
multipurpose GIS where several user groups share their data. This allows several user
groups to acquire and update their data in a common effort and thus avoid considerable
costs for duplication of work.

The structure proposed in this paper is a special case of a multiple representation, the
topic of Research Initiative 3 of the National Center for Geographic Information and
Analysis [Abler 1987]. This research helped in gaining a better understanding of the
problem and will be continued.

The continvation will address the organization of objects in the proposed structure in
more detail. Procedures to build, modify, and update the structure without introducing
inconsistency have to be found. Further, query processing and optimization for this
structure must be dealt with. )
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