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Abstract 

Observations and processing of data create data and their quality. Quantita-
tive descriptors of data quality must be justified by the properties of the 
observation process. In this contribution two unavoidable sources of im-
perfections in the observation of physical properties are identified and their 
influences on data collections analyzed. These are, firstly, the random 
noise disturbing precise measurements; secondly, finiteness of observa-
tions—only a finite number of observations is possible and each of it aver-
ages properties over an extended area.  

These two unavoidable imperfections of the data collection process de-
termine data quality. Rational data quality measures must be derived from 
them: Precision is the effect of noise in the measurement. The finiteness of 
observations leads to a novel formalized and quantifiable approach to level 
of detail.  

The customary description of a geographic data set by ‘scale’ seems to 
relate these two sources of imperfection in a single characteristic; the the-
ory described here justifies this approach for static representation of geo-
graphic space and shows how to extend it for spatio-temporal data. 
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1 Introduction 

Digital geographic data comes in different qualities and applications have 
different requirements for the quality of their inputs. In order to advance 
the use of digital geographic data, qualitative descriptions of the quality 
provided or required is necessary. Traditionally map scale is used to de-
scribe summarily the quality of static geographic data when cartographi-
cally represented. The reduction in size, expressed as proportional scale, 
causes a reduction in precision and detail. Users of maps have learned 
which map scales are suitable for which task: orienteering uses map in the 
scale range 1:10.000 to 1:25.000, for driving by car from city to city maps 
1:250.000 to 1:500.000 are sufficient, etc. Repeated experiences taught us 
these practical guidelines and we follow them without asking for a theory.  

In the age of digital data, the traditional definition of map scale, as the 
proportion between distances on the map and in reality, lost its justifica-
tion: locations are expressed with coordinates and distances computed are 
in real world units. Only when preparing a graphical display, a propor-
tional scale is used. The concept of scale in a digital world has been criti-
cally commented, but no solution suggested (Lam et al. 1992; Goodchild et 
al. 1997; Reitsma et al. 2003). 

Data quality research needs a quantitative, theory based approach. The 
theory must relate to the physical characteristics of the observation proc-
ess, where the imperfections in the data originate. Data quality measures, 
which are not related to universal properties of observation remain specific 
for some data collection technologies (Timpf et al. 1996) and impede the 
assessment of results from integration with other datasets obtained by 
other methods and with incompatible data quality descriptions.  

In this paper I explore the process of geographic data collection and 
show how scale is introduced originally when making observations. It 
must be carried forward as a quality indicator with the dataset. The same 
“scale” quality measure is later used when considering whether a dataset 
can be used effectively in a decision situation (Frank 2008a). The tiered 
ontology, previously described in a number of articles (Frank 2001, 2003) 
is used as foundation for the analysis of the data collection process and re-
viewed here briefly in section 2. The tiered ontology commits to a physical 
reality in a space time continuum that can be observed. In a second tier 
physical objects are formed and a third tier includes the conventional, so-
cially constructed objects (Searle 1995).  

In this article the focus is on data quality describing physical objects. 
Section 3 describes the processes that are used to transform information 
between the tiers. The ontological approach distinguishes point observa-
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tions from descriptions of objects and their attributes. The point observa-
tions are simpler than the prototypical measurements of measurement the-
ory (Krantz et al. 1971); this reduction to a more primitive type of observa-
tion allows to include imperfections in the theory, which classical 
measurement theory could not deliver (Orth 1974). The analysis leads to a 
quantitatively assessment of the imperfections introduced by each process 
(Frank 2007)—a goal desired since the data quality discussion in the mid 
1980s (Chrisman 1987; Robinson et al. 1987), and the development of 
measurement theory (Krantz et al. 1971) but never comprehensively, sys-
tematically, and operationally achieved.  

An analysis of the properties of real (physical) observation processes re-
veals that the limitations in the observation processes introduce two types 
of unavoidable imperfections: random noise dilutes the precision of the 
observation (section 4), and the finiteness of the sensor limits the level of 
detail (section 5). In a well-designed sensor these two effects are compre-
hensively characterized by scale. Map scale, in this definition, is therefore 
not an artifact of cartography but originates in the physical observation 
process itself; every observation introduces necessarily a scale to the data, 
independent of cartographic rendering.  

The novel contributions of this paper are: 
1. An ontology based analysis reveals universal limitations of all physi-

cal observation processes. These limitations are random noise and fi-
niteness of sensors; quantitative descriptors of data quality must ori-
ginate in these universal sources of imperfections. 

2. A theory of data quality grounded in universal properties of the ob-
servation process and thus independent of technology, usable to inte-
grate data from different sources and assess the quality of the result.  

3. Introducing scale as a property of data resulting from the observation 
process (and not an artifact of cartographic rendering). 

4. Scale is a justifiable summary description for data quality of static 
physical geographic datasets for observation processes that are with 
balanced precision and resolution. It can be extended from the spatial 
to the temporal dimension.  

2 Tiered Ontology 

An ontology describes the conceptualization of the world used in a particu-
lar context (Guarino 1995; Gruber 2005). The ontology clarifies the con-
cepts and communicates the semantics intended by data collectors and data 
managers to persons making decisions with the data. Clarification of se-
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mantics is equally important for the semantics of data quality description. 
Therefore, the description of data quality must be included in the ontology 
(Frank 2008b). 

The tiered ontology used here (Frank 2001, 2003) starts with tier O, 
which is the physical reality, that “what is”, independent of human interac-
tion with it. Tier O is the Ontology proper in the philosophical sense 
(Husserl 1900/01; Heidegger 1927, reprint 1993). The ordinary space-time 
continuum is assumed as the structure of physical reality.  

2.1 Tier 1: Point Observations 

Reality is observable by humans and other cognitive agents (e.g., robots, 
animals). Physical observation mechanisms produce data values from the 
properties found at a point in space and time. v = p (x, y, z, t). A value v is 
the result of an observation process p of physical reality found at point (x, 
y, z) and time t.  

Tier 1 consists of the data resulting from observations at specific loca-
tions and times (termed point observation); philosophers sometimes speak 
of “sense data” (Stanford Encyclopedia of Philosophy 
http://plato.stanford.edu/). In GIS such observations are often realized as 
raster data resulting from remote sensing, similarly to our retina that per-
forms such point observations in parallel. Sensors and sensor networks 
(Stefanidis et al. 2005) in general produce point observations as well, but 
of a different kind, as will be seen in section 5. 

2.2 Tier 2: Objects 

The second tier is a description of the world in terms of physical objects. 
Objects are regions of space that have uniformity in some property. The 
object representation reduces the amount of data, if the subdivision of the 
world into objects is such that most properties of the objects remain invari-
ant in time (McCarthy et al. 1969). For example, most properties of a taxi 
cab remain the same for hours, days or even longer, and they need not be 
observed and processed repeatedly. Only location and occupancy of the 
taxi cab change often.  

The formation of objects—what Zadeh calls granulation (Zadeh 
2002)—is a complex process of (1) determining the boundaries of objects 
(2) summarizing some properties for the delimited regions and finally (3) 
determine the type of the object (classification). For objects on a tabletop, 
object formation is dominated by spatial cohesion, which moves as a sin-
gle piece is an object: a cup, a saucer, and a spoon (Figure 1). 
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Fig. 1. Simple physical objects on a tabletop: cup, saucer, spoon 

Geographic space does not lead itself to such a single, dominant, subdivi-
sion as objects typically do not move. Multiple aspects are used to form 
regions of uniform properties, leading to different objects overlapping in 
the same space (Figure 2). Watersheds, areas above some height or regions 
of uniform soil, uniform land management, etc. can be identified and they 
all overlap (Couclelis 1992). Object classification is optimized to classify 
objects suitable for certain operations (hunting, planting corps, grazing cat-
tle, etc.). 

 
Fig. 2. Fields in a valley: multiple overlapping subdivisions in objects are possi-
ble. 

2.3 Tier 3: Social Constructions 

Tier 3 consists of constructs combining and relating physical objects to ab-
stract constructs. This includes constructions like money (Figure 3), legal 
marriage, ownership of land, etc. Constructed reality links a physical ob-
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ject X to mean the constructed object Y in the context Z. “X counts as Y in 
context Z” (Searle 1995). 

 
Fig. 3. Some pieces of metal and a piece of paper counting as money in the Czech 
Republic 

Social constructions give meaning to physical objects or processes. So-
cially constructed objects can alternatively be constructed from other con-
structed objects, but all constructed objects are eventually grounded in 
physical objects. No “freestanding Y terms”, contrary to (Zaibert et al. 
2004).  

The present article focuses on physical observations and objects; the 
generalization of results to social construction is left to future work. 

 3 Information Processes 

Any ontology for an information system that separates different aspects of 
reality must not only conceptualize the objects and processes in reality but 
must also describe the information processes that link the different concep-
tualizations and transform between them. This is of particular importance 
for an ontology that divides conceptualization of reality in tiers (Frank 
2001; Smith and Grenon 2004). This transformation process introduces 
imperfections and is therefore responsible for the data quality.  

Information processes transform information obtained at a lower tier to 
a higher tier (Figure 4). All human knowledge is directly or indirectly the 
result of observations, transformed in chains of information processes. The 
processes that connect the tiers of ontology are described in this section 
before analyzing the limitations that produce the imperfections in the ob-
servation in the next two sections. All imperfections in data must be the re-
sult of some aspect of an information process. As a consequence, all theory 
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of data quality and error modeling has to be related to empirically justified 
properties of the information processes.  

 

 
Fig. 4. Tiers of ontology and information processes transforming data between 
them 

3.1 Observations of Physical Properties at Point 

The physical process that links tier O to tier 1 is the observations of physi-
cal properties at a specific point. Observations are imperfect for two causes  

• random noise disturbs the value produced and reduces precision, and 
• finiteness of sensors force the observation not at a point but over an ex-

tended area and limits resolution.  

A systematic bias can be included in the model of the sensor and be cor-
rected by a function and is not further considered. Noise reducing preci-
sion is the focus of sections 4 and the finiteness of the sensor limiting reso-
lution is discussed in section 5 (Figure 5). 
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Fig. 5. Imperfections in point observations 

Observations must be represented with finite length symbols. This discre-
tization introduces yet another imperfection sometimes expressed as ‘dy-
namic range’. It is of minor importance because observation systems can 
be constructed such that this influence is negligible compared to the influ-
ences of noise (see also subsection 5.3). 

 3.2 Object Formation (Granulation) 

Human cognition focuses on objects and object properties. We are not 
aware that our eyes (but also other sensors in and at the surface of our 
body) report point observations. For example, the individual sensors in the 
eye’s retina give a pixel-like observation, but the eye seems to report about 
size, color, and location of objects around us (Marr 1982). The observa-
tions are, immediately and without the person being conscious about the 
processes involved, converted to object data connecting tier 1 point obser-
vation to tier 2 object properties. Such processes are found not only in hu-
mans but higher animals also form mental representations of objects as 
well.  

Object formation increases the imperfection of data—instead of having 
detailed knowledge about each individual pixel only a summary descrip-
tion of, for example, the object “middle wheat field” in Figure 2 is re-
tained. Reporting information with respect to objects results in a substan-
tial reduction in size of the data. For example in Figure 2, the area for the 
field includes approx. 1.5 million pixels each of which has 8 bits in three 
color changes. The compact representation as a region requires few points 
for the boundary and a few bytes to describe the average color of the re-
gion. This is a computer model and not necessarily representative for proc-
esses in a human brain but gives nevertheless a general idea of the million 
fold compression achieved by object formation.  

Object formation consists of three information processes 
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• boundary identification, 
• computing summary descriptions, and 
• classification, 

which will be sketched in the following three subsections (more details in 
(Frank draft 2005)). 

3.3 Boundary Identification 

Objects are formed as regions in two-dimensional space (or 3D, 2D + T, 
3D + T, etc.) that are uniform in some aspect. An object boundary is de-
termined by first selecting a property and a property value that should be 
uniform across the object, similar to the well-known procedure for region-
alization of 2D images. Tabletop objects in Figure 1 are uniform in the ma-
terial coherence and in their movement (Reitsma et al. 2003) the field in 
Figure 2 is uniform in its color. Object formation exploits the strong corre-
lation found in the real world; human life would not be possible, if not for 
most properties and places, nearby values are very similar. Which proper-
ties must be uniform to form an object is determined by the interactions in-
tended and the situation. The focus of this article excludes a detailed dis-
cussion of processes and how they depend on properties of the object 
involved relating properties, object boundaries, and affordance of proc-
esses (Gibson 1986; Raubal 2002; Kuhn 2007). 

3.4 Determination of Descriptive Summary Data 

Descriptive values, summarize the properties of the object limited by a 
boundary. The computation is typically an integral (or similar summary 
function) that determines the sum, maximum, minimum, or average over 
the region, e.g., total weight of a movable object, amount of rainfall on a 
watershed, maximum height in country (Tomlin 1983; Egenhofer et al. 
1986). 

∫∫∫=
Fn

n dx dy dzx, y, zva  )(   (1)

where the attribute value for attribute a and object n is the integral over the 
3D region Fn of the object n for the property value at v(x, y, z). 
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3.5 Classification 

Objects once identified are mentally classified. On the tabletop (Figure 1), 
we see a cup, spoon, and saucer; in a landscape (Figure 2) forest, fields, 
and streams are identified. Classes—similar to types in computer lan-
guages (Cardelli 1997)—indicates which operation can be performed with 
an object. Gibson introduced the term affordance (Gibson 1986; Raubal 
2002). 

 
Fig. 6. Pouring requires two container objects and one liquid object 

Mental classification relates the objects identified by granulation processes 
to operations, i.e., interactions of the cognitive agent with the world. To 
perform an action, e.g., to pour water from a pitcher into a glass (Figure 6) 
requires a number of properties of the objects involved: the pitcher and the 
glass must be containers, i.e., having the affordance to contain a liquid, the 
object poured must be a liquid, etc. I have used the term distinction for the 
differentiation between objects that fulfill a condition and those that do not 
(Frank 2006). Distinctions are partially ordered: a distinction can be finer 
than another one (e.g., drinkable is a subtaxon of liquid); distinctions form 
a taxonomic lattice (Frank 2006).  

3.6 Constructions 

The tier 3 contains constructed objects and actions, which are linked 
through granulation and mental classification to the physical reality of 
physical objects and operations. They are directly dependent on the infor-
mation processes described above, but details are not consequential for 
present purposes. 
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4 Random Effects on the Observations 

Physical sensors are influenced by random processes that produce pertur-
bations of the observations. The unpredictable disturbance is typically 
modeled by a probability distribution. For most sensor a normal (Gaussian) 
probability distribution function (pdf) is an appropriate choice described 
by expected value (mean μ) and variance (standard deviation σ). 

 
Fig. 7. Normal distribution 
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If the same observation could be repeated multiple times (which is strictly 
speaking not possible, because these observations would be at different 
times), we could compute an average and a standard deviation from the 
values observed.  

4.1 Influence on Object Formation and Summary Values 

Errors in the observation influence the determination of the object bound-
ary. The statistical error of the boundary follows for simple cases from 
Gauss’ law of error propagation; the standard deviation σf for function 
f (u,v,w) in terms of σu, σv, and σw is: 
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If the observation information processes allow a probabilistic description 
of the imperfections of the values, then the imperfections in the object 
boundary and summary value are equally describable by a probability dis-
tribution. Assuming a pdf for the determination of the boundary, one can 
describe the pdf for the boundary line (Figure 8). It is an open question 
whether the transformations of probability density functions associated 
with boundary derivation and derivation of summary values preserve a 
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normal distribution, i.e., if observation processes described by imperfec-
tions with a normal distribution produce imperfections in boundary loca-
tion and summary values that are describable again by a normal distribu-
tion. 

 
Fig. 8. The transformation of pdf from observations to object attribute values 

4.2 Classifications 

Distinctions describe limits in the attribute values of an object, whether the 
object can or cannot be used for a specific interaction and thus is mentally 
classified as a particular category. The decision whether the values for an 
object are inside the limits or not is more or less sharp and the cutoff usu-
ally gradual (Figure 9). The distinctions and classifications are therefore 
fuzzy values, i.e., membership functions as originally defined by Zadeh 
(1974). This is a fuzzy membership value for the category because neither 
the relevant attribute values of the object nor the limits for classification 
are known accurately. Here error propagation usually comes to an end, be-
cause the situation and the mental assessment include various correlations 
between the multiple relevant aspects; it is more complex than the proto-
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typical engineering decision. Classification reduces precision to what is 
relevant in the context of an operation; it also reduces uncertainty and in-
creases reliability. 

 
Fig. 9. Classification of objects results in fuzzy membership values 

4.3 Qualitative Description 

The assumption that the influence of the random effects follows a normal 
distribution is usually justified for physical observations. It is then reason-
able to use the standard deviation σ to describe quantitatively the precision 
of observation data, even approximatively for data derived from point ob-
servations.  

5 Finite Observation Devices 

In this section the effects of the finiteness of physical observation instru-
ments are discussed. The limits are threefold: 

• the sensors are not infinitely small but measure over an extended area 
and time, 

• only a finite number of observations are possible, and 
• only a finite number of different readings to represent the observation 

value is possible.  
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5.1 Effects of Size of Sensor 

A sensor cannot realize a perfect observation at a perfect point in space or 
time. Any physical observation must integrate the effects of a physical 
process over a region during a time. The time and region over which the 
integration is performed can be made very small. For example, a pixel sen-
sor in a camera has a size of 5/1000 mm and integrates (counts) the pho-
tons arriving in this region for as little as 1/5000 sec but it is always of fi-
nite size and duration. The size of the area and the duration influences the 
result and give a “scale” to an observation. 

The sensor can be modeled as a convolution of the perfect observation 
with a Gaussian. The effects of the size of the observation device is as un-
avoidable as the random perturbations of the observations, which is more 
widely recognized, discussed and given a formal model (summarized in 
the previous section). The intended point-observation v = f (x, y, z) cannot 
be realized but effectively the device reports the average value for a small 
area and a small time interval ε. 

εε
ε

ε

dx, y, z, tfx, y, z, tv )- )((  )(
-
∫
+

=  (4)

where ε ranges over the size (x, y, z) and the time (t) interval used by the 
sensor. The region ε (in space and time) is called the support of the sensor. 
The imperfection in the observation process can be formalized as a special 
case of convolution. Convolutions are shift and linear invariant transfor-
mations, meaning shifting a signal in space gives the shifted result (5.1) 
and  the addition of two inputs gives the addition of the two outputs (5.2) 
(for two signals g and h and a transformation f). This is: 
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These seem to be fundamental rules for observation systems of a spatio-
temporal reality.  

The formal model is a convolution of f (x, t) with a kernel k (ε) 

.)()) ,(( ) ,(  is  )( ∫ −= εεεε dktxftxvk  (6)

The observation f (x, t) is multiplied by the kernel value k (ε), which is 
non-zero only for a small region around zero (the support) and for which 
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.1  )(∫ =εε dk  (7) 

For sensors in cameras, the effect can be modeled with a convolution with 
the size of the sensor elements (Figure 10a). Together with the inevitable 
blurring of the optical system, the imperfection of the observation can be 
approximated by a convolution with a Gaussian kernel (Figure 10b). 

 
Fig. 10. a) a pillbox function describing a camera sensor b) the Gaussian with a 
variance σ 

5.2 Effects of Finite Number of Observations 

The sampling theorem addresses another related limitation of real observa-
tions: It is impossible to observe infinitely many points; real observations 
are limited to sampling the phenomenon of interest at finite number of 
points.  

Sampling introduces the danger that the observations may suggest a sig-
nal that is not present and an artifact of the sampling (Horn 1986). The 
sampling theorem (a.k.a. Nyquist law) states that sampling must be twice 
as frequent as the highest frequency in the signal to avoid artifacts (so-
called aliasing). The signal must be filtered and all frequencies higher than 
half the sampling frequency cut off (low-pass filter). In the audio world the 
sampling theorem is well known, but it applies to multi-dimensional sig-
nals as well: including sampling by remote sensing or sensor network in 
geographical space. It maybe appear strange to speak of spatial frequency, 
but it is effective to make the theory available to GIScience, where it must 
be applied to all dimensions observed (2 or 3 spatial dimensions and the 
temporal dimension).  

Filtering out high frequencies, i.e., small objects in the image, must be 
performed before sampling. Cameras, our eyes and remote sensing devices 
by their construction from small sensor elements tightly packed attenuate 
high frequencies sufficiently to avoid aliasing modeled in a convolution 
with a pillbox function (Figure 8a). The limitations of the optical system 
producing blur is similarly a low-pass filter, which can be modeled as a 
convolution with a Gaussian kernel (Figure 8b). The two effects (finite 
highly packed sensors and optical blur) create observations, which are 
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suitably filtered by a low-pass filter to avoid aliasing. Point sensors spread 
at a distance however do not filter high frequencies and artifacts due to 
aliasing may appear in the data, if frequencies higher than half the sam-
pling rate are present in the terrain. The regular patterns of vineyards, a 
high frequency signal in space has been observed to produce artifacts in la-
ser scanning data (personal communication Wolfgang Wagner January 
2009).  

The finiteness of observations introduces effectively a scale into the 
data. It limits the resolution to objects twice the size of the sampling rate. 
From observations at one scale more generalized data on a larger scale 
(i.e., cartographically speaking, a smaller scale) can be produced, ap-
proximatively by convolution with a Gaussian, but data of higher resolu-
tion cannot be derived. The sampling rate effectively limits the zooming-in 
to obtain more detail. Proper observations avoiding aliasing can be for-
mally modeled as a convolution with a Gaussian kernel acting as a low-
pass filter followed by sampling. For this situation it appears reasonable to 
say that the observation has the “scale” corresponding to half the sampling 
frequency v, which is the cutoff frequency of a proper low-pass filter. A 
numerical description of “scale” could then be 1/v with dimension time 
(second) and length (meter) respectively; giving the size of the smallest de-
tail included.  

It is debatable whether to call this scale, adding one more sense to the 
dozen already existing, or to use a term like resolution or granularity. I pre-
fer resolution because speaking of a dataset and stating its resolution, for 
example as “30 m in space and 1 year in time”, extends the current usage 
reasonably.  

5.3 Effects of Finite Representation of Observations 

The representation of the observation is again finite. Only values from a 
range can be used. For example in photography and remote sensing, the in-
tensity (amplitude) of the signal is given by an 8 bit value allowing values 
between 0 and 255 (28 -1)—the so-called dynamic range. In a properly de-
signed observation system the dynamic range is smaller than the precision 
of the sensor and has therefore a negligible effect.  
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5.4 Effects of Scales on Object Formation 

5.4.1 Size of smallest objects detected 

The scale of the observation limits the smallest object that can be detected; 
objects with extension in one dimension less than the scale are not ob-
served and their extent is merged with the neighbors. This applies to small 
separating objects as well; roads or streams separating two fields are not 
picked up at large scale (low resolution) sampling and two separate fields 
appear as one.  

5.4.2 Effects on attribute values 

Attribute values are derived from two different observations: one signal is 
used to determine the object boundary the other is integrated over the re-
gion of the object to give the attribute value (subsection 3.4). If the two 
scales are comparable, the result will be meaningful at this scale. If, how-
ever, the scales are different, the interpretation of the result is difficult. The 
result has the larger scales of the two; it seems possible to treat this ques-
tion formally in the framework designed here and I leave this as open 
question.  

5.4.3 Effects on object classification 

The scale of observation, influencing directly the object formation influ-
ences indirectly the classification in geographic data. This is relevant, 
where the size of an object influences the classification especially if the 
class is distinct by a size, e.g., small buildings vs. larger buildings. A re-
cent study on reserves of land zoned ‘residential’ assumed that a building 
to qualify as a residential building had a minimal footprint of 60 sq.m. 
(Riedl 2009). In data of a scale m one does not expect objects smaller than 
f • m2, where f is the maximally expected indicating how different such ob-
jects are from a square (respective cube).   

5.5 Qualitative Descriptors 

The finiteness of the sensor is affecting the data in 3 ways: 

• the sampling rate 
• the support of the sensor 
• the dynamic range of the sensor. 
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The support of the sensor produces in a well-designed observation system 
the necessary low-pass filter to satisfy the sampling theorem for the sam-
pling rate used. In this case a description with the sampling rate in space 
and time alone is sufficient. Dynamic range in a well-designed sensor is 
such that the effects are less than the noise in the observations.  

6 Scale as a Summary Description 

In a well-designed observation system, the inevitable imperfections intro-
duced by the observation system are by design balanced. There is no point 
in taking more samples than necessary from a band—with limited signal or 
observing with more precision a low resolution (band limited) signal. The 
appropriate relation between the low-pass filter and the appropriate preci-
sion of the observation depends on the amplitude (energy) of the signal for 
different frequencies. In general more precision in the observation than 
what is filtered away will be unnecessary.  

Noting that quantitative descriptors for data quality are neither obtained 
nor required to be very precise, it is sufficient if the four characteristics 
(precision, sampling rate, highest frequency in signal, and dynamic range) 
of the observation system are approximately corresponding. Then they can 
be described with a single quantity, for which I suggest to use the term 
scale.  

If the highest frequency in the signal is v, corresponding to a wavelength 
λ, then the resolution is 2λ and the smallest objects discernable are at least 
of size 2λ in any dimension. The spatial-temporal precision should then be 
of the same order (σ ≈ λ) and the attribute precision comparable to the am-
plitude in signal frequencies higher than v. 

The traditional map scale, describing the result of a cartographic render-
ing process, is organized around the accuracy of the human eye and limita-
tion of the reproduction process. Assuming that one tenth of a millimeter is 
the graphical resolution, the “scale” describes the size of this minimal 
graphical element (1/10 to 1 millimeter) in reality. A map scale of 1:50.000 
indicates that the smallest object expected is 5 m to 50 m, and precision of 
location is approximately the same. Spatial resolution expressed in milli-
meters (50m = 50.000 mm) gives the customary scale denominator. Dif-
ferent national mapping standards vary somewhat, but this describes the 
expectations of a map reader and his assessment what use the map is fit for 
realistically.  

As a guideline, traditional map scale is therefore a reasonable compre-
hensive descriptor for the quality of a balanced data product. Combining 
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datasets of similar “scale” produces most likely reasonable results. Com-
bining datasets with very different “scales” requires care and the four dif-
ferent characteristics of observation quality must be considered separately. 
It is probably acceptable that for datasets for which only a summary de-
scription with scale is given, the individual characteristics are “recon-
structed” assuming a balanced observation method.  

7 Conclusions 

Physical observation systems deviate in two inevitable and non-avoidable 
respects from the perfect point observation of the properties of reality: 

• Random perturbation of results  
• Finite spatial and temporal extent over which the observation system in-

tegrates. 

Random effects are described by probability distribution function pdf and 
the propagation of these follow in simple cases Gauss’ Law of error 
propagation, in general transformations for the probability distribution 
must be computed.  

The effects of finite support for the observation can be modeled as a 
convolution with a Gaussian Kernel and the non-zero extend of the kernel 
determines the “scale” of the observation. The signal must be filtered be-
fore the sampling with a low-pass filter to cut off all frequencies above 
half the sampling frequency. The typical sensors for remote sensing or 
photogrammetry achieve this and can be modeled as convolution with a 
Gaussian kernel.  

In a balanced, well-designed observation system, the attenuation of fre-
quencies above the half the sampling frequency is sufficient to avoid arti-
facts in the result (aliasing). Precision for the signal corresponds to the 
resolution. 

For a dataset obtained with a well-balanced observation system, a char-
acterization of the quality by a spatial and temporal scale is reasonable. It 
allows decision by users about the uses the data is fit for. A detailed analy-
sis is necessary if multiple signals are observed by different observation 
systems, which is the regular case for GIS. The improvements of interop-
erability allow the use of datasets from different sources. If they are com-
bined, the analysis must detail the four characteristics for each signal and 
consider its combination. The limitations resulting from analog overlay of 
detailed and less detailed maps are known—they are not less severe in a 
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digital system but less visible. The description given here shows how they 
can be dealt with analytically.  

Using a tiered ontology where point observations are separated from ob-
ject descriptions allows to follow how the imperfection introduced by ran-
dom error and scale propagate to objects and their attributes. The analysis 
of the physical observation process and its formalization as a combination 
of random noise and a convolution with a Gaussian Kernel opens the door 
for a formal treatment of the effects in particular situation. Recommended 
is research to understand how data of different scale interacts and how 
from a dataset with small scale a dataset with a larger scale can be derived. 
Previous research by Openshaw et al. (1987) on the modifiable areal unit 
problem (MAUP) documents the importance of the question. The frame-
work allows a formal treatment, but does not answer the question what the 
right scale to describe a phenomenon is. A recent paper by Gabora, Rosch 
and Aerts (Gabora et al. 2008) discusses the transformation of concepts 
(classes) between contexts. Changes in scale can be modeled as scale 
change and it appears promising to see if the approach of Gabora et al. ap-
plies.  

Information is used to make a decision; this may be a simple, everyday 
decision in street navigation—”do I turn right or left here?”—decisions 
leading to important and complex actions—”is a new hospital building at 
location X necessary?”—or even indirectly connected to action as in the 
testing of scientific hypothesis that leads to scientific rules. A decision can 
always be reduced to a binary question and thus brought to a comparison 
of two values, from which a yes or no answer follows. Formally a decision 
is described as a test: R – S > 0. If imperfections affect R and S and formal 
models exist for these imperfections, the imperfection of the decision—
i.e., the risk that the decision is wrong—can be tested. In particular, the 
scale for the observation of R and S must be comparable; this means for 
ordinary supplications that the scale of the observation should be compa-
rable to the scale of the action we decide on. 

Scale effects in geographic data are not yet well understood, despite 
many years of being listed as one of the most important research problems 
(Abler 1987; NCGIA 1989b; NCGIA 1989a; Goodchild et al. 1999). It is 
hoped that the conceptual clarification achieved here and the formalization 
using convolutions contributes to advancing research in scale effects in in-
formation processes. 
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