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Abstract. This paper shows how to extend and generalize Tomlin's Map 
Algebra to apply uniformly for spatial, temporal, and spatio-temporal data. A 
specific data layer can be seen as a function from location to a value 
(Goodchild's geographic reality). Map layer but also time series and other 
similar constructions are functors, mapping local operations to layers, time 
series, etc. Tomlin's Focal Operations are mostly convolutions and the zonal 
operations are summaries for zones. The mathematical framework explained 
justifies polymorphic overloading of operation names like + are made to work 
for layers, time series, etc. There is also a uniform method to apply user-defined 
local functions to them. The result is a consistent extension of Map Algebra 
with a simplified user interface. The implementation covers raster operations 
and demonstrates the generality of the concept. 

1   Introduction 

The integration of temporal data into GIS is arguably the most important practical 
problem currently posed to the GIS research and development community (Frank 
1998). Temporal data is collected for administration and scientific applications of 
GIS. Geographic data gives nearly always a snapshot of the state of our ever changing 
environment (Snodgrass 1992). These collections of snapshots contain information 
about changes and processes, but users are left to invent their own methods for 
temporal analysis. Many ad hoc extensions to commercial systems to handle spatial 
data from different epochs are reported (for example, at recent ESRI user 
conferences). 

The central concept in GIS is the overlay process: Data from different sources are 
combined (figure 1). This is a computational version of the traditional physical 
overlaying of maps on a light table (McHarg 1969). Map Algebra is a strong 
conceptual framework for this method of spatial analysis and has changed little in the 
20 years since its "invention" (Tomlin 1983b; Tomlin 1983a), which demonstrates its 
conceptual clarity. Dana Tomlin's Ph.D. thesis described Map Algebra in a semi-
formal way providing all the information necessary for others to use and to produce 
implementations of Map Algebra (Tomlin 1983a). Several public domain or low cost 
implementations were around since 1980 (Tomlin's IBM PC version, OSUmap, 
IDRISI, to name but a few I have used). All the commercial GIS today organize 
geographic data in layers or themes (ESRI 1993) and contain map algebra operations; 
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OGC and ISO standards include them as well (sometimes overshadowed by a 
multitude of operations for the maintenance of the data and administrative queries).  

I demonstrate in this paper that Map Algebra can be extended to include temporal 
data analysis. I start from the observation that processing of time series is similar to 
Map Algebra overlay operations. The clarification of the underlying theory—category 
theory and functors —leads to a generalization that extends Map Algebra to include 
processing of time series. Extended Map Algebra applies to spatial, temporal, and 
spatio-temporal data and generalizes the current implementations. It simplifies the 
user interface: 

• The same operations apply to spatial, temporal, and spatio-temporal data, which 
reduces learning of commands, and makes the experience users have with Map 
Algebra valuable to solve spatio-temporal problems. 

• Irrelevant detail is removed from the user interface. 
• Users can define new functions without learning a special language. 
• Map layers and snapshots are typed and errors are detected before starting lengthy 

processing to produce non-sense results. 

The theory produces the consistency in the approach and justifies the solution. In 
addition, it gives guideline for the implementation and optimization of execution. The 
implementation in a very high-level language (Peyton Jones, Hughes et al. 1999) is 
only a few pages of code. It uses the second order concepts built into modern 
languages and demonstrates feasibility. The translation into imperative languages is 
straight forward. 

The paper is structured as follows: the next section reviews map overlay and 
processing of time series. The following sections prepare the mathematical background, 
first discussing functions and then mappings between collections of functions seen as 
categories. The next two sections apply these concepts to extend processing of single 
values in formulae to local operations applied to collections of values, like map layer or 
time series. We then introduce summary functions and show, how focal operations fit. 
Zonal operations are a special case of summary operations and introduce comparable 
regional operations. At the end we list the improvement of Extended Map Algebra 
compared to current solutions and review the solution from an abstract point of view. 
The paper closes with a suggestion for future work and a summary. 

2   Map Algebra 

Map Algebra realizes the central tenet of GIS: the analysis of data related to the same 
location in space (figure 1). Tomlin has organized the operations with map layers in 
three groups (Tomlin 1990):  

1. Local operations combine values from the same location, 
2. Focal operations combine values from a location and the immediate surroundings, 

and 
3. Zonal operations combine values from all locations in a zone. 

In this paper I will first concentrate on the local operations and then show how focal 
and zonal operations fit in the framework. 
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Local operations in map algebra are intuitively understandable: the values of 
corresponding (homological) cells are combined to produce a new value (figure 1 
left). The implementation is straightforward with loops over the indices of the raster 
array:  

procedure overlay (a, b: layer; out result: layer; op: 
function) 
for i:= 1 to ymax do 
 for j:= 1 to xmax do 
  c [i,j] := op (a[i,j], b[i,j]); 

The examples for map layers are male and female population per cell (mpop and 
fpop). They can be combined as shown in figure 1 left. Classification separates urban 
from rural areas, using a threshold of 300 persons/cell (figure 1 right).  

         

Fig. 1. (left) Total population is male population plus female population; (right) City areas are 
cells with total population higher than 300 

 

Fig. 2. The temperature difference between outside and inside 

The processing of time series is similar (figure 2). Given two time series for the inside 
and outside temperature (tempo respectively tempi), the difference between the two at 
any given moment in time gives a new time series (difftemp). The computation for 
adding map layers or computing the difference between two time series is similar: 
combine homological, respective synchronous, values. What is the general rule? What 
are the limitations?  

3   Computations are Functions Transforming Sets 

A time series can be seen as a function f (t) = … Computation with functions is usual 
in electrical engineering; image processing uses a concept of images as a 2 
dimensional function g (x,y) = ..(Horn 1986). Goodchild (1990; 1992) has suggested 
that geographic reality is a function of location and time f (x, y, h, t). Can this 
viewpoint contribute to Map Algebra?  
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3.1   Definition of Function  

"A function f: S -> T on a set S to a set T assigns to each s ∈ S an element f(s) ∈ T. … 
The set S is called the domain of f, while T is the codomain. “... A function is often 
called a 'map' or a 'transformation' " (Mac Lane and Birkhoff 1967 p. 4). For example 
the function + takes pairs of values and maps them to a single value  (+ :: (Int, Int) -> 
Int). The classification function ur takes a single value from the domain population 
count and maps it to the set U with the values Urban or Rural.  

ur (p) = if p > 300 then Urban else Rural. 

3.2   Application Functions 

A function takes a value from a cell—or corresponding cells—and produces the value 
for the corresponding cell in the new layer. In figure 1 (left), this is the operation +, in 
figure 1 (right) the classification function ur(p). In figure 2 the two time series are 
combined with the function diff (t1, t2) = t1 – t2. 

ur x = if x > (300::Float) then 'U' else 'R' 
diff a b = a - b 

These functions operate on values from domains of relevance to the user: Population 
density (in a discrete case: population count per cell), temperature, etc. They are sets 
of values and operations that map between them with rules like: a + b = b + a 
(commutative law). The domains, the operations, and the rules are applicable to these 
operations form algebras (Couclelis and Gale 1986; Loeckx, Ehrich et al. 1996). 

Users compose more complex formulae, for example to compute the percent 
difference between male and female population:  

(mpop – fpop) * 100/ pop  

or convert the temperature from degree Centigrade to degree Fahrenheit (c2t). For 
other datasets, one could compute the value for the 'universal soil loss formula'. 

reldiff a b = abs (a - b) * (100.0::Float) / (a + b) 
c2f t = 32 + (t * 9 / 5 ) 
f2c t = 5 * (t - 32)/ 9 

3.3   Data Management Functions 

The local operations for map layers or time series apply the application functions 
uniformly to every value (or pair, triple, etc. of homological values). This is encoded 
as a loop. Templates in C++ (Stroustrup 1991) separate the management of the data 
storage and access to the data from the processing with the application functions. The 
data management functions (in C++ called "iterators") are closely related to the data 
constructors.  

A layer can be seen as a function that gives to each pair of indices the value at that 
position. For example, the layer population is a function:  

pop :: (Int x Int) -> p. 

In the code above these access functions are written as x[i,j]. The generalization to 
volumes and combinations of times series with spatial data is immediate. Comparable 
1, 2 and 3 dimensional snapshot and temporal data constructors are: 
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timeSeries:: t -. v 
layer :: xy -> v 
stack of layer :: h -> xy -> v 
volume :: xyh -> v 
timeSeries of layer:: t -> xy -> v 
timeSeries of volume :: t -> xy -> h -> v 

4   Morphism 

Functions (mappings, transformations) that preserve algebraic structure are called 
morphism; for example the function double is a morphism of addition. A morphism 
M:: C -> D maps the element of the domain to the codomain and maps the operation f 
:: C -> C on the domain to a corresponding operation f':: D -> D on the codomain, 
such that M (f (x)) = f' (M (x)) (figure 3) (Mac Lane and Birkhoff 1967 p. 37) 

 

Fig. 3. Morphism M maps f to f' 

In many cases we use the same name for the two operations despite the fact that they 
apply to different domains (polymorphism). Calculation with logarithms using the 
rule log (a * b) = log a + log b provides an example, where an operation is mapped to 
a seemingly very different operation (* becomes +). The function log is a group 
morphism.  

5   Construction of New Concepts from Existing Ones 

The commonly available mathematical methods are not sufficient to construct a 
theory of map algebra. Functions operate on values, not layers. How to construct an 
extension? 

5.1   Extension by Functors 

Constructions in mathematics follow often the same pattern: A representation together 
with operations is found to be insufficient; the example from high school is that 
integers are insufficient to represent the solution to the problem of dividing 2 pies 
between 3 people, giving 2/3 to each.  

Fractions are introduced as pairs of integers (numerator and denominator), such 
that the rules for addition and multiplication 'carry over'; integers map by the functor 
F to fractions by adding the denominator 1; rules like a + 0 = a are preserved: a/1 + 
0/1 = a/1; addition and multiplication of fractions is commutative, etc. The same 
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"trick" has been used to construct point coordinates, imaginary numbers, polynomials, 
etc. How to apply to geography? 

"Many constructions of a new algebraic system from a given one also construct 
suitable morphism of the new algebraic system from morphism between the given 
ones. These constructions will be called 'functors' when they preserve identity 
morphism and composites of  morphisms." (Mac Lane and Birkhoff 1967 p.131). 
Functors map domains to domains and morphism to morphism, i.e., they map 
categories to categories. Categories are sets of morphism, for example, the application 
domains used to encode map layers and the operations applicable to them form a 
category V. In our examples these are integers, reals, and the set {Urban, Rural} and 
the operations +, -, *, ur, c2f, etc. In each category, there is a special morphism, 
called identity morphism, which maps every value into the same value; it is the 'do 
nothing' operation. Categories have a single operation, namely composition of 
functions, written as '.' : f (g (x)) = (f.g) x. 

6   Map Layers and Time Series are Functors 

The representation of a snapshot of geographic reality for an area with a single 
number is insufficient. We may approximate the properties with a collection of values 
describing small areas (cells). A sampled image can be represented as a regular grid 
of values of type v, which we describe as a function  

vlayer:: (Int x Int) -> v.  

Local operations in map algebra correspond to the operations on values: we add two 
layers and understand this operation to add homological cell values. For example, 
adding two layers C = A + B means (c[i, j] = a [i,j] + b[i,j]).  

The constructor for map layers of a fixed size, which makes a "map layer of type r" 
from values of type r, is a functor M. The function M, which takes a single value v 
from the category M and maps it to a map layer produces layers with a all cells of this 
value (a[i, j] = v). Rules valid for the domain of cell values apply also for layers: for 
example the commutative law is valid for operations with layers: A + B = B + A). A 
similar argument—restricted to 1 dimension—shows that 'time series' is a functor as 
well (for historic reasons, it could be called fluent (Lifschitz 1990)). Indeed, all 
constructors listed above are functors. 

6.1   Lifting Operation with Functors 

Functors map operations on single values to operations on layers, time series, etc. It is 
customary to use the (polymorphic) operation lift to describe this mapping; we say the 
operation + is lifted to apply to layers (figure 1 left). If M :: C -> D  is a functor and 
op :: C -> C is an operation then  

op' = M (op) = lift op :: D -> D.  

Because functors preserve composition (M (f . g) = M f . M g) not only single 
operations can be lifted, but also complex formulae like ur, c2f, or, e.g., the 'universal 
soil loss equation'. 

Functors preserve the rules applicable to the operations. It is therefore appropriate 
to use the names of the ordinary functions directly for the corresponding operations 
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on layers, time series, etc. (polymorphism). This simplifies the user interface: in stead 
of commands like localSum, localDifference (Tomlin 1990 p. 72) one uses directly 
the familiar +, - and writes: 

pop = mpop + fpop         
           -- adding male and female population 
pop' = fpop + mpop 
difftemp = tempi - tempo   
           -- computing the difference in temp        
tempif = lift c2f tempi  
           -- conversion of time series to ºC 
cities = lift ur pop  
           -- classify in urban/rural 

This works with time series of Population layers (e.g., population layers from 1950, 
1960, 1970…). Applying the condition for urban to a time series of population layers 
gives a time series of a growing number of urban cells. 

popTS = mpopTS + fpopTS   
-- constructing a time series of total population 
citiesTS = lift1 (lift1 ur) popTS 
-- classify the time series of total population 

If a formula contains a constant, the constant is lifted and becomes a layer with all 
values equal to the constant. Constant layers are useful to compute distances between 
locations: construct a layer where each cell contains the coordinate for its central 
location (coord layer) and then apply a "distance to point p" to it gives a layer with 
the distance of each cell from p (here p= 2, 3). 

distance (x1,y1) (x2,y2)  
           = sqrt (sqr (x1 - x2) + sqr (y1 - y2)) 
distTo23 = lift (distance (2,3)) coord   

7   Summary Operations 

For a time series, one might ask, what the maximum was or the minimum value, for 
example, for the temperature during a day, but the same questions is valid for a map: 
maximum or minimum population per cell, maximum or minimum height. For values 
on a nominal scale, one might ask what the most often occurring value is. From these 
primary summary values, other summary values are derived, e.g., average or higher 
statistical moments. 

There are only a small number of functions that can serve to compute a summary. I 
propose the hypothesis, that only binary functions f :: a -> a -> a with a zero such that 
f (0, a) = a and which are additive can be used. Additive for a function in this context 
means that for two datasets A and B, the summary of the summary (f(A))of A  and the 
summary (f (B))of B  must be the same as the summary of A merged with B (A + B) 

f (f (A) , f (B)) = f (A + B). 
A summary operation has no corresponding operation on a single value; a summary 
with the + operation is comparable to an integral over the time series, the map layer or 
the data volume. The operation fold converts a summary function like + to an 
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operation on a data collection; for example fold (+) computes the sum for the data 
collection, fold min the minimal value. The second order function fold depends only 
on the data type. 

Summary operations can apply to the complete data collection (e.g., a time series of 
data volume) or be applied to 'slices', for example the summary for each data cube in a 
time series gives a time series of single (summary) values (figure 4). Another example: 
a summary in a data cube can be for each layer giving a value for each height, or can 
be vertical for each location, summing all the values in the different heights. 

popsum = sum pop  -- total population 
tempimax = fold max tempi -- max temperature 
tempomin = fold min tempo 
popTSsum = lift sum popTS  
            -- time series of total population 

                    

Fig. 4. Different summaries for a time series 
of layers  

Fig. 5. A focal operation combines values in a 
neighborhood 

8   Focal Operations in Map Algebra: Convolutions 

Focal operations combine values in the neighborhood of a value to a new value 
(figure 5). Such operations do not have an equivalent operation for single values. 
Considering a layer as function reveals that Tomlin's zonal operations (or nearly all of 
them) are convolutions. A convolution of a function f with a weight function h 
(kernel) is the integral of the product of the layer f times the kernel function h (this is 
comparable to a weighted average). 

Focal operations can be applied to functions of any number of variables. The 2-, 3-, 
or 4- dimensional convolutions are constructed analogously as double, triple, and 
quadruple integrals. Convolution is linear and shift-invariant (Horn 1986 p.104). Best 
known are the discrete forms of convolution, used as filter operations in image 
processing software. A 'focal average' operation is close to a filter to smooth an 
image, with a special weighting function (a Gaussian), but convolution can be used to 
detect edges, etc.  

Applying a convolution to a multi-dimensional dataset, say a data volume (vol: z -
> x -> y ->  v) allows some options, which must be selected according to the 
application requirements: A 3d-convolution can be applied to the volume (conv k3 v) 
(figure 6 left). Considering the data volume as a stack of layers, a 2d-convolution can 
be applied to each layer in the stack (lift (conv k2) v) (figure 6 middle). Applying a 
1d-convolution to the data in each vertical data set is conv k1 v (where k1 is a 1-d 
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kernel to select by polymorphism the 1d convolution, which is then applied as a local 
operation to homologous values in the stack) (figure 6 right). In each case, different 
neighborhoods are used in the convolution. 

                            

Fig. 6. 3-, 2-, and 1-dim convolution 

Focal operations are very flexible if we permit functions that include conditions. For 
example, the Game of Life of John Conway can be expressed as a convolution or a 
convolution can be used to compute the next step in a simulation of a forest fire, given 
wind, amount of fuel, etc. The kernel could be the rule: if the central cell contains fuel 
and is burning then it continues to burn (with reduced fuel left); if it is not burning and 
one of the neighbor cells upwind from this cell then this cell starts burning as well. 

9   Zonal Operations in Map Algebra 

For time series, it is often desirable to compute the summary values for each day; for 
example a daily maximum and minimum. Such summaries for a regular aggregation are 
rare for space; here the summary should be computed for an irregular area. The area can 
be given as a spatial layer with value True for the cells included in the area; this is in 
image processing known as the characteristic function. Combining this area layer with 
the value layer by a function f (a, v) = if a then v else 0 and then apply the summary 
function to the result gives the summary for the desired area. This works for all 
dimensions of data sets. The combination of the layers and the summary operation can 
always be combined in a single operation (for a proof (Bird and de Moor 1997 p. 10)). 

Tomlin introduced summary functions that compute a single a summary value for a 
zone. Tomlin's definition of a zone is an "area which has some particular quality that 
distinguishes it from other geographic areas" (Tomlin 1990 p. 10). Practically, zones 
are areas that have the same value in a layer; zones are not necessarily connected.  

For many applications of spatial analysis zones are not suitable and simply 
connected regions are required. For example, to assess the suitability of a habitat the 
size of a connected wood area (a wood region) can be important and cannot be 
replaced with the size the wood zone, which gives the total wood area in the area 
(Church, Gerrard et al. 2003). To identify regions requires a function to form the 
connected components of a zone. 

Zonal operations compute for each zone (or for each region) a summary value. In 
Tomlin's Map Algebra, the zonal operations are defined such that they produce again 
a map layer, where every cell in the layer has the value obtained for the zone (or 
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region) it is part of. This is necessary to make Map Algebra closed—operations have 
layers as inputs and produce layers as results.  

The zonal operations apply to all dimensions of data collections. For time series, 
one might ask: what is the maximum temperature for the 'rain zone'? (The 'rain zone' 
can be defined, for example, as days for which more than 5 mm precipitation was 
measured). 

condUrban uOr popVal = if uOr == 'U' then popVal else 
zero 
popCity = lift condUrban cities pop 
-- restrict the population values to the urban zone 
citypop = sum popCity 
-- total population in urban zone 
 
-- the urban zones and the their total population  
--          for the population time series 
popCityTS = lift (lift condUrban) citiesTS popTS 
citypopTS = lift sum popCityTS 

10   What Is Achieved?   

10.1   Consistent Operations for Maps, Time Series, Stacks of Maps, etc. 

Map layers and time series, their combination and their extensions are all functors and 
instances of a single concept, namely a class of functors layerN, where n can be 1 for 
time series, 2 for Tomlin's Map Algebra, and 3 for either 2d space and time or 3d 
space and 4 for 3d space and time (figure 6). This covers Godchild's concept of 
'geographic reality'  f (x,y,h,t) and reveals it as a functor. 

10.2   Polymorphic Application gives Local Operations "for Free" 

Polymorphism and automatic lifting of functions makes operations and functions that 
apply to single values to apply to data collections as local operations. In stead learning 
a command like localSum or localMinimum one can directly use the operations + or 
min and write layerC = layerA + layerB or layerD = min (layerA, layerB). Functors 
preserve the rules applicable to operations; users know that C = A + B is the same as 
C' = B + A. 

10.3   Extensibility Without Special Language 

If an application requires the value for a formula, for example, how much is the 
difference between the highest and the lowest value in relation to the average, one 
could search in the manual if such a Map Algebra function exists or combine it from 
available functions, computing intermediate layers. Knowing that layer is a functor, 
we just write the function and apply it (with lift) to the layers. This is valuable, as 
sequences of routine Map Algebra operations can be combined in a single formula 
and users need not learn a special scripting language. 
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r a b = 2.0 * (max a b - min a b )/(a + b) 
rpop = lift r mpop fpop 

10.4   Typing 

The description of map algebra given here is compatible with a typed formalism 
(Cardelli and Wegner 1985; Cardelli 1997) and requires it to make polymorphism 
work. It is therefore possible to identify errors and advise users to avoid non-sense 
operations: if A is a layer with values True or False, then C = A + B is ill typed. The 
operation + is not applicable to layers with Boolean values, because + is not 
applicable to Boolean values and can not be lifted to layers of Booleans.  

10.5   Implementation 

The strong theory helps us with the implementation. In a modern language, constructs 
like Functor or lift are directly expressible (in Haskell directly, in C++ with 
templates).This gives an implementation for local operations of map algebra in few 
lines of high level code.  

The use of the GHCi (available from www.haskell.org) interpreter gives a full 
environment, in which functions can be loaded from files and computations executed 
interactively and results displayed. All the examples included here have been run in this 
environment. Functions that are used often could be compiled with GHC to improve 
performance. The concepts explained here are not tied to this or any other programming 
languages and can be implemented with any current programming language. 

10.6   Optimization 

Using Map Algebra leads to the computation of many intermediate layers, which are 
then used as inputs to other operations. This is useful when exploring a question; once 
a sequence of operations that lead to the desired result is found, the intermediate 
layers are a nuisance, because they require careful naming to avoid confusions. In the 
categorical framework, the production of intermediate layers can be avoided and all 
the operations done in one sweep of the data, for example using rules like:  

lift f (lift g la lb) = lift (f . g) la lb. 

This rule should remind programmers of methods to merge sequences of loops into a 
single one! Having a strong theory gives us guidelines when and how optimizations 
are possible; understanding when optimization is not permitted may be more 
important to avoid producing wrong results. For example, it is not evident how to 
combine local and focal operations; understanding that a focal operation is a 
convolution and as such linear answers the question. 

11   Why Does This Work 

Category theory is the abstraction from algebra, it is 'one step up the abstraction 
ladder' (Frank 1999).Why is it useful here? Category theory is unifying very large 
parts of mathematics and brings them into a single context. It integrates in the same 
framework the theory of computing: "The main methodological connection between 
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programming language theory and category theory is the fact that both are essentially 
'theories of functions'." (Asperti and Longo 1991 p.ix). 

All computing is in a single category, namely the category of sets with functions. 
The state of a computer is the collection of the values in all memory cells, CPU, 
output channels, etc. All computing is a—program controlled—transformation of the 
state of the machine to a new state. Every program, but also every step in a program is 
a function that transforms the state of the machine; application programs are 
composition of functions.  

In the categorical framework, a mathematical treatment of computing becomes 
feasible. Besides standard mathematics, the construction of data types and the control 
of flow in a program with its statements are expressible. Functions with if_then_else 
logic can be written with the McCarthy conditional function and compose with other 
functions. 

In general, programming an application means—independent if the analyst and 
programmer understand this theoretically or not—as the formalization of a suitable 
category for the concepts and operations of the application and then a mapping of this 
category to the category of sets because this is the category in which the program works.  

12   Future Work 

The description here as well as Tomlin's original text, does not depend on a discrete, 
regular raster. The theory is developed in terms of continuous functions in 2, 3, or 
more variables. The translation to a discrete, regular raster based implementation is 
immediate; the use of data represented by irregular subdivision (so-called vector data) 
is more involved. I suggest as future work a comprehensive investigation resulting in 
a theoretically justified implementation of Extended Map Algebra covering both 
regular and irregular subdivision data with the same operations. 

13   Conclusion 

As expected, there exists a strong theory behind Map Algebra. The identification of 
this theory has lead us to see commonalities between the methods we use to process 
spatial and temporal data and to understand that the general concept of map algebra 
can be applied to spatial data of 2 or 3 dimension, to temporal data, and to spatio-
temporal data of 2d + t or 3d + t; it can be used to combine data collections of any 
dimension. 

The formal theory gives us rules for the reorganization of processing geographic data 
with Map Algebra operations. Descriptions of processing steps can be formalized and 
optimized using rules that guarantee that the same result is obtained with less effort. 

The user interface can be reduced; the number of operation names required is 
drastically reduced exploiting polymorphism when it is appropriate. This should 
reduce the instruction time necessary for future users of GIS. The introduction of 
typed data can advise users when they try to compute nonsensical operations ahead of 
time (Cardelli 1997).  

My esteemed PhD advisor Rudolf Conzett used to quote Boltzmann: "There is 
nothing more practical than a good theory". I believe that formal investigations lead to 
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a deeper understanding and, as a consequence, a simplified solution. This paper 
demonstrates how theory leads to more powerful Extended Map Algebra with at the 
same time a simplified user interface. 
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