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Abstract

The integration of error analysis in geographic informa-
tion systems (GIS) is a dominating research topic in ge-
ographic information science. Current vector-based GIS
software is based on idealized geometric objects: Infinitely
small points and infinitely thin lines disregard the real char-
acter of object representation. The present paper outlines
an axiomatic model of 2D projective geometry that incor-
porates positional random error. As a basis, Menger’s ax-
iomatic system for projective geometry is used. Points with
errors are modelled by normal distributions and are called
Spray Can Points. Lines with errors or Spray Can Lines
are defined to be the dual of Spray Can Points. The paper
gives proof that these objects fulfill the axioms of projective
geometry as proposed by Menger and are therefore suitable
as a projective model. In future work the proposed model
will be used to formulate a corresponding Euclidean model
for objects with errors.

1. Introduction

A fundamental issue of geographic information systems
(GIS) is the digital representation and manipulation of spa-
tial objects. The basic geometric components for the repre-
sentation of objects in vector based GIS are points, lines and
polygons. Operations for object manipulation are based on
the rules of Euclidean geometry. Geometric functionality
in GIS is implemented on the basis of a model of infinitely
small points and infinitely thin lines. This is in sharp con-
trast to the fact that geographic data and their representation
are extended and uncertain in location.

The integration of error representation and analysis is of-
ten regarded as crucial for the commercial and legal viabil-
ity of GIS [7]. Users should be able to assess the accuracy of
the information upon which they base their decisions [18].

One aspect of error analysis is the assessment of error prop-
agation effects during GIS operations. The propagation of
errors may sum up effects and in the worst case leads to
meaningless data. Consequently, it should be an integral
part of GIS operations.

For example, consider a parcel of land whos corner
points are measured with a certain precision. In a GIS, a
polygon is constructed from the corner points, representing
the boundary of the parcel. Hereby each line segment of
the polygon is constructed from two input points by what
Menger calls a join operation. The line segment can be
assigned some positional error measure, depending on the
error of the initial corner points of the parcel and the dis-
tance betwen them. When computing the intersection of a
boundary line with a path traversing the parcel, the resulting
intersection point exhibits an error measure that depends on
the error of the boundary line, the error of the line repre-
senting the path, the intersection angle and the error of the
intersection angle. If the intersection point is not measured,
but constructed in the GIS, the resulting error depends on
the geometric construction process.

In the present paper an axiomatic model of 2D projective
geometry is defined, that incorporates random error in po-
sitional spatial data. Projective geometry provides a more
concise axiomatic system than Euclidean geometry. It can
be formulated in simple algebraic terms and independently
of dimension. It is preferable as a foundation for geometric
operations for GIS. Since the Euclidean space can be natu-
rally embedded in the projective space, this approach pro-
vides a basis for modeling error propagation in Euclidean
geometry.

A point in the proposed model is called Spray Can Point
and is modelled by the two dimensional probability density
function (pdf) of a Gaussian normal distribution. Random
error in geometric data is usually assumed to be normally
distributed [8]. This assumption is based on the central limit
theorem stating that the sum of identically independent dis-



tributions approximately follows a normal distribution. The
name Spray Can Geometry is motivated by the way a spray
can produces points. The single droplets of paint are ran-
domly distributed over the paper, following a Gaussian dis-
tribution. The probability of one droplet falling in the area
dxdy is given by the integral over the Gaussian pdf in dxdy.

Starting with the definition of a Spray Can Point, Spray
Can Lines are introduced by duality. Based on the axioms
of projective geometry proposed by Menger [3] Spray Can
Operations are defined for the connection of Spray Can
Points and the intersection of Spray Can Lines. The paper
gives proof that the defined objects and operations fulfill
Menger’s axioms of projective geometry. The novel con-
tribution is the axiomatic approach to define operations for
geometric objects with error.

This paper is divided into 5 sections. Following the intro-
duction, a brief review of literature related to modeling po-
sitional random errors in 2D GIS is given. Subsequent to a
definition of axiomatic geometry in section 3, the proposed
Spray Can model of projective geometry is introduced in
section 4. Section 5 concludes the paper and addresses open
questions.

2. Modelling positional random error in 2D
GIS

The idea for the proposed research emerged from a
keynote speech given by Lotfi Zadeh [19] about computing
with imprecise data. He suggested an approach replacing
the ideal model of extensionless points and lines by points
and lines as they are produced by a Spray Can.

Several approaches exist for assessing the positional er-
ror of derived geometric objects in vector based GIS. One
common way is the simulation method. A Monte Carlo ap-
proach can be applied to simulate the probability density
function of a line segment based on the pdf of the endpoints.
Lei et. al. [12] assume two-dimensional normal distribution
for the line endpoints. Random line segments are generated
using a stochastic generator. An error model for the line
segment is developed for independent and dependent end-
points. Abbaspour et. al. [1] use Monte Carlo simulation
for testing the error propagation behavior of overlay opera-
tions for polygons.

Heuvelink et. al. [10] present a comprehensive proba-
bilistic framework for specifying, representing and simulat-
ing uncertain environmental variables, including positional
and attribute uncertainty. The positional uncertainty behav-
ior of a geometrical object is specified by assigning appro-
priate pdfs to primitive points of the object (e.g. the cor-
ners of a poygon) or to reference points of the object (e.g.
the objects centroid). Realizations of the modelled behavior
can be used as input for Monte Carlo uncertainty propaga-
tion studies. In contrast to this, the present paper gives an

axiomatic model of geometry that incorporates error propa-
gation as an integral part.

Another way of modeling positional error of geometric
objects are buffer based models. For a point with error a
buffer can be defined by a confidence region containing the
true location of the point with a probability larger than a
predefined confidence level [16]. If the accuracy and de-
pendencies of the coordinates is known, the error of a point
can be represented by the standard error ellipse [8].

For line segments the concept of a buffer based model
goes back to Perkal’s definition of the epsilon band model
(cited in [13]). An epsilon band defines a buffer around a
line segment containing the true line with some probability.
Many variants of the epsilon band model have been devel-
oped since then. Alesheikh and Li [2] represent the error
of a line segment by the union of error ellipses of all points
along that line depending on the positional errors of the two
endpoints. Shi [16] introduced the error band model with
a rectangular confidence region of non-uniform width. He
considers the endpoints of the line segment to be statisti-
cally independent. This model was generalized by Shi and
Liu [17] for statistically dependent endpoints, named the G-
band model.

Leung et. al. [14] introduced the covariance-based error
band model for line segments that contains the classical ep-
silon band model and the error band model as special cases.
Assuming a multivarate normal distribution for points with
errors, lines with errors are derived by strictly applying the
approximate law of error propagation. Formulas are derived
for the intersection of lines with errors, resulting again in
points with errors. Closedness of operations is therefore
achieved. The present approach likewise addresses the issue
of closedness of operations, but differs from [14] by aiming
at a closed axiomatic geometry for objects under positional
random error. An axiomatic approach has the advantage
that it produces consistent solutions for derived operations
and relations.

Clementini [5] specifies a model of uncertain lines as an
extension of the model for regions with a broad boundary.
Lines with a broad boundary incorporate all types of uncer-
tainties occuring in linear spatial objects and can be easily
integrated into existing data models for spatial databases. In
constrast to the present work, the model aims at the study
of topological relations between uncertain lines.

In his thesis Heuel [9] proposes a method for statisti-
cal reasoning for polyhedral object reconstruction. He pro-
poses a framework of uncertain projective geometry using
Grassman-Cayley algebra. His work is similar to the ap-
proach presented in this paper, but focuses at photogram-
metric applications. The formalism used builds on algebraic
invariants of projective geometry but is not a direct model
of an axiomatic system.

The research proposed here aims at making use of the



power of a closed and fully defined axiomatic system. An
error model that complies with the axioms of projective ge-
ometry automatically provides consistency, i.e. it avoids
contradictions. Equipped with a realistic interpretation
of geometric primitives, all geometric objects can be de-
rived.The standard operations of vector based GIS software
are built upon the axioms of Euclidean geometry. An er-
ror model complying with these axioms allows to reuse the
analysis functions already defined. The concept of lifting
(cf. [15]) provides an appropriate tool for the extension of
exact functions to Spray Can functions. The novel contribu-
tion of this work is the use of axiomatic geometry to build
an error model of objects under positional random error.

3. Axiomatic Geometry

Euclid’s Elements is often referred to as the most suc-
cessful textbook in the history of mathematics, since it in-
troduced the deductive method to formal sciences. Its as-
piration was to logically deduce all theorems of geometry
from few obvious statements and rules that need not be
justified. These statements are nowadays called undefined
terms or geometric primitives; the rules are called postu-
lates or axioms.

A model of Euclidean geometry is an interpretation of
primitives that fulfills the axioms. A metaphor commonly
attributed to David Hilbert states that it should always be
possible to replace the notions point, line and plane by desk,
bank and beer mug, as long as the rules apply. The mod-
ern and fully consistent axiomatic approach determines the
classical Euclidean geometry up to isomorphism.

The principle of coexisting isomorphic models can be
employed for all modern geometric systems, including pro-
jective geometry. It is used in the present paper to define
a Spray Can model of projective geometry. Spray Can ob-
jects are interpretations of primitive objects incorporating
positional random error. Spray Can relations are interpre-
tations of primitive relations that operate on Spray Can ob-
jects. They must be defined accordingly, so that the axioms
apply.

4. A spray can model for projective geometry

The Euclidean plane is naturally embedded in the pro-
jective plane. The extended Euclidean plane can be con-
structed by adding to the Euclidean plane an ideal ”line at
infinity”, the horizon. The Line at infinity consists of dis-
tinct points called points at infinity. For a given line l in the
real plane R2, all lines parallel to l are said to intersect at a
point at infinity, which is uniquely determined by the direc-
tion of l [4]. The extended Euclidean plane is isomorphic to
the projective plane.

Projective geometry uses the powerful concept of dual-
ity. Projective duality allows to exchange the notions of
point with line and connect (join) with intersect (meet) and
vice versa without violating the validity of a theorem. As
a consequence, an axiomatic system of projective geometry
requires only half of the axioms, provided a duality opera-
tion has been defined. Harold Coxeter ([6], p.231) describes
the principle of duality to be ”one of the most elegant prop-
erties of projective geometry”.

It was the goal of many mathematicians to find an ax-
iomatic system for Euclidean and projective geometry that
is as simple and concise as possible. One of them was Karl
Menger, son of the famous economist Carl Menger. Karl
Menger was born in Vienna, but immigrated to USA dur-
ing the second world war. In the work Studies in Geometry
[3] Menger gave an axiomatization of projective geometry
consisting of 5 primitives and 6 axioms, 3 of which are sim-
ply dual statements of the others. This is a big difference to
Hilbert’s axiomatic system for Euclidean plane geometry,
consisting of 6 primitives and 14 axioms.

Menger’s axiomatization is a purely algebraic approach
which, as a consequence, is dimension independent. The
constructions in Hilbert’s approach depend on the dimen-
sion of the space under consideration [11].

4.1. Menger’s Axiomatization of Projective
Geometry

The primitive objects of Menger’s axiomatic system are
a set S of objects of concern and two special objects con-
tained in S. These special objects are vacuum V , repre-
senting nothing, and universe U , representing everything.
The primitive operations in Menger’s definition are join and
meet. Join, denoted by∨, connects two elements of S, meet,
denoted by ∧, intersects two elements of S.

The role of vacuum and universe is axiomatized by four
postulates:
1.1) U ∨X = U, U ∧X = X
1.2) V ∧X = V, V ∨X = X
for all X in S.

The behavior of arbitrary projective objects is deter-
mined by two projective laws:
2.1) X ∨ ((X ∨ Y ) ∧ Z) = X ∨ ((X ∨ Z) ∧ Y )
2.2) X ∧ ((X ∧ Y ) ∨ Z) = X ∧ ((X ∧ Z) ∨ Y ).

The axioms 1.1 and 1.2 are dual to each other. 1.2 is
obtained from 1.1 by replacing each occurrence of U by V
and each occurrence of ∨ by ∧ and vice versa. The same
holds for the axioms 2.1 and 2.2.

Menger’s axiomatization is a dimension-independent
definition of projective geometry. In two-dimensional pro-
jective geometry, the set S of objects of concern is called the
projective plane P2. It resolves into four distinct groups: U ,
V , points and lines [3]. U is dual to V and points are dual



to lines. The duality principle of projective plane geometry
states, that a valid theorem remains true, if the following
terms are interchanged:

point ↔ line

V ↔ U

join ↔ meet.

To define a Spray Can model of projective geometry, it is
sufficient to define instances of the primitives point, U and
join and a duality operation for them.

4.2. The spherical model of the projective
plane

A common way to model the two-dimensional projec-
tive plane P2 is the unit sphere S2 ⊂ R3 where antipodal
points are identified (cf. Figure 1). In this model projective
points are represented by antipodal pairs of R3-points on
the sphere and projective lines are represented by great cir-
cles. As a consequence, three-dimensional real coordinates
can be assigned to projective points and lines.

More precisely, a projective point can be represented by
a pair of R3-points (p,−p), where p has unit length. Each
pair of points uniquely determines a direction in R3.

A projective line l ∈ P2 can be represented by a great
circle in S2. Each great circle uniquely determines a plane
through the origin of R3. The equation of the plane,
Ax + By + Cz = 0, is again uniquely determined by the
triple (A, B,C) ∈ R3, where (A,B, C) is the vector nor-
mal to the plane. Consequently, a great circle can be rep-
resented by the pair ((A, B,C),−(A,B,C)) of antipodal
points perpendicular to it.

Projective points and lines are dual to each other. Each
projective point (p,−p) = ((A,B,C),−(A,B, C)) can be
uniquely mapped to the projective line l = d ((p,−p)) =
{(x, y, z) ∈ R3 : Ax + By + Cz = 0} in the dual space.
The duality operation d : P2 → d(P2) can be visualized by
the bijection mapping each point p on the sphere to the great
circle perpendicular to p (cf. Figure 1). For the operation d
idempotency holds [4], i.e.

d.d = id, (1)

where . denotes the composition of functions.
Two projective points (q,−q), (r,−r) ∈ P2 uniquely de-

termine a projective line

l = (q,−q) ∨ (r,−r) = d
(
(q × r),−(q × r)

)
, (2)

where∨ denotes the join operation and
(
(q×r),−(q×r)

) ∈
d(P2) is a projective point in the dual space of P2 (cf. Figure
2a).

In the following, the unit sphere modulo antipodes will
be denoted by S2/± . It is isomorphic to the projective
plane: (S2/±) ∼= P2 [4].

Figure 1. Duality in the unit sphere model of
the projective plane.

4.3. Spray Can Points

The pdf of the two-dimensional Gaussian normal distri-
bution G(µ,Σ)(x) = R2 → R2 is defined on the Euclidean
plane R2. G is uniquely determined by its mean µ and its
covariance matrix Σ:

G(µ,Σ)(x) =
1

2π ·
√
|Σ| · e

(− 1
2 (x−µ)>Σ−1(x−µ)).

For a point p ∈ S2 ⊂ R3 let Bp = {b1, b2, p} be
an orthonormal basis of R3 and B

′
p = {b1, b2} its two-

dimensional restriction to the orthogonal subspace perpen-
dicular to p. The transformation of a point x = [x1, x2]B′p ∈
R2 to its homogeneous coordinates (with respect to Bp) is
given by

hBp : R2 → Hp ⊂ R3, [x1, x2]B′p 7→ [x1, x2, 1]Bp ,

where Hp is the homogeneous plane with respect to Bp,

Hp =
({x = [x1, x2, x3]Bp : x3 6= 0}/ ≡)

where
x ≡ x̄ ⇔ x = k · x̄, k ∈ R.

As indicated in Figure 2b, the function hBp is an isomor-
phism, i.e. Hp

∼= R2. The inverse transformation is given
by

h−1
Bp

: Hp → R2, [x1, x2, x3]Bp 7→ [x1/x3, x2/x3]B′p .

For O = (0, 0) ∈ R2 we have hBp(O) = [0, 0, 1]Bp = p

and hence h−1
Bp

(p) = O.

Definition 1 (Spray Can Point) For a projective point
(p,−p) ∈ (S2/±) and a covariance matrix Σ ⊂ R4 a Spray
Can Point (SCP) p̃Σ on the projective plane is a function
p̃Σ : P2 ∼= (S2/±) → R,

p̃Σ ((x,−x)) =

{
G(O,Σ) . h−1

Bp
(x) if (x,−x) ∈ Hp

0 else.



Figure 2. (a) Two projective points q, r deter-
mine a projective line l = dual(q× r). (b) The
homogeneous plane Hp.

G(O,Σ) is the pdf of a Gaussian normal distribution on
Hp

∼= R2 with mean µ = O = (0, 0) ∈ R2 and covariance
matrix Σ. A SCP assigns every projective point (x,−x) the
corresponding value of the Gaussian pdf (cf. Figure 3a).The
point (p,−p) is assigned the maximum value. 2

Definition 2 (Spray Can Universe) The Spray Can Uni-
verse Ũ is defined to be the union of all Spray Can Points:
Ũ = {p̃Σ : Hp → R : p ∈ P2, Σ ∈ R4}. 2

Figure 3. (a)A Spray Can Point p̃Σ in p with
covariance matrix Σ assigns a value to every
projective point x. (b) A Spray Can Line l̃Σ in
l assigns a value to every projective line m.

4.4. Spray Can Duality

A Spray Can version of duality can be defined by uti-
lizing the duality operation d of the exact spherical model
of the projective plane with infinitely small points and in-
finitely thin lines (cf. Figure 1). The exact dual op-
eration operates on exact projective objects X,Y, Z, . . . .
Likewise, the Spray Can dual operates on Spray Can Ob-
jects X̃ΣX

, ỸΣY
, Z̃ΣZ

. . . . A Spray Can Object (SCO) in

X ∈ P2 is a map X̃ΣX
: P2 → R, depending on an exact

projective object X and a covariance matrix Σ ∈ R4.

Definition 3 (Spray Can Dual) For a Spray Can Object
X̃Σ : P2 → R in X ∈ P2 let the Spray Can Dual (scd)
of X̃Σ be a Spray Can Object in d(X) ∈ d(P2), defined by
scd.X̃Σ : d(P2) → R with

scd.X̃Σ = X̃Σ.d,

where . denotes the concatenation of functions. The Spray
Can Dual of the Spray Can Universe is defined to be the
empty set: scd(Ũ) = ∅. 2

From idempotency of d (cf. equation 1) idempotency of scd
follows:

scd.scd.X̃Σ = X̃Σ.d.d = X̃Σ.id = X̃Σ.

4.5. The Spray Can Join Operation

A Spray Can version for the join of two Spray Can ob-
jects can be defined by using the join operator ∨ of the exact
spherical model (cf. Chapter 4.1). In the following we will
use the symbol ∨ for both models.

Definition 4 (Spray Can Join) We define a Spray Can
Join (scjoin) operation ∨ for the connection of two Spray
Can Objects X̃ΣX and ỸΣY by (X̃ΣX ∨ ỸΣY ) : P2 → R,

X̃ΣX ∨ ỸΣY = scd.
[
d(X ∨ Y )

]∼
ΣX∨Y

,

where X,Y are exact projective objects and X ∨Y denotes
the join of X and Y in the exact model. [d(X ∨ Y )]

∼
ΣX∨Y

is a Spray Can Object in d(X ∨ Y ) in the dual space. The
SCJoin of a Spray Can Object with the Spray Can Universe
is the Spray Can Universe: X̃ΣX ∨ Ũ = Ũ . 2

The SCJoin operation for Spray Can Points p̃Σp and q̃Σq is
well defined:

p̃Σp ∨ q̃Σq = scd.
[
d
(

(p,−p) ∨ (q,−q)
)]∼

Σp∨q

= scd.
[
p× q

]∼
Σp×q

. (3)

[p×q]
∼
Σp×q

is a SCP in (p×q) ∈ d(P2) in the dual space (cf.
equation 2). Note that Σp×q can be obtained by applying
the approximate law of error propagation to the function
cross : R3 → R3 → R3, cross(x, y) = x× y [8].

4.6. Construction of Dual Primitives

Provided with the definitions of Ũ , SCP and SCJoin the
concepts of Spray Can Line, Spray Can Meet and Spray Can
Vacuum follow by duality.



Definition 5 (Spray Can Line) For a projective line l ∈
P2 with d(l) = p and a covariance matrix Σ ∈ R4 a Spray
Can Line (SCL) is a function l̃Σ : P2 → R with

l̃Σ = scd.p̃Σ ,

where p̃Σ is a SCP in the dual space. A SCL l̃Σ assigns
every projective line m ∈ P2 the value l̃Σ(m) = p̃(d(m))
of its dual point d(m) ∈ d(P2) (cf. Figure 3b). 2

The Spray Can Dual of a SCL l̃Σ : P2 → R is a SCP:

scd.l̃Σ : P2 → R,

scd.l̃Σ = scd.scd.p̃Σ = p̃Σ.

The result of the scjoin operation introduced in chapter 4.4
of two Spray Can Points is a Spay Can Line (cf. equation
(3)).

Definition 6 (Spray Can Meet) We define a Spray Can
Meet (scmeet) operation ∧ for the intersection of two Spray
Can Objects X̃ΣX

and ỸΣY
by (X̃ΣX

∧ ỸΣY
) : P2 → R,

X̃ΣX
∧ ỸΣY

= scd( scd.X̃ΣX
∨ scd.ỸΣY

).

Definition 7 (Spray Can Vacuum) The Spray Can Vac-
uum Ṽ is the Spray Can Dual of the Spray Can Universe,
Ṽ = scd(Ũ) = ∅. 2

Spray Can duality maps Spray Can Objects in the primal
space P2 to Spray Can Objects in the dual space d(P2) in
the following way:

SCP ↔ SCL

scjoin ↔ scmeet (4)

Ũ ↔ Ṽ

4.7. Verification of Axioms

In this subsection Menger’s axioms of projective geom-
etry (cf. chapter 4.1) are verified for the objects and oper-
ations of the Spray Can Model introduced in the foregoing
chapters. As main tools the duality principle (4) for Spray
Can Objects and Menger’s axioms for exact projective ob-
jects are applied.

PROOF (AXIOMS 1.1, 1.2) The first axiom of axiom set
(1.1) holds by definition 4: Ũ ∨ X̃Σ = Ũ . The second ax-
iom in (1.1), Ũ ∧ X̃Σ = X̃ , follows by applying definitions
4 and 6:

Ũ ∧ X̃Σ = scd.
(
scd.Ũ ∨ scd.X̃Σ

)

= scd.scd.
[
d ( V ∨ d(X) )

]∼
Σ(V∨d(X))

=
[
d.d(X)

]∼
Σd(X)

= X̃Σ

Here the last line follows from V ∨ d(XΣ) = d(XΣ) and
Σd(X) = ΣX = Σ.

The first axiom in axiom set (1.2), Ṽ ∧ X̃Σ = Ṽ , follows
from axiom set (1.1) by Spray Can duality. Interchanging
the terms (4) in Ũ ∨ X̃Σ = Ũ yields Ṽ ∧ X̃Σ = Ṽ . Al-
ternatively this can be verified by applying definition 7 and
idempotency of scd:

Ṽ ∧ X̃Σ = scd
(
scd.Ṽ ∨ scd.X̃Σ

)
= scd(Ũ) = Ṽ .

Likewise, interchanging the terms (4) in Ũ∧X̃Σ = X̃ yields
Ṽ ∨ X̃Σ = X̃ . ¥

PROOF (AXIOMS 2.1, 2.2) To verify axiom (2.1), note
that

(X̃ΣX
∨ ỸΣY

) ∧ Z̃ΣZ
=

[
(X ∨ Y ) ∧ Z

]∼
Σ(X∨Y )∧Z

(5)

holds, following from definitions 4 and 6:

(X̃ΣX
∨ ỸΣY

) ∧ Z̃ΣZ
=

=
(

scd.
[
d(X ∨ Y )

]∼
ΣX∨Y

)
∧ Z̃ΣZ

= scd.
(
scd.scd.

[
d(X ∨ Y )

]∼
ΣX∨Y

∨ scd.Z̃ΣZ

)

= scd.scd.
[
d
(
d(X ∨ Y ) ∨ d(Z)

) ]∼
Σd(X∨Y )∨d(Z)

=
[
(X ∨ Y ) ∧ Z

]∼
Σ(X∨Y ) ∧Z

.

Consequently for the left side of axiom (2.1) we find

X̃ΣX ∨
(
(X̃ΣX ∨ ỸΣY ) ∧ Z̃ΣZ

)
=

= X̃ΣX
∨ [

(X ∨ Y ) ∧ Z
]∼
Σ(X∨Y ) ∧Z

= scd.
[
d
(
X ∨ ( (X ∨ Y ) ∧ Z )

)]∼
Σ(X∨Y ) ∧Z

=
(∗)

scd.
[
d
(
X ∨ ( (X ∨ Z) ∧ Y )

)]∼
Σ(X∨Z) ∧Y

= X̃ΣX ∨
(
(X̃ΣX ∨ Z̃ΣZ ) ∧ ỸΣY

)
.

In step (∗) axiom (2.1) for exact projective objects is ap-
plied. This proves axiom (2.1) for Spray Can Objects. Ax-
iom (2.2) can be obtained by interchanging the terms (4) in
axiom (2.1). ¥

5. Conclusions and further work

We have shown that an axiomatization of a realistic treat-
ment of projective geometry can be achieved. The long
term objective of this research is to define a pertinent re-
alistic model of Euclidean geometry for GIS. Current GIS
are based on an idealized axiomatization of geometry which



deals with points and lines without extensions. Real points
and lines have extensions and the locations of idealizations
are not precisely measurable. Lotfi Zadeh has suggested the
geometry produced when drawing with a spray can as an
inspiration for a realistic model of geometry.

A spray can produce a point with a random distribution
of color droplets, approximating a Gaussian normal distri-
bution. The paper drafts how to construct a consistent ax-
iomatic geometry with this model.

For an axiomatization we use Mengers axioms of pro-
jective geometry, which are fewer and simpler than Hilberts
axioms for a Euclidean geometry. The duality between
points and lines in projective geometry further simplifies
the task. It is necessary to show how to embed a Spray Can
Point into the projective plane and then define two of the
three operations intersection, connection and duality. We
have given definitions for duality and connection. Intersec-
tion follows by duality. We proved that the proposed Spray
Can Model of projective geometry complies with Menger’s
axioms.

The used axiomatic approach assures consistency for
the treatment of all geometric operations derived from this
foundation. The advantage of these definitions over other
more pragmatic efforts in the past is that the implementa-
tion of the basic operations is sufficient to extend derived
operations, analytical functions and tests for relations to
treat geometry with positional uncertainty without danger
of contradiction.

In a next step the join and meet operations introduced
in this paper will be extended to allow a dimension inde-
pendent formulation of the model. 2D and 3D operations
will be formulated as special cases. The definitions intro-
duced must be extended and modified to define a model of
Euclidean geometry with uncertainty in the location. This
model will allow the integration of error analysis and error
propagation in current GIS software by accessing standard
operations of vector-based GIS.
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