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ABSTRACT

The concept of Open GIS depends on precise definitions of data, operations and interfaces. This

paper argues for the use of functional programming languages as specification and prototyping

tools for Open GIS components. It shows how functional programming languages fulfill the key

requirements for formal specification languages and allow for rapid prototyping in addition. So

far, it has never been possible to integrate specification and prototyping in a single, easy to use

environment. Most existing specification methods lack appropriate tools for checking and

prototyping, while existing tools lack either sound semantics or usability or both.

The paper discusses the role of specifications in GIS, requirements for specification

languages, and a survey of algebraic specifications as well as of functional languages. It then

describes how functional languages can be used for writing and executing algebraic

specifications. A brief example of a GIS data type specification in a functional language is

presented, showing how specifications serve to describe differences in the semantics of GIS

operations. We conclude that functional languages have the potential to achieve a breakthrough

in the problem of specifying interfaces of interoperable components for Open GIS.
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1 SPECIFICATIONS AND OPEN GIS

Specifications are essential for software quality and widely used in industry. For Geographic

Information Systems (GIS), they are of special interest in the standardization of data models,

transfer methods, Open GIS component interfaces, and database architectures. Practical

specification methods are needed for the success of Open GIS architectures in which programs

and data collections from different vendors need to cooperate at multiple levels of abstraction

[Voisard, and Schweppe, to appear].

1.1 Specifications and Software Development

Specifications allow for a division of labor in software development. They serve as a contract

between the software analyst, who understands the application problem, and the programmer,

who is concerned with an optimal use of resources. They support producing the software and

assessing its correctness.

CASE tools provide informal methods to design, manage, and communicate specifications

for software. Positive results from largely informal software design methods in general have

been reported [Head, 1994], but software practitioners criticize current tools for being too low

level. A pointed observation is that CASE tools are nothing but glorified systems to draw

diagrams and often do not scale up to large problems, where the amount of documentation

becomes overwhelming.

Formal specifications, i.e., specifications written in a formal language with mathematically

defined semantics, allow for formal checks and reasoning before programming starts. They can

provide support for an automatic program verification [Guttag, Horning, and Wing, 1985].

However, such consistency checks are internal to the formal system and cannot ensure that the

specifications capture the intentions of the designer or other real world requirements.

Rapid prototyping has been advocated to achieve programs that correspond not only to

specifications but also to the actual user requirements. Prototyping reduces the danger that you

get what you ordered, but not what you wanted. In current software design practice,

specification and prototyping tools are often separated or only loosely coupled. If a language
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allowed to write specifications and to execute what has been specified, it could serve as a

combined specification and prototyping tool. This paper claims that functional programming

languages, extended with recent research results, achieve this goal.

1.2 What is Special about Specification Needs for Spatial Data?

The need for formal specification languages is common to the whole software industry;

problems with interoperability of tools from different vendors plague nearly every user of a

computer system. However, the specification problem is more acute for GIS than for most other

application areas:

• Economic use of spatial data is only possible if data can be used by many different users

from different organizations. The need for a functioning market of spatial base data is

larger and this market is growing faster than in most other areas of information

technology. Consider as an indicator the offerings for data on CD-ROM: geographic data

figure very prominently.

• The structure of geographic data is more complex than that of other data exchanged

routinely. It is comparable to, but going beyond, that of CAD data, where similar

problems are encountered.

• Sharing data transcends organization boundaries. The consumer usually pays for the data

and expects them to be "usable", otherwise legal problems can ensue [Frank, 1992].

1.3 Specifications and the GIS Market

GIS are evolving into multi-vendor software environments, Open GIS, where heterogeneous

components cooperate to solve complex spatial problems. Users buy software from different

vendors to solve particular parts of their problem: they want to access the database system

produced by one company from the mapping tool of another vendor or to assess the spatial

dimension of marketing forecasts in a GIS. This movement toward interoperable, open

environments will rapidly progress within and outside the GIS industry [O'Callaghan, 1993].

Specifications are the key to achieve this interoperability. They constitute a contract between

providers and customers of services in an Open GIS.
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Specifications of GIS services provide economical viability for the niche market vendor

who can offer tools that are independent of the software environment of a client. If a vendor

must provide a special version for any combination of client database system and GIS software,

the business cannot operate profitably. GIS tools can only be provided for specific markets if

they can be built on top of a general service layer.

Specifications are also essential to access the mass market with GIS software: Selling low

cost software can only become profitable if GIS tools provide a standardized service (which can

be used and understood independently of a specific vendor) and interact in a standardized way

with databases, operating systems and other applications. Specifications are the enabling

technique to ensure customer satisfaction with mass products, while also improving special

applications that work within open environments.

The problem of data transfers can also be cast into the specification framework [Kuhn,

1994]. This helps to separate the issues of data representation (which are relatively easy to

solve) from the critical issues of differences in semantics. The buyers in a "spatial data market"

are interested in the information they can obtain from transferred data. They need tools to

describe this information or to interpret existing descriptions. Defining this information content

or semantics is precisely what a specification does.

The first SSD meeting pointed to the importance of meta data and formalisms to help

potential users of spatial data find data in a distributed environment and to transfer them [Smith,

and Frank, 1990]. Methods to describe meta data are missing today, current efforts for

standardization still struggle with fundamentals of geometric data, and the standards are based

on informal semantics. Future standards for Open GIS will need to use formal specifications for

defining data semantics and for testing adherence of implementations to standards.

Specifications as advocated here can formally define semantics at all levels of a data transfer.
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2 REQUIREMENTS FOR SPECIFICATION LANGUAGES

Several properties of a specification language are desirable for its use in practice. This section

summarizes only the most important ones: expressing semantics, ease of understanding, and

rapid prototyping, i.e., a way to check whether the specified semantics are those intended.

2.1 Expressing Semantics

Specification languages must allow for expressing real situations in terms with exactly

defined formal semantics. Defining semantics unambiguously and completely is so difficult that

it presents one of the main motivations for formal specifications. Most specification methods

produce documentation of which only a minimal amount can be checked automatically for well-

formedness, completeness, and consistency. While the correctness of a specification with

respect to what the designer had in mind can never be formally asserted, clean semantics of the

underlying language and formal checking of the syntax make correctness much more likely.

Some data definition languages (e.g., EXPRESS [ISO, 1992]) allow to specify data types,

but lack formal semantics. They describe static data types with attributes and relationships,

omitting the specification of operations. However, a specification language based on types must

have a method to associate data types with operations. Otherwise the concept of type remains

vacuous. Section three describes algebraic specifications which achieve this association.

2.2 Ease of Understanding

Expressive power is a necessary condition for a specification language, but it does not guarantee

its success. Specifications must be easy to write and read. Specification languages must help to

master the complexity of real world applications and should offer abstractions which are easily

understood. Too many specification approaches have stressed the formal aspects of the syntax,

disregarding the interpretation of specifications by human readers (as opposed to syntax

checkers).

Specifications often produce enormous amounts of documentation, and a common

complaint for all specification methods is that they do not scale up. While they work well for
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the small examples on which they have been developed and tried, they overwhelm the designers

when applied to large, real world situations. Despite this complaint, any structured approach to

specify a problem before programming is beneficial, nearly independently of the method and

tools applied.

2.3 Rapid Prototyping

Organizing a large body of knowledge in a comprehensive fashion must bridge the gap between

the cognitive and the formal. Due to the difficulty of writing and reading specifications, many

errors are not detected before an implementation is completed. Rapid prototyping has been the

industry’s answer to this dilemma. It was motivated by the difficulty in the software design

process to capture real world semantics. Prototyping is clearly preferable to testing of

production code, as it can be done much earlier in the development process, where changes are

relatively easy and cheap.

A specification language with a prototyping capability allows for executable specifications.

By demonstrating program behavior in such a way, it becomes possible to observe deviations

from the intended behavior immediately. Deviant behavior is easy to detect for humans, while

the underlying violation of semantics cannot always be easily discovered in a formal

description.

3 ALGEBRAIC SPECIFICATIONS

There is a growing consensus that formal specification methods are necessary for projects of

some complexity; however, it is often unclear what method to choose. Algebraic specifications

[Guttag, Horowitz, and Musser, 1978; Liskov and Guttag, 1986] combine the advantages of

data abstraction (supporting object-oriented modeling) with an axiomatic method (abstracting

from particular execution models) and a functional style (offering clean semantics). In addition,

they are easier to learn, read, and write than most other styles.

An algebraic specification defines the behavior of an operation by axioms. These state the

operation’s effects in terms of other operations on the same data type. One differentiates
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constructor operations which construct or change an object and observers which report its state.

The behavior of the constructor operations is then expressed either in terms of other

constructors or by observers. The well known example of a stack shows how the effect of a push

operations is expressed with the observer top (to check the top element) and the additional

constructor pop (to remove the top element):

top (push (item, stack)) = item

pop (push (item, stack)) = stack

This method of description is formally self-contained and complete. It says all about the

behavior of push without relying on the semantics of another domain (e.g., of arrays or lists).

Note that the variables used in the axioms are implicitly universally quantified, i.e., the above

equations hold for all possible stacks and items. There are informal rules for generating axioms

which are easy to follow and achieve sufficient completeness and consistency in the sense of

[Liskov and Guttag, 1986].

4 FUNCTIONAL PROGRAMMING LANGUAGES

In functional programming languages, everything is a function returning a value. LISP is the

oldest and probably most often used functional language, but APL and ML are other well

known examples. One distinguishes pure functional languages, where functions are

mathematically pure, produce only one result, and do not have side effects, from others which

allow side effects to varying degrees. A comprehensive survey and pointers to the literature can

be found in [Hudak, 1989].

4.1 Functions as Fundamental Building Blocks

Functional programs consist of the application of functions to some values. The basic control

structure is recursion. For example, a typical implementation of factorials in a language like

Gofer [Jones, 1994; Thiemann, 1994] looks like this:

fac n  =  if n==0 then 1 else n * fac (n-1)

In pure functional languages, the functions produce only one result value and do not have side

effects. The input parameters are not changed, nor are there any other global variables that carry
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state. This fulfills one of the major desires of programming language designers, to achieve

locality of concerns: all effects of a function can be seen in its own code and no other effects

must be considered.

4.2 Referential Transparency

By the same token, pure functional programming languages achieve "referential transparency",

i.e., an expression always describes the same value. Destructive assignments are not possible, as

a value can only be assigned once to a variable. This seems a very strong restriction, but

guarantees that mathematical proofs of program behavior are straightforward and can use

regular logic, without specific inference rules for each control structure [Dijkstra, 1977]. It

allows mathematical reasoning about programs based on substitution. Understanding behavior

and reasoning about it becomes much simpler and errors are easier to spot. Referential

transparency is also found in (pure) Prolog and is probably one of the reasons why Prolog

programming has been so successful.

4.3 Type Inference

Functional programming languages in the tradition of ML [Milner, 1978] are strongly typed.

Every object has a particular type and the compiler checks that operations can only be applied

to objects of the appropriate type (similar to Pascal and other strongly typed languages). Other

functional languages like LISP are untyped or the types are checked at run time. A strong typing

discipline is helpful for design as it helps discover problems early in the design.

The work on ML showed that the types need not always be provided by the programmer (as

in Pascal or C++), but can be inferred by the compiler. Given the obvious types of constants (3

is an integer, 3.57 is a float) the types of variables and expressions can be logically deduced by

a type inference mechanism (e.g., inferring from "a = 3.5 + 2.1" that a is of type float). This

achieves the same as a strict type system with programmer-provided types, but eliminates the

need to define each variable with its type and reduces program clutter.
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4.4 Recent Extensions to the Theory of Functional Programming

Substantial progress has recently been made in the area of functional programming languages.

New type theories allow for a conceptually clean treatment of inheritance. The application of

ideas from category theory, in particular monad transformers, has the potential to overcome

limitations of functional languages in dealing with state.

4.4.1 Class-Based Polymorphism

Polymorphism, i.e., the ability of an operation to be applied to arguments of varying types, is

very important for modeling spatial data and operations. The intersection of two curves, for

example, is the same operation, independent of the type of curves; intersection of two geometric

objects has some common behavior for any combination of points, lines, and areas.

Separating the different aspects of polymorphism and combining them with a type

hierarchy (inheritance) is conceptually difficult. Current programming languages often mix

design issues with implementation concerns. Jones has designed and implemented (in Gofer) a

class-based type system with polymorphism, which models multiple-inheritance in a clean way

[Jones, 1994].

4.4.2 Dealing with State

The lack of side effects and "updates in place" in functional programming languages have

hindered state-based concepts (like databases or I/O) and had to be overcome with loopholes in

the past. Some functional languages (e.g., LISP, APL) have included extensions to the strict

functional model to make them more usable.

Recently, a coherent extension of the theory has been developed which shows how to

integrate database access and I/0 into a pure functional framework [Peyton Jones, and Wadler,

1993; Liang, Hudak, and Jones, 1995]. Imperative aspects (e.g., sequences of operations and

side effects) are properly expressed without breaking the functional syntax or semantics. This

makes functional languages usable and attractive for the specification and prototyping of

database interoperability within Open GIS environments.
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Implementations exist and have been used to build standard read and write operations for

I/O. Efforts to provide graphical user interface tools in a functional language are underway. The

tools to connect to database services are available and semantically more suitable methods,

better integrated with the type system, are being studied. It is likely that ideas from the

functional database studies [Shipman, 1981] can be reused.

5 USING FUNCTIONAL LANGUAGES FOR SPECIFICATIONS

Functional programming languages satisfy some key requirements for specification languages.

On the other hand, they do not support some common features of specification environments.

This section discusses the pros and cons of using functional languages for writing

specifications.

5.1 Advantages

The use of functional programming languages for writing specifications offers three key

benefits:

• formality: formal specifications allow for automatic checking of well-formedness,

completeness, and consistency;

• executability: the specifications can be used as executable prototypes and deviations from

intended behavior can be detected and corrected immediately;

• extendibility: new specifications can be integrated based on a sound type theory with

polymorphism [Jones, 1994].

Furthermore, functional programming languages are readily available (often in the public

domain) and possess some additional desired properties:

• functions can be combined to form algebras, allowing for an algebraic specification style;

• referential transparency permits mathematical reasoning by substitution;

• a lean syntax that is very close to standard mathematics affords ease of writing and

reading.

Thus, functional programming languages satisfy the key requirements for specification

languages. They share with specification languages a tendency to mathematical formalism and
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brevity of expressions (APL provided an extreme example). The functional language Gofer, for

example, is about three to five times more compact than equivalent, highly modularized Pascal

code (even more for C++, if object-oriented features are being used). One of the major

contributions to reduce clutter is the type inference mechanism of languages in the ML

tradition.

5.2 Limitations

Functional programming languages do not have all properties of the most advanced formal

specification environments: they are not designed for a formal verification of specifications, nor

for version management, or for documentation and cooperation in teams.

The major issue is documentation of modular decomposition: how is a complex system

subdivided into parts. Here, for both specification languages and functional programming

languages, additional tools are necessary such as class browsers of the kind used in Smalltalk

environments. CASE tools and visual programming environments are much more advanced in

this respect, but there are no reasons why such tools could not be constructed for a functional

language.

5.3 Constructive vs. Declarative Axioms

Axioms, when expressed in a functional language, are restricted to a constructive form: the left

hand side of the axiom has to be a simple expression or contain only constructor operations.

This excludes axioms stating general behavior without supplying a rewrite rule on the right

hand side. For instance, it is not possible to say that an operation is transitive or reflexive, or to

define a matrix inverse by stating that a matrix multiplied with its inverse produces the unit

matrix.

This restriction is necessary to allow for execution and, by the same token, to simplify

program proofs. According to our observations, it does not affect the use of functional

programming languages for specifying GIS objects. In fact the theory of algebraic specifications

[Guttag, Horowitz, and Musser, 1978] is based on the exact same restriction. Many operations

are defined as simple expressions which can be copied from text books (e.g., coordinate
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transformations, geometric constructions). Data types like lists and trees are easily specified by

constructive axioms.

The type system can be used to ensure compatibility of definitions according to non-

constructive axioms. This resembles the practice in physics to check the dimensions of

formulae. Non-constructive axioms can also be used for testing that an implementation

conforms to the intended behavior. Boolean functions, testing the intended behavior, are

defined and called with appropriate arguments. For example, a function

commutative op a b = (a ‘op‘ b) == (b ‘op‘ a)

can be used to test if an operation op is commutative (for a particular pair of arguments). Such

tests can be automated by supplying lists of appropriate test cases and applying the test

functions to them.

5.4 From Specification to Implementation

Any specification language must be compared with the target implementation language to

assure that the specifications can be implemented. There are two issues:

• potential mismatch in concepts

• speed of execution.

The influence that a specification language exerts on the design of the system must be assessed

and the effect on the later implementation considered. If the specification and implementation

languages differ widely, the implementation requires a substantial redesign. It is then typically

very difficult and costly to show that the actual implementation corresponds to the system

specified. This may be necessary if different companies are involved and for time- or safety-

critical systems.

In contrast to special-purpose specification languages, functional programming languages

raise the additional question of execution speed, i.e., whether translation to another language is

necessary to achieve efficiency. From the point of view of specifying the behavior of complex

spatial objects in GIS, possible efficiency shortcomings of current functional environments are

not important. What matters, particularly in an Open GIS environment, is to have an
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implementation-independent formalism that can be used to describe the semantics of data and

operations and to execute these descriptions for test purposes.

Functional languages have been assumed to be inherently slow [Backus, 1978]. New

implementation methods based on advanced mathematics seem to overcome this problem to a

large extent. Compiled functional code may just be two to five times slower than a C program,

i.e., fast enough for many applications. In the long run, functional programming languages may

become efficient enough for implementations in most situations. In the short run, many GIS

application programming languages are orders of magnitude slower than standard programming

languages. Functional languages can therefore already now improve on the performance of

application programming languages.

5.5. Experiences

In Gofer and related languages, we have found a practical tool allowing for a combination of the

advantages of formal specifications with those of rapid prototyping. Our experiments have

confirmed that such a tool (Gofer or a possible future merger of Gofer with Haskell [Hudak et

al., 1992]) provides the expressive power as well as the ease of use necessary for realistic

applications in GIS. Gofer is very close to a standard algebraic notation and can be understood

with hardly any explanations of the syntax. It is easy to learn and we had students (not from

computer science) write non-trivial specifications for geometric data types within weeks.

We have also used Gofer in a "Surveying and Information Systems" course to specify data

structures (e.g., a search tree) and to demonstrate their behavior. Gofer is being used in

introductory programming courses at some universities [Thiemann, 1994]. We consider to use it

as the first programming language for surveying engineering students, replacing an introductory

course in Pascal which cannot cover data structures appropriately. In research, we have used

Gofer for extensive experiments in specifying hierarchical graph models [Car, and Frank, 1995]

and temporal reasoning [Frank, 1994].
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6 A SPECIFICATION EXAMPLE

A recent discussion in the North-American Open GIS Consortium raised the issue of how to

decide on point equality. Obviously, different systems cooperating in a heterogeneous

environment can use different semantics in their equality operations. Interoperability is only

possible if these semantics can be described independently of the implementations and

succinctly presented to the user of an Open GIS service. The following simplified example

achieves this using the functional language Gofer to write algebraic specifications for point data

models.

Let us assume three different data models for the storage of point data. System A stores

simple lists of coordinates and determines point equality based on coordinate values. System B

represents points by coordinates and names and compares point names to decide equality.

System C uses the same data type as system B, but decides equality like system A, comparing

coordinate values.

The specifications focus on equality operations, leaving additional operations on points

(such as a distance) unspecified. While Gofer would offer more compact ways to write these

specifications (using classes), the code as written here has the advantage of being largely self-

explanatory. The Gofer keyword "data" introduces the definition of a (abstract) data type, while

the keyword "type" defines just a type synonym. The signatures of functions list the function

name, followed by an argument list. Finally, the axioms describe the behavior of the functions

by equations. The crucial difference among the three specifications lies in their last axioms,

defining the different semantics of equality.
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Data Model of System A

type Coord = Int

data Point = New (Coord, Coord)

x       ::      Point -> Coord

y       ::      Point -> Coord

equal   ::     (Point, Point) -> Bool

x (New (cx,cy)) = cx

y (New (cx,cy)) = cy

equal (p,q) = (x(p) == x(q)) && (y(p) == y(q))

Data Model of System B

type Coord = Int

type Name = String

data Point = New (Coord, Coord, Name)

x       ::      Point -> Coord

y       ::      Point -> Coord

name    ::      Point -> Name

equal   ::     (Point, Point) -> Bool

x (New (cx,cy,n)) = cx

y (New (cx,cy,n)) = cy

name (New (cx,cy,n)) = n

equal (p,q) = name (p) == name (q)
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Data Model of System C

type Coord = Int

type Name = String

data Point = New (Coord, Coord, Name)

x       ::      Point -> Coord

y       ::      Point -> Coord

name    ::      Point -> Name

equal   ::     (Point, Point) -> Bool

x (New (cx, cy, n)) = cx

y (New (cx, cy, n)) = cy

name (New (cx, cy, n)) = n

equal (p,q) = (x(p) == x(q)) && (y(p) == y(q)).

The specifications show clearly that the decision of equality between two points depends on

other operations, i.e., equality of strings or of coordinates. Assuming a transfer of point data

between two systems: even if both systems used the same data model (e.g., both have data

model of system B), two points may be determined to be the same in the first and different in

the second system. This can happen if the full definition of equality is not the same, e.g., if

string equality is case sensitive in one of the two systems. The algebraic specifications

expressed in the functional language Gofer reveal these semantic differences in their axioms.

7 CONCLUSIONS

Specification methods are important for GIS design, because GIS are highly complex software

systems. The currently available commercial systems with their limitations and known bugs are

demonstrating that GIS is stretching current software design methods to the break point. The

evolution toward Open GIS, where software components from different vendors cooperate, will

only succeed if the interfaces between components can be formally defined. Open GIS depend

crucially on formal, testable specifications. A component needs to be testable for compliance

with the intended behavior so that components causing a problem can be identified and

rectified. This is a commercial and legal necessity, which may decide on the viability of the

whole idea of Open GIS.
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This paper has argued that functional programming languages can and should be used to

specify GIS software. Functional languages are suitable for specifications because they support

the standard methods of mathematical proofs, in particular, substitution of equal terms. This

effect of referential transparency is not found in imperative programming languages whose

complex proof rules cannot be handled by most practitioners. Furthermore, functional programs

are executable, allowing the specifiers to check whether they have specified what they wanted.

Since it is impossible to formally prove that a program does what a designer wants, executable

specifications are the best possible approximation.

Our experience has convinced us that functional programming languages like Gofer or

Haskell offer an appropriate compromise solution to the various requirements for a specification

language in practice. They are currently limited in dealing with I/0 and databases, but the theory

to deal with these shortcomings is developing rapidly. The same theory seems to explain the

interaction of modules in a much simpler way than previously possible. Performance of

functional programming languages is rapidly improving and they naturally lead to parallel

computations.

Current practice to help with interoperability is based on two practical tools: test suits and

reference implementations. Test suits are sequences of test cases which are processed and

compared with the "correct" results. Reference implementations can be used similarly. For any

input, the result for the reference implementation and the system under consideration must be

the same. Functional programming can be used in both cases to check implementations, with

the key advantage that the specification represents the code of the reference implementation. It

can be interpreted much easier than traditional programming code and it can be analyzed using

standard mathematical logic.
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