
J. Akoka et al. (Eds.): ER Workshops 2005, LNCS 3770, pp. 193 – 206, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Map Algebra Extended with Functors
for Temporal Data

Andrew U. Frank

Dept. of Geoinformation and Cartography,
Technical University, Vienna

frank@geoinfo.tuwien.ac.at

Abstract. This paper shows how to extend and generalize Tomlin's Map
Algebra to apply uniformly for spatial, temporal, and spatio-temporal data. A
specific data layer can be seen as a function from location to a value
(Goodchild's geographic reality). Map layer but also time series and other
similar constructions are functors, mapping local operations to layers, time
series, etc. Tomlin's Focal Operations are mostly convolutions and the zonal
operations are summaries for zones. The mathematical framework explained
justifies polymorphic overloading of operation names like + are made to work
for layers, time series, etc. There is also a uniform method to apply user-defined
local functions to them. The result is a consistent extension of Map Algebra
with a simplified user interface. The implementation covers raster operations
and demonstrates the generality of the concept.

1 Introduction

The integration of temporal data into GIS is arguably the most important practical
problem currently posed to the GIS research and development community (Frank
1998). Temporal data is collected for administration and scientific applications of
GIS. Geographic data gives nearly always a snapshot of the state of our ever changing
environment (Snodgrass 1992). These collections of snapshots contain information
about changes and processes, but users are left to invent their own methods for
temporal analysis. Many ad hoc extensions to commercial systems to handle spatial
data from different epochs are reported (for example, at recent ESRI user
conferences).

The central concept in GIS is the overlay process: Data from different sources are
combined (figure 1). This is a computational version of the traditional physical
overlaying of maps on a light table (McHarg 1969). Map Algebra is a strong
conceptual framework for this method of spatial analysis and has changed little in the
20 years since its "invention" (Tomlin 1983b; Tomlin 1983a), which demonstrates its
conceptual clarity. Dana Tomlin's Ph.D. thesis described Map Algebra in a semi-
formal way providing all the information necessary for others to use and to produce
implementations of Map Algebra (Tomlin 1983a). Several public domain or low cost
implementations were around since 1980 (Tomlin's IBM PC version, OSUmap,
IDRISI, to name but a few I have used). All the commercial GIS today organize
geographic data in layers or themes (ESRI 1993) and contain map algebra operations;

gruber
Textfeld
Frank, A. "Map Algebra with Functors for Temporal Data." Paper presented at the ER Workshop '05 (CoMoGIS'05), Klagenfurt, Austria 2005.

194 A.U. Frank

OGC and ISO standards include them as well (sometimes overshadowed by a
multitude of operations for the maintenance of the data and administrative queries).

I demonstrate in this paper that Map Algebra can be extended to include temporal
data analysis. I start from the observation that processing of time series is similar to
Map Algebra overlay operations. The clarification of the underlying theory—category
theory and functors —leads to a generalization that extends Map Algebra to include
processing of time series. Extended Map Algebra applies to spatial, temporal, and
spatio-temporal data and generalizes the current implementations. It simplifies the
user interface:

• The same operations apply to spatial, temporal, and spatio-temporal data, which
reduces learning of commands, and makes the experience users have with Map
Algebra valuable to solve spatio-temporal problems.

• Irrelevant detail is removed from the user interface.
• Users can define new functions without learning a special language.
• Map layers and snapshots are typed and errors are detected before starting lengthy

processing to produce non-sense results.

The theory produces the consistency in the approach and justifies the solution. In
addition, it gives guideline for the implementation and optimization of execution. The
implementation in a very high-level language (Peyton Jones, Hughes et al. 1999) is
only a few pages of code. It uses the second order concepts built into modern
languages and demonstrates feasibility. The translation into imperative languages is
straight forward.

The paper is structured as follows: the next section reviews map overlay and
processing of time series. The following sections prepare the mathematical background,
first discussing functions and then mappings between collections of functions seen as
categories. The next two sections apply these concepts to extend processing of single
values in formulae to local operations applied to collections of values, like map layer or
time series. We then introduce summary functions and show, how focal operations fit.
Zonal operations are a special case of summary operations and introduce comparable
regional operations. At the end we list the improvement of Extended Map Algebra
compared to current solutions and review the solution from an abstract point of view.
The paper closes with a suggestion for future work and a summary.

2 Map Algebra

Map Algebra realizes the central tenet of GIS: the analysis of data related to the same
location in space (figure 1). Tomlin has organized the operations with map layers in
three groups (Tomlin 1990):

1. Local operations combine values from the same location,
2. Focal operations combine values from a location and the immediate surroundings,

and
3. Zonal operations combine values from all locations in a zone.

In this paper I will first concentrate on the local operations and then show how focal
and zonal operations fit in the framework.

 Map Algebra Extended with Functors for Temporal Data 195

Local operations in map algebra are intuitively understandable: the values of
corresponding (homological) cells are combined to produce a new value (figure 1
left). The implementation is straightforward with loops over the indices of the raster
array:

procedure overlay (a, b: layer; out result: layer; op:
function)
for i:= 1 to ymax do
 for j:= 1 to xmax do
 c [i,j] := op (a[i,j], b[i,j]);

The examples for map layers are male and female population per cell (mpop and
fpop). They can be combined as shown in figure 1 left. Classification separates urban
from rural areas, using a threshold of 300 persons/cell (figure 1 right).

Fig. 1. (left) Total population is male population plus female population; (right) City areas are
cells with total population higher than 300

Fig. 2. The temperature difference between outside and inside

The processing of time series is similar (figure 2). Given two time series for the inside
and outside temperature (tempo respectively tempi), the difference between the two at
any given moment in time gives a new time series (difftemp). The computation for
adding map layers or computing the difference between two time series is similar:
combine homological, respective synchronous, values. What is the general rule? What
are the limitations?

3 Computations are Functions Transforming Sets

A time series can be seen as a function f (t) = … Computation with functions is usual
in electrical engineering; image processing uses a concept of images as a 2
dimensional function g (x,y) = ..(Horn 1986). Goodchild (1990; 1992) has suggested
that geographic reality is a function of location and time f (x, y, h, t). Can this
viewpoint contribute to Map Algebra?

196 A.U. Frank

3.1 Definition of Function

"A function f: S -> T on a set S to a set T assigns to each s ∈ S an element f(s) ∈ T. …
The set S is called the domain of f, while T is the codomain. “... A function is often
called a 'map' or a 'transformation' " (Mac Lane and Birkhoff 1967 p. 4). For example
the function + takes pairs of values and maps them to a single value (+ :: (Int, Int) ->
Int). The classification function ur takes a single value from the domain population
count and maps it to the set U with the values Urban or Rural.

ur (p) = if p > 300 then Urban else Rural.

3.2 Application Functions

A function takes a value from a cell—or corresponding cells—and produces the value
for the corresponding cell in the new layer. In figure 1 (left), this is the operation +, in
figure 1 (right) the classification function ur(p). In figure 2 the two time series are
combined with the function diff (t1, t2) = t1 – t2.

ur x = if x > (300::Float) then 'U' else 'R'
diff a b = a - b

These functions operate on values from domains of relevance to the user: Population
density (in a discrete case: population count per cell), temperature, etc. They are sets
of values and operations that map between them with rules like: a + b = b + a
(commutative law). The domains, the operations, and the rules are applicable to these
operations form algebras (Couclelis and Gale 1986; Loeckx, Ehrich et al. 1996).

Users compose more complex formulae, for example to compute the percent
difference between male and female population:

(mpop – fpop) * 100/ pop

or convert the temperature from degree Centigrade to degree Fahrenheit (c2t). For
other datasets, one could compute the value for the 'universal soil loss formula'.

reldiff a b = abs (a - b) * (100.0::Float) / (a + b)
c2f t = 32 + (t * 9 / 5)
f2c t = 5 * (t - 32)/ 9

3.3 Data Management Functions

The local operations for map layers or time series apply the application functions
uniformly to every value (or pair, triple, etc. of homological values). This is encoded
as a loop. Templates in C++ (Stroustrup 1991) separate the management of the data
storage and access to the data from the processing with the application functions. The
data management functions (in C++ called "iterators") are closely related to the data
constructors.

A layer can be seen as a function that gives to each pair of indices the value at that
position. For example, the layer population is a function:

pop :: (Int x Int) -> p.

In the code above these access functions are written as x[i,j]. The generalization to
volumes and combinations of times series with spatial data is immediate. Comparable
1, 2 and 3 dimensional snapshot and temporal data constructors are:

 Map Algebra Extended with Functors for Temporal Data 197

timeSeries:: t -. v
layer :: xy -> v
stack of layer :: h -> xy -> v
volume :: xyh -> v
timeSeries of layer:: t -> xy -> v
timeSeries of volume :: t -> xy -> h -> v

4 Morphism

Functions (mappings, transformations) that preserve algebraic structure are called
morphism; for example the function double is a morphism of addition. A morphism
M:: C -> D maps the element of the domain to the codomain and maps the operation f
:: C -> C on the domain to a corresponding operation f':: D -> D on the codomain,
such that M (f (x)) = f' (M (x)) (figure 3) (Mac Lane and Birkhoff 1967 p. 37)

Fig. 3. Morphism M maps f to f'

In many cases we use the same name for the two operations despite the fact that they
apply to different domains (polymorphism). Calculation with logarithms using the
rule log (a * b) = log a + log b provides an example, where an operation is mapped to
a seemingly very different operation (* becomes +). The function log is a group
morphism.

5 Construction of New Concepts from Existing Ones

The commonly available mathematical methods are not sufficient to construct a
theory of map algebra. Functions operate on values, not layers. How to construct an
extension?

5.1 Extension by Functors

Constructions in mathematics follow often the same pattern: A representation together
with operations is found to be insufficient; the example from high school is that
integers are insufficient to represent the solution to the problem of dividing 2 pies
between 3 people, giving 2/3 to each.

Fractions are introduced as pairs of integers (numerator and denominator), such
that the rules for addition and multiplication 'carry over'; integers map by the functor
F to fractions by adding the denominator 1; rules like a + 0 = a are preserved: a/1 +
0/1 = a/1; addition and multiplication of fractions is commutative, etc. The same

198 A.U. Frank

"trick" has been used to construct point coordinates, imaginary numbers, polynomials,
etc. How to apply to geography?

"Many constructions of a new algebraic system from a given one also construct
suitable morphism of the new algebraic system from morphism between the given
ones. These constructions will be called 'functors' when they preserve identity
morphism and composites of morphisms." (Mac Lane and Birkhoff 1967 p.131).
Functors map domains to domains and morphism to morphism, i.e., they map
categories to categories. Categories are sets of morphism, for example, the application
domains used to encode map layers and the operations applicable to them form a
category V. In our examples these are integers, reals, and the set {Urban, Rural} and
the operations +, -, *, ur, c2f, etc. In each category, there is a special morphism,
called identity morphism, which maps every value into the same value; it is the 'do
nothing' operation. Categories have a single operation, namely composition of
functions, written as '.' : f (g (x)) = (f.g) x.

6 Map Layers and Time Series are Functors

The representation of a snapshot of geographic reality for an area with a single
number is insufficient. We may approximate the properties with a collection of values
describing small areas (cells). A sampled image can be represented as a regular grid
of values of type v, which we describe as a function

vlayer:: (Int x Int) -> v.

Local operations in map algebra correspond to the operations on values: we add two
layers and understand this operation to add homological cell values. For example,
adding two layers C = A + B means (c[i, j] = a [i,j] + b[i,j]).

The constructor for map layers of a fixed size, which makes a "map layer of type r"
from values of type r, is a functor M. The function M, which takes a single value v
from the category M and maps it to a map layer produces layers with a all cells of this
value (a[i, j] = v). Rules valid for the domain of cell values apply also for layers: for
example the commutative law is valid for operations with layers: A + B = B + A). A
similar argument—restricted to 1 dimension—shows that 'time series' is a functor as
well (for historic reasons, it could be called fluent (Lifschitz 1990)). Indeed, all
constructors listed above are functors.

6.1 Lifting Operation with Functors

Functors map operations on single values to operations on layers, time series, etc. It is
customary to use the (polymorphic) operation lift to describe this mapping; we say the
operation + is lifted to apply to layers (figure 1 left). If M :: C -> D is a functor and
op :: C -> C is an operation then

op' = M (op) = lift op :: D -> D.

Because functors preserve composition (M (f . g) = M f . M g) not only single
operations can be lifted, but also complex formulae like ur, c2f, or, e.g., the 'universal
soil loss equation'.

Functors preserve the rules applicable to the operations. It is therefore appropriate
to use the names of the ordinary functions directly for the corresponding operations

 Map Algebra Extended with Functors for Temporal Data 199

on layers, time series, etc. (polymorphism). This simplifies the user interface: in stead
of commands like localSum, localDifference (Tomlin 1990 p. 72) one uses directly
the familiar +, - and writes:

pop = mpop + fpop
 -- adding male and female population
pop' = fpop + mpop
difftemp = tempi - tempo
 -- computing the difference in temp
tempif = lift c2f tempi
 -- conversion of time series to ºC
cities = lift ur pop
 -- classify in urban/rural

This works with time series of Population layers (e.g., population layers from 1950,
1960, 1970…). Applying the condition for urban to a time series of population layers
gives a time series of a growing number of urban cells.

popTS = mpopTS + fpopTS
-- constructing a time series of total population
citiesTS = lift1 (lift1 ur) popTS
-- classify the time series of total population

If a formula contains a constant, the constant is lifted and becomes a layer with all
values equal to the constant. Constant layers are useful to compute distances between
locations: construct a layer where each cell contains the coordinate for its central
location (coord layer) and then apply a "distance to point p" to it gives a layer with
the distance of each cell from p (here p= 2, 3).

distance (x1,y1) (x2,y2)
 = sqrt (sqr (x1 - x2) + sqr (y1 - y2))
distTo23 = lift (distance (2,3)) coord

7 Summary Operations

For a time series, one might ask, what the maximum was or the minimum value, for
example, for the temperature during a day, but the same questions is valid for a map:
maximum or minimum population per cell, maximum or minimum height. For values
on a nominal scale, one might ask what the most often occurring value is. From these
primary summary values, other summary values are derived, e.g., average or higher
statistical moments.

There are only a small number of functions that can serve to compute a summary. I
propose the hypothesis, that only binary functions f :: a -> a -> a with a zero such that
f (0, a) = a and which are additive can be used. Additive for a function in this context
means that for two datasets A and B, the summary of the summary (f(A))of A and the
summary (f (B))of B must be the same as the summary of A merged with B (A + B)

f (f (A) , f (B)) = f (A + B).
A summary operation has no corresponding operation on a single value; a summary
with the + operation is comparable to an integral over the time series, the map layer or
the data volume. The operation fold converts a summary function like + to an

200 A.U. Frank

operation on a data collection; for example fold (+) computes the sum for the data
collection, fold min the minimal value. The second order function fold depends only
on the data type.

Summary operations can apply to the complete data collection (e.g., a time series of
data volume) or be applied to 'slices', for example the summary for each data cube in a
time series gives a time series of single (summary) values (figure 4). Another example:
a summary in a data cube can be for each layer giving a value for each height, or can
be vertical for each location, summing all the values in the different heights.

popsum = sum pop -- total population
tempimax = fold max tempi -- max temperature
tempomin = fold min tempo
popTSsum = lift sum popTS
 -- time series of total population

Fig. 4. Different summaries for a time series
of layers

Fig. 5. A focal operation combines values in a
neighborhood

8 Focal Operations in Map Algebra: Convolutions

Focal operations combine values in the neighborhood of a value to a new value
(figure 5). Such operations do not have an equivalent operation for single values.
Considering a layer as function reveals that Tomlin's zonal operations (or nearly all of
them) are convolutions. A convolution of a function f with a weight function h
(kernel) is the integral of the product of the layer f times the kernel function h (this is
comparable to a weighted average).

Focal operations can be applied to functions of any number of variables. The 2-, 3-,
or 4- dimensional convolutions are constructed analogously as double, triple, and
quadruple integrals. Convolution is linear and shift-invariant (Horn 1986 p.104). Best
known are the discrete forms of convolution, used as filter operations in image
processing software. A 'focal average' operation is close to a filter to smooth an
image, with a special weighting function (a Gaussian), but convolution can be used to
detect edges, etc.

Applying a convolution to a multi-dimensional dataset, say a data volume (vol: z -
> x -> y -> v) allows some options, which must be selected according to the
application requirements: A 3d-convolution can be applied to the volume (conv k3 v)
(figure 6 left). Considering the data volume as a stack of layers, a 2d-convolution can
be applied to each layer in the stack (lift (conv k2) v) (figure 6 middle). Applying a
1d-convolution to the data in each vertical data set is conv k1 v (where k1 is a 1-d

 Map Algebra Extended with Functors for Temporal Data 201

kernel to select by polymorphism the 1d convolution, which is then applied as a local
operation to homologous values in the stack) (figure 6 right). In each case, different
neighborhoods are used in the convolution.

Fig. 6. 3-, 2-, and 1-dim convolution

Focal operations are very flexible if we permit functions that include conditions. For
example, the Game of Life of John Conway can be expressed as a convolution or a
convolution can be used to compute the next step in a simulation of a forest fire, given
wind, amount of fuel, etc. The kernel could be the rule: if the central cell contains fuel
and is burning then it continues to burn (with reduced fuel left); if it is not burning and
one of the neighbor cells upwind from this cell then this cell starts burning as well.

9 Zonal Operations in Map Algebra

For time series, it is often desirable to compute the summary values for each day; for
example a daily maximum and minimum. Such summaries for a regular aggregation are
rare for space; here the summary should be computed for an irregular area. The area can
be given as a spatial layer with value True for the cells included in the area; this is in
image processing known as the characteristic function. Combining this area layer with
the value layer by a function f (a, v) = if a then v else 0 and then apply the summary
function to the result gives the summary for the desired area. This works for all
dimensions of data sets. The combination of the layers and the summary operation can
always be combined in a single operation (for a proof (Bird and de Moor 1997 p. 10)).

Tomlin introduced summary functions that compute a single a summary value for a
zone. Tomlin's definition of a zone is an "area which has some particular quality that
distinguishes it from other geographic areas" (Tomlin 1990 p. 10). Practically, zones
are areas that have the same value in a layer; zones are not necessarily connected.

For many applications of spatial analysis zones are not suitable and simply
connected regions are required. For example, to assess the suitability of a habitat the
size of a connected wood area (a wood region) can be important and cannot be
replaced with the size the wood zone, which gives the total wood area in the area
(Church, Gerrard et al. 2003). To identify regions requires a function to form the
connected components of a zone.

Zonal operations compute for each zone (or for each region) a summary value. In
Tomlin's Map Algebra, the zonal operations are defined such that they produce again
a map layer, where every cell in the layer has the value obtained for the zone (or

202 A.U. Frank

region) it is part of. This is necessary to make Map Algebra closed—operations have
layers as inputs and produce layers as results.

The zonal operations apply to all dimensions of data collections. For time series,
one might ask: what is the maximum temperature for the 'rain zone'? (The 'rain zone'
can be defined, for example, as days for which more than 5 mm precipitation was
measured).

condUrban uOr popVal = if uOr == 'U' then popVal else
zero
popCity = lift condUrban cities pop
-- restrict the population values to the urban zone
citypop = sum popCity
-- total population in urban zone

-- the urban zones and the their total population
-- for the population time series
popCityTS = lift (lift condUrban) citiesTS popTS
citypopTS = lift sum popCityTS

10 What Is Achieved?

10.1 Consistent Operations for Maps, Time Series, Stacks of Maps, etc.

Map layers and time series, their combination and their extensions are all functors and
instances of a single concept, namely a class of functors layerN, where n can be 1 for
time series, 2 for Tomlin's Map Algebra, and 3 for either 2d space and time or 3d
space and 4 for 3d space and time (figure 6). This covers Godchild's concept of
'geographic reality' f (x,y,h,t) and reveals it as a functor.

10.2 Polymorphic Application gives Local Operations "for Free"

Polymorphism and automatic lifting of functions makes operations and functions that
apply to single values to apply to data collections as local operations. In stead learning
a command like localSum or localMinimum one can directly use the operations + or
min and write layerC = layerA + layerB or layerD = min (layerA, layerB). Functors
preserve the rules applicable to operations; users know that C = A + B is the same as
C' = B + A.

10.3 Extensibility Without Special Language

If an application requires the value for a formula, for example, how much is the
difference between the highest and the lowest value in relation to the average, one
could search in the manual if such a Map Algebra function exists or combine it from
available functions, computing intermediate layers. Knowing that layer is a functor,
we just write the function and apply it (with lift) to the layers. This is valuable, as
sequences of routine Map Algebra operations can be combined in a single formula
and users need not learn a special scripting language.

 Map Algebra Extended with Functors for Temporal Data 203

r a b = 2.0 * (max a b - min a b)/(a + b)
rpop = lift r mpop fpop

10.4 Typing

The description of map algebra given here is compatible with a typed formalism
(Cardelli and Wegner 1985; Cardelli 1997) and requires it to make polymorphism
work. It is therefore possible to identify errors and advise users to avoid non-sense
operations: if A is a layer with values True or False, then C = A + B is ill typed. The
operation + is not applicable to layers with Boolean values, because + is not
applicable to Boolean values and can not be lifted to layers of Booleans.

10.5 Implementation

The strong theory helps us with the implementation. In a modern language, constructs
like Functor or lift are directly expressible (in Haskell directly, in C++ with
templates).This gives an implementation for local operations of map algebra in few
lines of high level code.

The use of the GHCi (available from www.haskell.org) interpreter gives a full
environment, in which functions can be loaded from files and computations executed
interactively and results displayed. All the examples included here have been run in this
environment. Functions that are used often could be compiled with GHC to improve
performance. The concepts explained here are not tied to this or any other programming
languages and can be implemented with any current programming language.

10.6 Optimization

Using Map Algebra leads to the computation of many intermediate layers, which are
then used as inputs to other operations. This is useful when exploring a question; once
a sequence of operations that lead to the desired result is found, the intermediate
layers are a nuisance, because they require careful naming to avoid confusions. In the
categorical framework, the production of intermediate layers can be avoided and all
the operations done in one sweep of the data, for example using rules like:

lift f (lift g la lb) = lift (f . g) la lb.

This rule should remind programmers of methods to merge sequences of loops into a
single one! Having a strong theory gives us guidelines when and how optimizations
are possible; understanding when optimization is not permitted may be more
important to avoid producing wrong results. For example, it is not evident how to
combine local and focal operations; understanding that a focal operation is a
convolution and as such linear answers the question.

11 Why Does This Work

Category theory is the abstraction from algebra, it is 'one step up the abstraction
ladder' (Frank 1999).Why is it useful here? Category theory is unifying very large
parts of mathematics and brings them into a single context. It integrates in the same
framework the theory of computing: "The main methodological connection between

204 A.U. Frank

programming language theory and category theory is the fact that both are essentially
'theories of functions'." (Asperti and Longo 1991 p.ix).

All computing is in a single category, namely the category of sets with functions.
The state of a computer is the collection of the values in all memory cells, CPU,
output channels, etc. All computing is a—program controlled—transformation of the
state of the machine to a new state. Every program, but also every step in a program is
a function that transforms the state of the machine; application programs are
composition of functions.

In the categorical framework, a mathematical treatment of computing becomes
feasible. Besides standard mathematics, the construction of data types and the control
of flow in a program with its statements are expressible. Functions with if_then_else
logic can be written with the McCarthy conditional function and compose with other
functions.

In general, programming an application means—independent if the analyst and
programmer understand this theoretically or not—as the formalization of a suitable
category for the concepts and operations of the application and then a mapping of this
category to the category of sets because this is the category in which the program works.

12 Future Work

The description here as well as Tomlin's original text, does not depend on a discrete,
regular raster. The theory is developed in terms of continuous functions in 2, 3, or
more variables. The translation to a discrete, regular raster based implementation is
immediate; the use of data represented by irregular subdivision (so-called vector data)
is more involved. I suggest as future work a comprehensive investigation resulting in
a theoretically justified implementation of Extended Map Algebra covering both
regular and irregular subdivision data with the same operations.

13 Conclusion

As expected, there exists a strong theory behind Map Algebra. The identification of
this theory has lead us to see commonalities between the methods we use to process
spatial and temporal data and to understand that the general concept of map algebra
can be applied to spatial data of 2 or 3 dimension, to temporal data, and to spatio-
temporal data of 2d + t or 3d + t; it can be used to combine data collections of any
dimension.

The formal theory gives us rules for the reorganization of processing geographic data
with Map Algebra operations. Descriptions of processing steps can be formalized and
optimized using rules that guarantee that the same result is obtained with less effort.

The user interface can be reduced; the number of operation names required is
drastically reduced exploiting polymorphism when it is appropriate. This should
reduce the instruction time necessary for future users of GIS. The introduction of
typed data can advise users when they try to compute nonsensical operations ahead of
time (Cardelli 1997).

My esteemed PhD advisor Rudolf Conzett used to quote Boltzmann: "There is
nothing more practical than a good theory". I believe that formal investigations lead to

 Map Algebra Extended with Functors for Temporal Data 205

a deeper understanding and, as a consequence, a simplified solution. This paper
demonstrates how theory leads to more powerful Extended Map Algebra with at the
same time a simplified user interface.

Acknowledgements

Many of my colleagues and students have helped me to advance to this point.
Particular thanks go to the Haskell community (www.haskell.org) for their continuous
efforts to produce tools to play with category theory and apply it to practical
problems. Funding from the European Commission for projects DigitalSEE,
Geocompass, Georama and REVIGIS is acknowledged. Special thanks to my former
student Dorenbeck for his work on an MSc. Thesis "Spatial Algebras in Geographic
Information Systems" in 1991. The discussions with Max Egenhofer, Werner Kuhn
and Gilberto Camara since then have contributed substantially to my current
understanding.

References

Asperti, A. and G. Longo (1991). Categories, Types and Structures - An Introduction to
Category Theory for the Working Computer Scientist. Cambridge, Mass., The MIT Press.

Bird, R. and O. de Moor (1997). Algebra of Programming. London, Prentice Hall Europe.
Cardelli, L. (1997). Type Systems. Handbook of Computer Science and Engineering. A. B.

Tucker, CRC Press: 2208-2236.
Cardelli, L. and P. Wegner (1985). "On Understanding Types, Data Abstraction, and

Polymorphism." ACM Computing Surveys 17(4): 471 - 522.
Church, R. L., R. A. Gerrard, et al. (2003). "Constructing Cell-Based Habitat Patches Useful in

Conservation Planning." Annals of the Association of American Geographers 93(4): 814-
827.

Couclelis, H. and N. Gale (1986). "Space and Spaces." Geografiska Annaler 68(1): 1-12.
ESRI (1993). Understanding GIS - The ARC/INFO Method. Harlow, Longman; The Bath

Press.
Frank, A. U. (1998). GIS for Politics. GIS Planet '98, Lisbon, Portugal (9 - 11 Sept. 1998),

IMERSIV.
Frank, A. U. (1999). One Step up the Abstraction Ladder: Combining Algebras - From

Functional Pieces to a Whole. Spatial Information Theory - Cognitive and Computational
Foundations of Geographic Information Science (Int. Conference COSIT'99, Stade,
Germany). C. Freksa and D. M. Mark. Berlin, Springer-Verlag. 1661: 95-107.

Goodchild, M. F. (1990). A Geographical Perspective on Spatial Data Models. GIS Design
Models and Functionality, Leicester, Midlands Regional Research Laboratory.

Goodchild, M. F. (1992). "Geographical Data Modeling." Computers and Geosciences 18(4):
401- 408.

Horn, B. K. P. (1986). Robot Vision. Cambridge, Mass, MIT Press.
Lifschitz, V., Ed. (1990). Formalizing Common Sense - Papers by John McCarthy. Norwood,

NJ, Ablex Publishing.
Loeckx, J., H.-D. Ehrich, et al. (1996). Specification of Abstract Data Types. Chichester, UK

and Stuttgart, John Wiley and B.G. Teubner.
Mac Lane, S. and G. Birkhoff (1967). Algebra. New York, Macmillan.

206 A.U. Frank

McHarg, I. (1969). Design with Nature, Natural History Press.
Peyton Jones, S., J. Hughes, et al. (1999). Haskell 98: A Non-strict, Purely Functional

Language.
Snodgrass, R. T. (1992). Temporal Databases. Theories and Methods of Spatio-Temporal

Reasoning in Geographic Space (Int. Conference GIS - From Space to Territory, Pisa, Italy).
A. U. Frank, I. Campari and U. Formentini. Berlin, Springer-Verlag. 639: 22-64.

Stroustrup, B. (1991). The C++ Programming Language. Reading, Mass., Addison-Wesley.
Tomlin, C. D. (1983a). Digital Cartographic Modeling Techniques in Environmental Planning,

Yale Graduate School, Division of Forestry and Environmental Studies.
Tomlin, C. D. (1983b). A Map Algebra. Harvard Computer Graphics Conference, Cambridge,

Mass.
Tomlin, C. D. (1990). Geographic Information Systems and Cartographic Modeling. New

York, Prentice Hall.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

