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Abstract. 3D and temporal objects must be included in GIS to handle real 
world phenomena. Many have studied extension of spatial operations to these 
multi-dimensional spaces and suggested technical solutions to extend a spatial 
operation to a new multi-dimensional space. These technical approaches have 
led to developments which can not be generalized. One technique used to 
extend a spatial operation from 2D to a multi-dimensional space is not likely 
usable for another spatial operation, nor to extend the same spatial operation to 
another multi-dimensional space. This paper suggested studying spatial 
operations via their dimension-independent properties. It intends to construct a 
mathematical framework to integrate spatial operations of different multi-
dimensional spaces (3D and time) a GIS should support. The framework will be 
independent of the space in which the operations are applied using algebraic 
structures - and more specifically category theory - that ignore those properties 
of operations which depend on the objects they are applied to. Implementations 
for some case studies for spatial operations of moving points are presented.  

Keywords: Spatial operations, Multi-dimensional GIS, Algebraic Structures, 
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1   Introduction 

Early geospatial information systems (GIS) dealt with position in a static 2D 
Euclidean space. To handle real world phenomena, however, applications need 3D 
and temporal objects. Extension of the realm of GIS to these multi-dimensional 
spaces has a wide range of requirements from data storage and data structure 
considerations to visualization strategies [1, 4, 5, 6, 7, 17, 19, 23, 24, 26]. 

Extension of spatial operations to higher dimensional spaces has been the subject 
of many studies [3, 19, 22, 29] each has developed a technical solution to extend a 
spatial operation to a new multi-dimensional space with least increase in complexity 
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and speed. A common shortcoming is that the extension techniques are dependent on 
the specific case studied. It has resulted in developments which can not be generalized 
[8, 28]. For example while Mostafavi had developed a technique to construct Voronoi 
Diagrams and Delaunay Triangulation for 2D moving points (2D+T) [22], Ledoux 
extended a different technique for 3D moving points (3D+T) [19]. If we are to extend 
these operations for another type of points, then new research is necessary to figure 
out how to accomplish this task. The same is true to extend other operations, say point 
in polygon. Any changes in the operation or destination space of an already 
implemented spatial operation require new research to find a solution for this 
extension. It is not likely to achieve multi-dimensional counterparts of all of the 
already implemented 2D spatial operations in this haphazard way in the near future. 

This paper proposes to study spatial operations via their space-invariant properties. 
This is similar to the approach proposed by Felix Klein in 1872 to study geometries 
via their invariants properties which are independent of dimension [16]. Having 
implemented a spatial operation for a simple 2D space using combination of the 
elements of this underlying integrated framework, it can be extended to other multi-
dimensional spaces. These extensions will be done through mappings which are 
known relationships between 2D and the desired multi-dimensional spaces. The result 
is a principled and generalizable method to extend spatial operations. 

Section 2 explains the motivation of the research in more details. Section 3 is 
devoted to the underlying mathematical concepts. In Section 4, steps of extending 
spatial operations for moving points based on the proposed approach are explained 
using written code in the functional programming language Haskell. The results of 
this implementation for some case studies are presented in Section 5. Finally, Section 
6 contains conclusions and remarks for further steps of the research. 

2   Spatial Operations for Multi-dimensional Objects 

Do spatial operations have space-invariant properties? This is intuitively true, 
because the GIS operations represent different aspects from the same real world 
operation. Can we describe spatial operations based on these space-invariant 
properties and then generalize these abstract descriptions to any multi-dimensional 
space? Frank (1999) believes that it has not yet been done for lack of efficient 
methods: 

“A fundamental scientific question today is how to construct complex 
systems from simple parts. Science is very good at analyzing individual 
pieces of the puzzle. The combination of these pieces to form a whole is 
left as “a simple exercise for the reader” – and everybody knows from 
experience, that these simple exercises are not easy at all… The lack of 
efficient methods to deal with the combination problem is likely the main 
reason” ([6], p. 95). 

The main deficiency of current research is that it differentiates what is similar 
behavior of a spatial operation in different multi-dimensional spaces. It differentiates 
the same spatial operations in different spaces despite their unification in the real 
world operations. People do not think about the types of the values when doing an 
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operation; they do the same for adding things, independent of what is added: sheep, 
matches, Roman or Arabic numbers [8]. In a similar view, “A GIS must connect 
different conceptualizations of space and allow an integrated analysis of facts related 
to them” ([8], p. 86). However, the space-based and dimension differentiated views of 
current approaches prevent generalization and lead to patchwork.  

The separation - or specialization – in how to deal with different multi-dimensional 
spaces is essential for exploring them, but along these separations, keeping the 
connections with other branches is essential. The explored space can be revised 
through these connections to capture more relations and establish an integrated 
framework. This is something which has been neglected in GIS software. 

We believe there is now enough knowledge about different branches of GIScience; 
it is time to find the connections in order to construct an integrated framework for 
spatial operations in multi-dimensional spaces. While a number of methods have been 
developed to perform a spatial operation in different multi-dimensional spaces, they 
represent the same concept in the real world: there are different methods to calculate 
the distance between two points depending on the type of the points (2D or 3D, 
temporal and non-temporal, etc.), while the concept of distance in all of these multi-
dimensional spaces is the same. 

To prove this claim, we need a more abstract view that ignores those properties of 
operations which depend on the object they are applied to. It enables us to have 
abstract description of operations with known mappings to more specific multi-
dimensional spaces so that they can be extended and combined to support a variety of 
multi-dimensional spaces. Frank (1999) introduces functional abstraction as a solution 
for such formal models: 

 
“… A function square(x) can be used in various contexts with different 
values for x. The same concept can be applied at a higher level of 
abstraction. Algebras consist of several functions that can be named and 
have parameters. The parameters do not stand for concrete values as in 
procedures, but – a step more abstract – for types. They can be combined 
and the type parameters duly replaced by the actual parameters, much the 
same way as in the application of functions” ([6], p. 96).  

 
The required abstraction is the subject of algebra which describes an abstract class 

of objects and their behaviors [9, 20]. The Structure of operations in an algebra is 
independent of an implementation. Thus, behavior of many things can be described 
with the same algebra as long as their behavior is structurally equivalent [12, 14]: 

 
“Algebra discusses the structure of operations and defines precisely what is 
meant by structure. Structure of operations means properties of operations 
that are independent of the objects the operations are applied to. Algebra 
describes the ‘structure’ of a real world system in a precise way and 
independent of the representation” ([8], p. 57). 

 
There are some advantages in an algebraic view on different spaces. Firstly, it 

considers the unified nature of our unique physical reality when handling the included 
context [13]. Secondly, if an operation in one of the spaces is developed, the 
implementation materials (e.g. code) can be reused for other spaces [7, 13, 14, 15]. 



156 F. Karimipour, M.R. Delavar, and A.U. Frank 

Finally, it enables us to combine these simple extended parts to have a combined 
system [6]. 

Algebraic structures have different levels of abstraction: Set and Group are 
examples of algebraic structures. Somewhere at the top of the abstraction ladder, we 
reach category algebraic structure [21] which is an application of concepts of algebra 
to algebras themselves [8]. “Category theory gives a very high level abstract 
viewpoint: instead of discussing the properties of individual objects we directly 
address the properties of the operations” ([8], p. 66). 

The goal is constructing a mathematical framework in which spatial operations of 
multi-dimensional spaces are integrated through incorporation of algebraic structures 
and using formalizations already used in GI science [2]. 

3   Approach and Scientific Background 

We first concentrate on a representation which provides the minimum information about 
spatial operations in a general context to construct a mathematical framework to integrate 
spatial operations in different multi-dimensional spaces through concentration on space-
invariant structural properties. In particular, the representation must be independent of the 
dimension of the space. Algebraic structures and especially category theory provide the 
tools to work formally at this abstract level. This section defines a “category” and the 
related concept “functor”. Then it explains the application to extend spatial operations to 
multi-dimensional spaces. 

3.1   Categories and Their Mappings 

A category is a collection of primitive element types, a set of operations upon those 
types, and an operator algebra which is capable of expressing the interaction between 
operators and elements [10, 15]. In the mathematical language, a category C is 
consists of a class of objects and a class of morphisms, which are functions between 
objects, with composition and identity properties as follows [18]: 

 

CA∈∀    AAeA →∃ :    ].,.:,:[ gegffeCBgBAf AA ==⇒→→∀∋  

CBgBAf →→∀ :,:    CAh →∃ :    gfh .=∋  

hgfhgfhgfCAhCBgBAf ..)..()..(:,:,: ==⇒→→→∀  

(1) 

 

Figure 1 shows an example for the category of sets with objects A, B, C, D and 
morphisms f1 to f5. 

A functor between two categories associates elements (objects) and operations 
(morphisms) from one category to another that preserves the structure and operator 
algebra [10]: 

 

)()( AFA eeF =
 

⇒∈→∈→∀ PCBgPBAf :,:  

QCFBFgFQBFAFfF ∈→∈→ )()(:)(,)()(:)([ )().().( gFfFgfF =∋  

(2) 
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Fig. 1. A category with its objects and morphisms [14, 15] 

 
Fig. 2. Functor F transforms the first category P to the second category Q [14, 15] 

The two rules guarantee that each identity morphism is mapped to its associated 
identity morphism and composition is preserved. Figure 2 shows functor F which 
transforms the category P to the category Q. 

3.2   Categorical Approach to Extend Spatial Operations for Multi-dimensional 
GIS 

Representations of spatial operations in different multi-dimensional spaces have 
equivalent structure categories. These multi-dimensional spaces occurring in a GIS 
can be seen as categories with data types and primitive operations whose combination 
constructs more complex spatial operations. A spatial operation in the category of 
static 2D space based on the formal description and using the data types and primitive 
operations is extendable to the categories of other multi-dimensional spaces with a 
functor. The functor lifts the used data types and primitive operations through a 
defined mapping between static 2D and the desired multi-dimensional space. Then the 
complex spatial operations are mapped automatically, because they are defined as a 
combination of data types and primitive operations independent of their 
implementations [12, 13, 14, 15]. Figure 3 shows the described approach to extend 
static 2D spatial operations to their temporal 2D counterparts. 

 

P Q
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Fig. 3. Using Functor T to extend 2D spatial operations to their 3D counterparts 

4   Using the Proposed Approach to Extend Spatial Operations for 
Moving Points 

This section explains how to use the proposed approach to extend spatial operations 
for 2D moving points which has been implemented so far. We are working on 
extensions to 3D static and moving points which will be published in our future 
publications [11]. The code has been written in the functional programming language 
Haskell [25, 27]. 

4.1   Data Types and Their Extension 

The first step of implementing spatial operations is definition of the required data 
types. “Float”, “Point”, “Line” and “Polygon” are the data types required for the 
spatial operations. To present moving points, we need a “Time” data type as well [15]: 

 

data Point = Point Float Float 
data Line = Line Point Point 
data Polygon = Polygon [Point] 
type Time = Float 
 
A 2D point is composed of x and y as floating point numbers. A line is presented 

by its start and end points. A polygon is defined by a list of points. Finally time is 
defined as a discrete parameter which is presented by a floating point number. 

Defining required data types, the functor changing, which adds time parameter “t” 
to its input value, is defined as follow [11, 15]: 

 

Type Changing v = Time -> v 

For example Changing Float indicates a changing floating number (i.e. a 
function of time). 

Static 2D Primitive Operations Static 2D Data Types 

Temporal 2D Primitive Operations Temporal 2D Data Types 

Static 2D Spatial Operations 

Temporal 2D Spatial Operations 

Functor T 
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4.2   Primitive Operations and Their Extension 

To implement spatial operations, they are decomposed into a set of primitive 
elements. Having developed these primitive elements for 2D static points, their 
extension to 2D moving points is based on a functor. The mappings for time lifting, 
which add time parameter “t” to their input functions, are defined as lift0, lift1and lift2 
to lift operations with zero, one and two parameters functions, respectively [11, 15]. 
Lifting for operations with more arguments can be done in a similar way: 

lift0 a = \t -> a 
lift1 f a = \t -> f (a t) 
lift2 f a b = \t -> f (a t) (b t) 

For example lift2 (+) is the plus operation to add two changing number. 

4.3   Spatial Operations for Moving Points 

Having developed data types and primitive elements, spatial operations are defined 
based on their combinations. Lifting data types and primitive elements, as it was 
explained in subsections 4.1 and 4.2, provides lifted spatial operations, automatically. 

5   Case Studies 

The material prepared in section 4 was used to extend some spatial operations for 2D 
moving points. To verify the idea, this section first explains how the proposed 
approach extends distance between two 2D static points, as a primary spatial 
operation, for 2D moving points. Then results for three selected spatial operations 
“Convex Hull”, “Voronoi Diagrams” and “Point in Polygon” are presented. 

5.1   Distance between Two Moving Points 

Calculating Euclidian distance of two 2D points requires some operations for “Float” 
data type [11, 15]: 

class Number a where 
   (+), (-), (*)  :: a -> a -> a 
   sqr, sqrt :: a -> a 
   sqr a = a * a 
 

Then the class point which support vector plus and minus as well as distance 
operation is defined as follow [11, 15]: 
 

class Number s => Points p s where 

   x, y :: p s -> s 
   x (Point x1 y1) = x1 
   y (Point x1 y1) = y1 
   (+), (-) :: p s -> p s -> p s 
   (+)   a b = Point (x a + x b) (y a + y b)  
   (-)   a b = Point (x a - x b) (y a - y b) 
   dist :: p s -> p s -> s 
   dist a b = sqrt(sqr((x a)-(x b))+sqr((y a)-(y b))) 
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Finally lifting the operations for numbers will provide us with a distance function 
which can be used for both static and moving points: 

instance Number v => Number (Changing v) where 

   (+) = lift2 (+) 
   (-) = lift2 (-) 
   (*) = lift2 (*) 
   sqrt = lift1 (sqrt) 

For example, if p1 and p2 are two 2D static points, their distance “d” is calculated 
as follows [11, 15]: 

p1, p2 :: Point Float  --Static 2D points 
 

p1 = Point 3.4 5.5 
p2 = Point 4.5 4.5 
d = dist p1 p2 --> 1.55  --distance between p1 and p2 

And for 2D moving points mp1 and mp2, their distance “md”, which is a function 
of time, is calculated as follows: 

mp1, mp2 :: Point (Changing Float)  --Moving 2D points 
mp1 = Point (\t -> 4.0 + 0.5 * t)(\t -> 4.0 - 0.5 * t) 
mp2 = Point (\t -> 0.0 + 1.0 * t)(\t -> 0.0 - 1.0 * t)  
md = dist mp1 mp2  -- distance between mp1 and mp2 
md 2  ----> 5.83   -- distance “md” for time 2 

5.2   Results for Further Spatial Operations for Moving Points 

The explained algorithm was developed for extending more complex spatial 
operations namely convex hull, point in polygon and voronoi diagrams to support 2D 
moving points [13, 14, 15], which needs more primitive operations in the class Points, 
e.g. ccw (counter-clock wise test for three points), sorting a list of points, etc. Details 
of coding these geometric algorithms are not relevant here. While the concept of the 
approach was verified, there were some details (i.e. conditional expressions) that 
needed attention and more research (for more details see [11]). 

 

Fig. 4. Simulated environment with its streets, regions and paths of the moving points [12, 15] 
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t=0 t=10 t=20

 

Fig. 5. Convex hull for the moving points for times 0, 10 and 20 [12, 15] 

t=0 t=10 t=20

 

Fig. 6. Voronoi diagrams for the moving points for times 0, 10 and 20 [12, 15] 

T=0 t=10 t=20

 

Fig. 7. Point in polygon for the moving points for times 0, 10 and 20 [12, 13, 15] 

A simulated transportation system, which was made of fifteen moving points and 
eight regions, was selected as an example (Figure 4). The results of the convex hull 
and voronoi diagrams of these moving points are represented in Figures 5 and 6,  
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Table 1. Related regions of the moving points for times 0, 10 and 20 [12, 13, 15] 

Region 
Point ID 

t=0 t=10 t=20 
1 4 5 3 
2 9 7 4 
3 10 6 1 
4 2 3 8 
5 6 7 5 

respectively for times 0, 10 and 20. Results of point in polygon were tested using 
interaction of five of the moving points with the eight regions (Figure 7 and Table 1). 

6   Conclusion 

Extending spatial operations to multi-dimensional objects is an essential advancement 
toward multi-dimensional 3D and temporal GIS. Current approaches recommend 
particular technical solutions to extend a spatial operation to a new multi-dimensional 
space. What is reported here is the extension of spatial operations via their dimension-
independent properties. This approach leads to a consistent solution toward a multi-
dimensional GIS. 

The achieved results to extend three selected spatial operations to 2D moving 
points demonstrate the viability of the approach. Using the formalization of functions 
from category theory and the high level of abstraction of functional programming 
languages enabled us to implement the desired algorithm effectively. A fully general 
dimension-independent and automatic solution to lift all operations in the same way 
needs some more research which is reported elsewhere [11]. 

Performance (e.g. complexity and speed) is showed in most of the current research 
in computer science and computational geometry. However, performance is one of 
four areas (the others are “ontology and semantics”, “user interface” and “error and 
uncertain data”) that link the formal treatment of geospatial data to its use and must 
come after the theory for geospatial data processing [8]. “Without this clear 
separation, we taint the description of the things we presently understand with our 
ignorance in other areas” ([8], pp. 24-25). The main concern of this study is on 
mathematical validation of the conceptual framework first and investigation of 
implementation issues. Performance is investigated later and can likely be delegated 
to computer scientists building compilers. 
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