
1 1

Documentation of the Static
Site Generator (SSG)

Design of the Static Site Generator (SSG) daino.

August 4, 2023



Contents

I Introduction to the Static Site Generator (SSG) 4

The Static Site Generator 6
My Goals with SSG 6
Installation and test for functionality 6

Installation and basic test for functionality 6

Build your site with SSG 8
Build your own site 8

The overall setup of a site 9
Details of the Settings for a site 9
Topical subdivision of content 10
Landing page 10
Resources directories 10

The structure of the page files 11
The YAML header 11
Web page content 11
Index pages 12
Referencing images and other static content 12
Pages rendered as PDF 12

II Rationale for the SSG 13

Some comments on Static Site Generator available in 2018 15
Some comments on other Static Site Generator 15



3 CONTENTS CONTENTS 3

Impressions of the SSG sprinkles 17
Reasons to try it 17
Observations 17

Button to get clean start 17

Breaking the program in independent services 18

Many small files connected by same parameter names 18

Theme folder 18

Preview not correctly rendered 18

Parameter for pages and posts 18

Archetypes for pages 18

Terminology 18

Conclusion 19

Principles of SSG design 20
Goals 20
Packages available in Haskell 20
Well designe tools combine cleanly 20
Programmable 21
Uniform interfaces for packages used 21
Separate Theme and Content 21
Performance 21
Character file based to facilitate backup and version management 22
Let the directory structure reflect the structure of the site 22
Customization 22
Documentation not yet done 23
Desirable features 23

Support for the development of a web site 23

Allow some parts of a web site to be protected from the public 23

What remains to be designed after deciding on the tools? 24
content as markdown text 24
Build Site Generator around Pandoc 24
Directory structure 25
Description of site source layout in a text file 25

http://hackage.haskell.org/package/pandoc


4 CONTENTS CONTENTS 4

Private and public, publish and publish state 26
Which web pages should be published 26

Separate readiness for publication and visible to everybody 26
Coding in the yaml head of every blog page 26
Current implementation (version 0.1.5.1 of SSG) 26

Three options to manage a home page 28
Write the page directly in HTML 28
Complete systems for managing a web presence 28
A UNIX tools approach: Markdown and Pandoc 28

III The use of daino, a Static Site Generator (SSG) 30

Architecture of the bake process 32
Command line processing: 32
Processing of Layout (file settingsN.yaml) 32
Watching for changes 32
Shake for rebuilding 33
Transformation of filepath to Path 33

Processing 33
Issues : how to organize regression tests 33

Command Line Interface (CLI) for bake 34

30. PackagesUsed.md 35
Pandoc 35
Templates 35
Watching file change : Twitch 35
Caching 35
JSON 35

40 use of pandoc . md 36
Read Markdown 36
Extract all information into Context 36
Convert the Data to target format 36
Fill the converted pieces into template. 36



5 CONTENTS CONTENTS 5

The programs to generate a web site available in 2018 did not
satisfy my expectations but I felt that most of the tools required where
available. Thus I embarked on building Yet Another Static Site
Generator with the distinct properties:

• includes an searchable index to my publications for download
which is produced from a bibtex database.

• produces for all web pages a printable pdf file,
• deals reasonably with a homepage using multiple languages (in

my case american english1 and swiss-style german2), 1 technically en_US
2 aka “hauchdeutsch”, technically
de_CHmeaning not to use “ss” in stead
of “ß”

• follows the page layout promoted by Edward Tufte,
• adapts to varying screen sizes using the w3c templates

It is written in Haskell und uses as much as possible well tested
tools, e.g.

• pandoc to convert the pages to HTML and pdf,

• shake program for changed inputs.

• w3c templates

https://edwardtufte.github.io/tufte-css/
https://www.w3schools.com/w3css/w3css_templates.asp
https://pandoc.org/
https://shakebuild.com/
https://www.w3schools.com/w3css/w3css_templates.asp


Part I

Introduction to the Static
Site Generator (SSG)



7 7

Starts with the design goals and a review of the rationale for
a web site content manager. It then covers installation and the
instructions to adapt the program to serve your own homepage!

The programs to generate a web site3 available in 2018 did not satisfy 3 a.k.a. content management systems

my expectations but I felt that most of the tools required to build a
static site generator where available. Thus I embarked on building Yet
Another Static Site Generator adaptet to the needs of an academic4. 4 The web contains a surpsing amount

of advice,from - a consultant, or older,
from 2012, by publisher, or - current
to go to a static site generator and
markdown, 2, - yet another commerical
service and - another howto

• searchable list of papers ready for download,
• texts readable in a browser but printable as pdf.

After a short introduction to the Static Site Generator SSG follow
the instruction to download and to adapt the program to produce
a personalized homepage. Not much to do other than organizing
content pages in directories, include title and abstract to each content
page and add a title and abstract tot the index.md page in each
directory.

https://theacademicdesigner.com/2020/how-to-make-an-academic-website/
https://www.elsevier.com/connect/creating-a-simple-and-effective-academic-personal-website
https://jayrobwilliams.com/posts/2020/06/academic-website/
https://jayrobwilliams.com/posts/2020/06/academic-website/
https://townsendcenter.berkeley.edu/blog/personal-academic-webpages-how-tos-and-tips-better-site
https://peerrecognized.com/website/
https://peerrecognized.com/website/
https://martinlea.com/how-to-create-an-academic-website/


The Static Site Generator

My goals for daino. What is different from other Static Site
Generators? The design goals and rationale and functionality
testing.

My Goals with SSG
My Goals with SSG

The use case is my own homepage5 with requirements typical for an 5 I will use the term site (or web site) for
a set of connected web pages (or just
pages) which can be accessed through
a web browser using the world wide

web technology6.

academic researcher. and should be built from available packages in
Haskell7.

7 especially pandoc and shake, which
reduces the effort to maintain the code
using using my “uniform” approach
to wrap packages in integratable
interfaces.

• Use an (inexpensive) host server8.

8 There are some servers free of charge,
e.g. github or google, but I prefer
indepence and looked for a basic web
server, which cost me Euro 3 per month.

• Allow me to use a page layout following Tufte css.

• Force a strict separation of content and presentation9.

9 here called dough and theme, which
is baked into the web site.

• Look for simple handling and long term stability.

Installation and test for functionality
Installation and test for functionality

I have tried a number of web site generator programs and found that
a test installation and checking the methods for customization is the
fastest way to identify what suits my requirements.

Such a test consists of two steps: (1) install and check funtionality
of installation with a test10 and (2) build your site. 10 The hello world test for a site

generator.

Installation and basic test for functionality

A basic test for functionality is:

• Clone or copy the code from github11. 11 git clone
https://github.com/andrewufrank/SSG

• Change into the ssg directory and install with cabal install
(or perhaps better with stack stack install) which produces
ssgbake, the program which converts (bakes) the content into a
static site.

• Run ssgbake -tswwhich produces a test site in your home
directory ~/bakedhomepagewhich is served on port 3000.

/Essays/SSGdesign/010Principles.html
https://edwardtufte.github.io/tufte-css/
/Essays/SSGdesign/03introUse/003buildsite.html
https://github.com/andrewufrank/SSG


9 the static site generator 9

• Open in your browser localhost:3000 and you should be
greeted by the landing page of the test homepage.

• Edit, for example, the file ssg/docs/site/dough/Blog/01blog1.md
and observe how the web page is adapting (after refreshing the
browser cache!).

If you are satisfied that the installation works, you can proceed to
build your own site!



Build your site with SSG

The steps necessary to build a site.

Build your own site

Copy the content of the ssg/docs/site directory to where you
would like to locate your homepage and rename it to myhomepage or
whatever directory name you fancy.

I would start git in this directory to achieve a flexible backup on
the site with git init. A suitable .gitignore is already in the
copied directory and may required adaptation.

Adapt the file ssg/docs/site/settings3.yamlminimally12 12 For more details

with a editor for program text files (i.e. not office) for:

• the location of folders, at least for

– dough: the folder with the source of your site
– baked: the foler where you expect the generated site (could be,

for example, /var/web/ or ~/bakedhomepage)

• the port the server is using, when run ssgbake -s (default is
3001)13 13 The possible switches are - -s to

start a server, - -q for quick, meaning
not to produce pdf files, - -w to watch
files changing and re-bake them
automatically.

• menuitems: the first levell of subdirectories for the web page
files.

After adaptation restart with ssgbake in the directory of your
homepage and the homepage will be produced, adapted to your
needs.

Customization is

• in the settings file, and in
• web page files in the subdirectories to the dough directory.

The example site in ssg/docs/site/dough contains examples
for the settings file and for web pages with solutions for different
uses, e.g. references to images, literature.

All easily customizable aspects are in files and no new compilation
of ssg is needed14. 14 Recompilation may be needed for

new versions of ssg or new versions
of compilers; it is recommended, but
probably not required, to delete the
baked website and rebuild it completely.

Under the dough directory you can include content, typically
organized in subdirectories. Each web page corresponds to one file,
including the files linking other files in subdirectories.

Journals/SSGdesign/03introUse/004settings.html
Journals/SSGdesign/03introUse/004settings.html
Journals/SSGdesign/03introUse/005pageheader.html


The overall setup of a site

The file describing the overall setup of a site.

Details of the Settings for a site
Details of the Settings for a site

I will use the term site (or web site) for a set of connected web pages
(or just pages) which can be accessed through a web browser using
the world wide web technology15. 15 Following the seminal ideas of Tim

Berners-LeeThe settings are all collected in a single YAML file16. The annotated 16 The current specification of YAML,
but there are perhaps better explana-
tions

file for the currently running site can probably serve as a concrete
example.

The settings start with siteLayout, which gives the directories of
the sources for

• theme: where the details of the appearances of the content are
fixed,

• dough: the source text for the web pages,
• baked: where the converted files for the web site go; this may be
/var/www/html17, 17 The default web root for NGINX

• masterTemplateFile: the template which determines the layout of
the converted html - probably use the one provided and adapt later
if necessary.

• blogAuthorToSupress: name or names of the authors of most of
the material on a site, which should not be repeatedly shown as
authors

The content must use the keywords that the theme set up; it is
possible to produce with the same theme (i.e. the same directory with
the same files) different web sites from different source directories.
It is likewise possible to produce different baked directories
which are independently served from different theme and the same
content files.

The localhostPort gives the port used by the server created
with the -s switch of ssgbake.

The siteHeader: needs values for sitename:, byline:,
banner (an image18 to place by default at the top of all pages) with a 18 preferably wide and narrow; 1024 by

330 pixels works wellbannerCaption, a text which can be read if the image not visible.
Last, the entries of a static menu are given as menuitems: which is

shown as a ribbon under the banner page. They consist of a

https://yaml.org/spec/1.2.2/
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
/settings3.yaml


12 the overall setup of a site 12

• navlink: wich is a relative adress to a directory, usually within
the dough folder.

• navtext: the text shown for the link.

The settings file is read each time ssgbake is started and content
is baked; changes are burnt into the converted site and after changes,
the site should be rebuild19. 19 Just delete the bakedHomepage

directory and rebuild with ssgbake.

Topical subdivision of content
Topical subdivision of content

Usually the content of a site is divided in some topics, e.g. contact,
publications, blog. The content for each topic, i.e. the markdown
files, are collected in these directories.

Additionally an index.md file must be added, which serves
as a introduction to the content; a sort of table of content is
appended automatically and facilitates navigation with clickable
links.

Landing page
Landing page

The landing page, i.e. the page shown when the URL of the site is
opened. It typically contains a general introduction and links to the
major pieces - possibly with some explanation.

The landing page of the homepage will be produced from the file
index.md in the root (dough) folder of your homepage using the
theme given in the settings file; no special rules or provisions!

Resources directories
Resources directories

Directories to include resources20, e.g. images or pdf files21, which 20 resources is a reserved name for
directories in SSG; these directories
are not searched for web content and
should only contain static content,
which is references from other pages.
21 currently only files with extensions
jpg, JPG or PDF are dealt with, but ex-
tension is a simple change in the Haskell
source, specifically in Shake2.hs.

are references in other web pages and served can be added wherever
convenient. Their location are mentioned in the references included in
the source texts for the web pages they reference.



The structure of the page files

The structure of the source files for the web pages consist of a
header (using YAML syntax) and the page content written in
markdown.

The YAML header
The YAML header

The first part of each web page describes the page. It is fenced off
from the page content proper by --- lines above and beyond. It
follows the YAML syntax:

---
title: text which becomes the title of the page
abstract: typically a multi line text describing the page.

It becomes the abstract of the page and is shown
together with the title on the index pages.

author: the author of the page,
there is a mechanism to suppress this
for the author of a site
([see](/Essays/SSGdesign/004settings.html))

keywords: some descriptive keywords.
date: 2019-03-05
image: if present a reference to the image file

which will become the pages banner
(if blank, the default site banner image is used).

bibliography: a reference to the `bib` file
version: publish or draft
visibility: public or private
---

Web page content
Web page content

It is followed by the text written as markdown.

• titles are marked with # and ##, which give second and third level
titles22. 22 The text after the title: keyword in

the header gives the first level.
For more details of the (Pandoc) markdown syntax see.

https://pandoc.org/MANUAL.html#pandocs-markdown


14 the structure of the page files 14

Index pages
Index pages

The structure of the site is revealed to the user through index
pages23. They list the titles and abstracts of the web pages included 23 index.html files

in a directory, starting from the root in a hierarchy. The pages are
clickable and permit navigation24. 24 In addition to the ribbon under

the banner image which is always
linking to the major subdivisions, listed
in the settings file and clickable
sitename.

The index pages must be started by the author of the site as a file
index.mdwith keywords

• indexPage: true
• indexSort: title

where the indexSort field indicates the order in which pages
are listed. A sort by title sorts the pages by their filename, which
permits to use filenames starting with a number to achieve a specific
order.

Alternatives are sort by data or reverseDate (newest first).

Referencing images and other static content
Referencing images and other static content

The references can be either absolute to the web root25, i.e. the 25 I.e. starting with “”.

directory in which the dough is placed or relative to the location to
the current page file26. 26 The directory name, not starting with

“”.Remember that the references must include the .html extension
of the files in the baked form and not the md extensio of the original
content files.

It is often useful to place the static content in a resources direc-
tory27 in the same directory as the pages for a topic. 27 with exactly this name!

Pages rendered as PDF
Pages rendered as PDF

For every web page transformed to html a corresponding pdf
is produced, using the KOMA tools for latex and rendered as a
scartcl.

The pdf format uses footnotes at the foot of the page, whereas
the footnotes in the web output are pushed to the margin28. The 28 Tufte style

bibliography in both output formats are at the end of the page.



Part II

Rationale for the SSG



16 16

Observations during testing of other static site generators
available a few years ago lead to a set of goals for my own.

I experimented with a number of static site generators to build a
web site for my own use in 2018. The observations lead to a set of
requirements, which are detailed here.



Some comments on Static Site Generator available in
2018

Why yet another static site generator? Pandoc provides nearly
everything and gives the desired functionality (code in Haskell,
markdown as primary text input, backup with git).

Some comments on other Static Site Generator

Constructing a simple homepage, perhaps with a blog and some
images can be done in a few hours, possibly days with a tool like
wordpress. To make a homepage satisfying some special require-
ments takes a bit of planning of content and how it can be served.

I have tried a few tools to produce an homepage for an university
researcher, but I observed in late 2018 some limitations where I
desired simpler handling or more flexibility for my use:

• Not easily (i.e. out of the box) to make work with markdown
(e.g. the often used WordPress),

• Hard to exclude commercial interests29 and connections to un- 29 especially from the companies and
agencies which are trying to convince
us that they constantly improve their
service “to serve us better” and force us
to change our code accordingly

wanted services30,

30 (for example, WordPress seems to link
Google Analytics and similar by default

• Missing integration with BibTex to produce references and a list of
publications from BibTex files,

I prefer to work in the language I know already and not to learn a
new set of obscure quirks (e.g. WordPress, Sprinkles), and shy away
from approaches “batteries included” (e.g. Jekyll or Hakyll; a similar
comment) by the author of an Haskell based approach, forcing users
to learn lots of detail, and look for extensible and composable tools,
following the initial Unix philosophy31. 31 whatever composable means for a site

generator?I was very impressed with static site generators, e.g. SitePipe
which demonstrated how much functionality is available in packages
(e.g. from Hackage)32. 32 The predecessor SitePipe proveded

some inspiration for SSG.I later learned of the Multimarkdown-CMS, which seams also to
show how much can be achieved with current, existing packages.
Unfortunately, it converted into a closed system for the Mac.

In searching for how to adapt the Tufte style to the design of
a home page I found Jekyll, which uses the Ruby environment

http://hackage.haskell.org/package/slick-0.2.0.0
https://github.com/chrispenner/sitepipe
https://fletcherpenney.net/multimarkdown/cms/
https://jekyllrb.com/


18 some comments on static site generator available in 2018 18

but includes pandoc and Tufte packages adapted to pandoc. It
demonstrated that a webpage Tufte style is possible.



Impressions of the SSG sprinkles

My impression with trying to use sprinkles, which I hoped could
satisfy all my needs.

Reasons to try it
Reasons to try it

I spend some time with trying Sprinkles as a foundation for my own
homepage. It was attractive because it seemed to fulfill most of my
requirements:

• it is written in Haskell,
• uses Ginger, the Haskell implementation for the Jinja2 theme

languages,
• it builds a static site which can be uploaded to a host of my choice,
• is design and setup with YAML files,
• clean design using a compiled, site independent engine; all site

design is in files,
• support for markdown (using pandoc).

Some points I perceived as rather negative:

• small (very small) developer and user base33, 33 Is this better than roll you own?

• static site generation is possible, dynamic sites goal,
• issues with caching between invocations (makes development

difficult).

Observations
Observations

During my tests, I found some things which could be improved and
which became also ideas which were later included in my SSG design.

Button to get clean start

Provide a method to force a clean restart and, if possible, force
it automatically when certain files change. For example, when
project.yml changes, do a clean restart without user intervention.



20 impressions of the ssg sprinkles 20

Breaking the program in independent services

The monolithic nature with a very large number of dependencies
makes it hard to maintain and probably difficult to attract others to
contribute.

For example:

• factor out, e.g. string conversion, error handling, file IO34 34 my uniform approach

• avoid import of qualified Prelude35 35 Despite the well known issues with
the current Prelude; I prefer to use it
unchanged and work arount the issues,
mostly to make code integratable with
code written by others.

I think it could be possible to have a separate program for bake
and one for serving, with a common sprinkles-core.

With ginger I had the impression that part of the complexity
comes from using an extended version of JSON.Value.36 36 I understand the reasons for adding

specific types but feel it would be better
to wrap the type for Http around a
JSON.Value and not produce a separate
value which then needs conversions etc.
etc.

Many small files connected by same parameter names

The structure of the different YAML files to define the design, to-
gether with the templates (in Jinja2), the css styles and others are
hard to grasp and keep aligned.

Theme folder

I liked the Pelikan approach to have a theme folder, which sepa-
rates the theme from the remainder.

Preview not correctly rendered

The preview operation seems not to properly treat markdown.37 37 The three tick style, which should give
a typewriter font, gives spaced text.

Parameter for pages and posts

I would prefer a structure for the pages as two yaml docs, separated
by ----, where the first contains proper yamlwith key - value pairs
and the second the markdown text.38 38 Pandoc has adopted this approach

and I use it for SSG.

Archetypes for pages

I liked the idea to define archetypes for pages and a function, which
defines the values and an archetype to the proper place and fill the
values correctly.

Terminology

I think

• theme for the overall layout arrangements (including styles) is a
nice word, and I prefer it over blueprints.

• byline seems to be an established term for the subtitle of a
newspaper and in analogy to a blog.



21 impressions of the ssg sprinkles 21

Conclusion
Conclusion

I was impressed with sprinkles enough to try to combine it with
sitepipe and later slickwhich then moved to use shake. I
eventually decided to go directly to build on top of pandoc and
shake 39. 39 all packages can be found on hackage.

https://hackage.haskell.org/packages/


Principles of SSG design

Why yet another static site generator? Pandoc provides nearly
everything and gives the desired functionality (code in Haskell,
markdown as primary text input, backup with git).

Goals
Goals

• Separate the presentation from the content.
• The structure of the site should map directly to the directory and

file structure of the stored content.
• All content should be ordinary text (UTF-8) files, which gives

a choice of tools for editing, version management, backup and
guarantees long term viability.

• Connect the tools with a full programming language.
• Build a SSG from available packages in Haskell, to reduce the code

which requires maintenance.
• Demonstrate integration using the “uniform” approach to wrap

packages in integrable interfaces.

Packages available in Haskell
Packages available in Haskell

A number of tools are available from Hackage:

• Pandoc
• shake
• twich
• git
• citeproc
• doctemplates

They should be used as far as possible!

Well designe tools combine cleanly
Well designe tools combine cleanly

Tools which survive the test of time provide abstractions which
combine without unexpected interactions and confusions.

https://hackage.haskell.org/package/pandoc
https://hackage.haskell.org/package/shake
http://hackage.haskell.org/package/twitch
https://en.wikipedia.org/wiki/Git
https://hackage.haskell.org/package/citeproc
http://hackage.haskell.org/package/doctemplates


23 principles of ssg design 23

Programmable
Programmable

It is my experience when adaptation is needed anything short of a
complete (and well designed) programming language leads to an
infinite sequence of special case additions bolted on with some ugly
screws; I have the impression that this is a imitation of e.g. Sprinkles.

Uniform interfaces for packages used
Uniform interfaces for packages used

Wrap packages into a small interface layer to locally hide differences
between packages which hinder integration. In Haskell, such differ-
ences tend to show up as multiple options to achieve more or less
the same ends. I tend to think this is preferably over the use of a
special preludewhich makes collaboration with others difficult.

My uniform approach

• use Text as the primary representation and use uniform-
strings to convert to and from other representations (with
local deviations from the rule)

• all functions are pure or in the ErrIOmonad (ErrorT Text a
IO); operations in other monads are wrapped.

• represent path to files as with Path40, use uniform-fileio for all 40 Avoid the more general FilePath
type!operations to use the same interface for different file types and use

TypedFiles to connect file extensions to semantics (i.e. code to
transform from the external to the internal format),

• write top level code in a basic form of Haskell and eschew
use of special features, especially not relying on Template
Haskell(see Haskell style).

Separate Theme and Content
Separate Theme and Content

The data should be separated from the style of presentation, to

• allow changes in the data without entanglement in the typically
tricky descriptions of style,

• changes in the style must be applied regularly on all content and
should not require editing already existing data.

The theme (templates, css etc.) and the content should be sepa-
rated, with a documented interface. Default locations for theme and
content can be adapted to needs.

Performance
Performance

SSG is mostly a proof of concept and demonstration for small aca-
demic homepages, it is not optimized for humongous web pages for

https://github.com/tdammers/sprinkles
/Essays/SSGdesign/040HaskellStyle.html


24 principles of ssg design 24

large organizations. Performance is not designed in41; if performance 41 The caching mechanism of shake,
however, should make even large web
sites viable

is too slow for a specific use, localize the issue and tweak the code
were performance is an issue.

The use of twich and shake gives a nearly dynamic behavior:
changes are reflected quickly in locally served pages, when ssgbake
is run with the -w switch.42 42 The mechanism works well for

local changes in a page but requires
some tweaking when an index page is
produced during bake by collecting
data from multiple other pages in
a directory; typically delete at least
the index.html page in the baked
homepage and re-run ssgbake.

The conversion of the markdown to latex is, as currently imple-
mented, slow; it requires separate processes for different steps in the
conversion in a suboptimal fashion and could be improved.

Character file based to facilitate backup and version management
Character file based to facilitate backup and version management

The storage of content should be in text files which can be edited
with any editor43, versioned with git and backed up with ordinary 43 my preference is currently VScode,

but no special features are relied ontools44.
44 Git operations can conflict with other
tools to synchronize file content be-
tween installations (e.g. syncthing).Let the directory structure reflect the structure of the site

Let the directory structure reflect the structure of the site

The primary structure of a site should be reflected in the directory
structure where the files for the pages are stored.

It is acceptable that the file names can be restricted (e.g. must not
include spaces) and facilities to translate the file names into readable
titles must be provided.

Many site generator, especially flexible content management
systems, use databases like SQL for storage of date; for small sites,
full function databases are too complex and notoriously difficult to
integrate, backup and vulnerable to attacks from hacker.

Customization
Customization

A web site is infinitely customizable; the difficulty is to decide which
customizations are provided at a common user level, which others are
accessible only through tweaking the underlying technology and how
accessibly such tweaks are.

I have opted for a minimal set of options to customize:

• a banner image with two lines of text,
• a ribbon of links to directories,

and most everything else is simply text in sources for web pages.
Any further adaption relies on some understanding of the underly-

ing technology; accessible is

• the way text from web pages is arranged as html file in a template,
• layout is changeable in the css files.

Customization beyond will likely require forking the source code
and changes in it.

http://hackage.haskell.org/package/twitch
http://hackage.haskell.org/package/shake
https://syncthing.net/


25 principles of ssg design 25

Documentation not yet done
Documentation not yet done

Desirable features
Desirable features

Support for the development of a web site

It should be possible to add new pages without them immediately
going live.

Allow some parts of a web site to be protected from the public

No everything in a web site should be automatically visible to
everybody; it should be possible to protect some pages or groups of
pages with passwords or some similar means.



What remains to be designed after deciding on the tools?

What remains to be designed? The description with in the
abstract will be followed up with the specifics.

content as markdown text
content as markdown text

Pandoc allows a metadata block in YAML before the text written in
markdown45. 45 Pandoc markdown has many exten-

sions. There is an effort underway to
specify markdown more precisely as
commonmark. The extensions must
include at least - footnotes - references
to be included from bibtex - images -
hyperrefs - table of content

The design must fix the information to include in the metadata
block and decide on the markdown extension to be included.

A decision on the editor is not required; it is recommended that
the editor used should include spell checking tools for multiple
languages. I think that spell checking is part of editing the source and
not part of the baking of a site.

I wish tools to systematically process text from input on an US-
keyboard where input of accented characters and similar (umlaut,
“ñ”, “¿” etc.) is difficult.

It should be possible to collected several shorter markdown texts
and produce a booklet.

Build Site Generator around Pandoc
Build Site Generator around Pandoc

Pandoc translates many different text file formats into html, it can
handle BibTex references in text and produce publication lists (with
pandoc-citeproc now with citeproc.

It works well with doctemplates, which is a small template sys-
tem46 with just conditionals and loops. It is produced by the same 46 similar to moustache

author as pandoc.
Pandoc works with conversion of files into value. Files can include

metadata as YAML blocks in the text source.
It is possible to produce pdf files from the blog entries, which

gives a printable format (better than printing the html document).
Pandoc uses internally JSON, which in Haskell means using aeson.

https://pandoc.org/MANUAL.html#pandocs-markdown
https://pandoc.org/MANUAL.html#pandocs-markdown
https://commonmark.org/
https://salsa.debian.org/python-team/packages/bookletimposer
http://hackage.haskell.org/package/pandoc
http://hackage.haskell.org/package/pandoc
http://hackage.haskell.org/package/pandoc-citeproc
https://hackage.haskell.org/package/citeproc
http://hackage.haskell.org/package/doctemplates
https://mustache.github.io/
https://hackage.haskell.org/package/aeson


27 what remains to be designed after deciding on the tools? 27

Directory structure
Directory structure

The design fixes the file structure: theme and content (dough) is
separated from the baked site. The source for the web pages(dough),
the layout and appearances (theme) are stored in a directory. The
produced web pages go into a different directory (baked site).

The resulting html files served are stored elsewhere. (Storage of
Site Data)

Description of site source layout in a text file
Description of site source layout in a text file

The layout of the source directories and the target directory can be set
out in a YAML file (settings.yml). In the same file, other general
parameters of the web site can be included as well.

Principle: only one settings file in structured text format (YAML).

DefaultFileLayout.html
DefaultFileLayout.html


Private and public, publish and publish state

Only pages which are not containing private material (i.e. are
public) and which ready to publish (i.e. not a publish)

Which web pages should be published
Which web pages should be published

The publicly visible homepage should only include material which
the author deems public and ready for publication. It must be possible
to collect in the directories material which is in preparation and not
yet ready for publication but also material which is of a private nature
and not visible in the finished homepage.

Separate readiness for publication and visible to everybody

The web is in principle a medium where material is accessible to
everybody - unless restricted. It must be possible to produce version
of the homepage for public visibility and other versions which are
restricted.

There are two reasons for excluding material from public visibility:

• not yet fulfilling quality standards, e.g., spelling not checked,
incomplete content, only a first idea sketched, etc.

• private material which for should not be available to everybody
or must not be included in a published version for, e.g., lack of
copyright (i.e. material where somebody else has the copyright and
is not public domain).

Coding in the yaml head of every blog page

In the head of every blog page two keywords are included:

• visibility: which can have values private or public.

• version: which can have values publish, draft, idea.

Current implementation (version 0.1.5.1 of SSG)

Only markdown files with public and publish are baked into the
site. Two switches -d and -p are included to include files which are



29 private and public, publish and publish state 29

not intended for public view or not ready for publication to include
such files in the bake process. Be careful not to have the produced site
served on a publicly visible port!



Three options to manage a home page

Some of my friends confronted the same question and found
different solutions. I see three options discussed here.

There are probably many ways to build and maintain a home page. I
see three models that some of my friends use:

• Write HTML directly,
• write markdown text and transform it into a web page, or
• use one of the ready-made complete programs for managing a web

presence.

Write the page directly in HTML
Write the page directly in HTML

Colleagues who started web sites very early and learned HTML when
MOSAIC47 first appeared.48 Some still write HTML and maintain 47 https://en.wikipedia.org/wiki/

Mosaic_(web_browser)
48 I remember having MOSAIC on my
Macintosh then, but was busy with
other things and didn’t see the potential.

their web sites49.

49 e.g. https://web.eecs.umich.edu/
~kuipers/opinions/old-web-page.html

Complete systems for managing a web presence
Complete systems for managing a web presence

The large market for tools to help with web presence has spawned a
number of more or less complete packages, of which Wordpress is
perhaps the best known. I have found that such complete systems,
advertised as batteries included, are easy to get started with, but then
have a steep learning curve to figure out all the parts you have no
intention of ever using and sometimes the solutions offered still do
not include the one you want.

Often the systems are easy to get into but hard to get out of:
content is in a proprietary format and the user is trapped.50. 50 Getting out of Wordpress was all

right, but still a loss of investment in
non-portable tricks

A UNIX tools approach: Markdown and Pandoc
A UNIX tools approach: Markdown and Pandoc

Unix has been successful at building tools that can be combined
and reused. I thought that combining the markdown' language,
which helps the author focus on content, andpandoc’
to translate content into HTML, with a few more tools to manage the
site, could be an interesting project.51. So my homepage is produced 51 I was not alone with such ideas!

[06rationale/009aboutSprinkles.md]

https://en.wikipedia.org/wiki/Mosaic_(web_browser)
https://en.wikipedia.org/wiki/Mosaic_(web_browser)
https://web.eecs.umich.edu/~kuipers/opinions/old-web-page.html
https://web.eecs.umich.edu/~kuipers/opinions/old-web-page.html


31 three options to manage a home page 31

using daino, a package written in Haskell that runs on both AMD
and ARM hardware52. 52 Raspberry Pi 4

The combination of these tools allows to produce PDFs that give
nicer printed pages and I plan to experiment with this.



Part III

The use of daino, a Static
Site Generator (SSG)



33 33

Design of a Static Site Generator (SSG).

The design of my Static Site Generator is explained here and gives a
detailed account of its functioning.



Architecture of the bake process

The bake process gradually converts the source texts into texts a
html server can use (primarily HTML, PDF, JPG) and adds the
supplementary files (mostly CSS to describe appearances.)

The architecture, i.e. the combination of implementations of functions
to achieve the overall functionality of SSG, can be seen as steps and
each step processing an input into some formats which are used by
the next.

Command line processing:
Command line processing:

The standard Unix-style command line analyzes the CLI input and
passes it to the program. It establishes the directory in which the
command was issued.

Processing of Layout (file settingsN.yaml)
Processing of Layout (file settingsN.yaml)

List of the directory names and locations - to give flexibility on
different distribution of the relevant directories. It is possible to have
the code, the content (dough) and the directory where the served
files are stored in three different locations.

Watching for changes
Watching for changes

The use of twitch to watch for changes in the directories where
input files exist and triggering the shake organized rebuilding process
removes all tests for file changes in one point. If a change is detected,
shake is called.

Given that shake is only redoing what is strictly necessary and
caches older results, makes false positives — alerts to changes which
are not substantiated — not dangerous and can be ignored.



35 architecture of the bake process 35

Shake for rebuilding
Shake for rebuilding

Shake is checking for changes in the needed input files with precision
and starts redoing what is necessary to update the result - filtering out
false alerts from watching for changes.

Shake relies on filenames and specifically extension. It is important
that files with different semantics have different extensions; for
example, templates must be separated by extension for the specific
processor.
Shake is managing all filenames and calls functions in the next (sub-
layer). It checks for existence of files and produces error messages
when a file is not found — no further error processing for missing
files neded.

In cases where files with the same extension (e.g. html or pdf) are
given (in the dough directory) and are produced for some other files
given as e.g. md files, the processing checks wether a file is given and
if not, tries to produce it.

Transformation of filepath to Path
Transformation of filepath to Path

The FilePath typed files are translated to Path type, which differenti-
ates relative and absoulute path to files or directories.

Processing

Processing layers are split again in two: a layer to read or write
files (using typed files and typed content) before it is passed to the
operations actually manipulating the data.

Issues : how to organize regression tests

In general, testing algebraic properties is difficult for complex data; I
have a method to organize regression tests. Results from operations
are stored and used for input later. The input and output of the
test functions are typed to avoid problems with confusion in types
between data written to disk and read from disk.

The construction of a test for a function is limited as another tested
function must produce the input data.



Command Line Interface (CLI) for bake

The main program of SSG ssgbake has a command line interface
(CLI) which includes switches to direct

The main program is ssgbake and it includes some swiches to taylor
the run:

• continuous update (watch) when filecontent on disk changes
update the current produced content to reflect changes applied to
the files on disk (w)

• start a web server to serve the produced homepage (s)

• update the test homepage (t), which is included in the code and
distributed with it,

• quick run without producing the pdf files, which slows down the
conversion (q)

• help. The swiches include in specific version of SSG are shown (h).



30. PackagesUsed.md

The Packages from Hackage used. Primarily pandoc, pandoc-
citeproc, doctemplates, but also twich, shake, scotty and aeson,
lens, and aeson-lens.

Pandoc

The central component of any modern site generator seems to be
Pandoc. At the moment only markdown is used for content and
output is html, additionally, pdf files for print output.

Pandoc-citeproc allows the inclusion of references and reformat
references based on a BibTex file, which includes the details.

Templates

Pandoc includes a template system, [doctemplates] (http://hackage.
haskell.org/package/doctemplates). Injects text values from a JSON
record (based on labels); it allows conditionals (‘i f (label) .. endi f )
and loops.

Watching file change : Twitch

Twitch uses FSnotify to connect programmed actions to activities
with files. It can be used to notify the process which bakes files about
changes in file content.

Caching

Shake is a Haskell version of make and can be used to convert a static
site (idee in Slick

JSON

The aeson Haskell implementation of JSON is used, together with
aeson-lens for getting and setting values in JSON records.

http://hackage.haskell.org/package/pandoc
http://hackage.haskell.org/package/pandoc-citeproc
http://hackage.haskell.org/package/doctemplates
http://hackage.haskell.org/package/doctemplates
http://hackage.haskell.org/package/twitch
http://hackage.haskell.org/package/shake
http://hackage.haskell.org/package/slick
http://hackage.haskell.org/package/aeson
http://hackage.haskell.org/package/aeson-lens


40 use of pandoc . md

The transformation uses Pandoc, in four steps: - read the file into
the pandoc structure - extract from the pandoc file all content
into a context - convert the context into the target format - fill the
context into a template to produce the result (respective a .tex file
to process by lualatex)

Read Markdown
Read Markdown

Reads the YAML header and the text content into a Pandoc data type.
The formating, in the header and the content, is converted from the
input format (e.g. markdown) into the internal Pandoc encoding.

This first step could read essentially any format, Pandoc accepts -
likely with minimal or no changes in other steps.

Extract all information into Context
Extract all information into Context

Extract the information in the MetaValue type into a Context
MetaValue; preserves the formating in the Pandoc format, but
separated into pieces.

Convert the Data to target format
Convert the Data to target format

The Pandoc structured formatted data are converted to the target
format (either Latex encoded as Text or HTML encoded as Text) -
each individual piece.

Fill the converted pieces into template.
Fill the converted pieces into template.

The specific templates for Dainomust be compiled and are then
filled with converted pieces - separately to produce the HTML file
to be served and the .tex file to be processed by lualatex, which
produces the final .pdf.

Produced with ‘daino’ (Version versionBranch = [0,1,5,3,3], versionTags = []) from /home/
frank/Desktop/myHomepage/Essays/SSGdesign/index.md with latexTufte81.dtpl

arguments bookbig

/home/frank/Desktop/myHomepage/Essays/SSGdesign/index.md
/home/frank/Desktop/myHomepage/Essays/SSGdesign/index.md

	I Introduction to the Static Site Generator (SSG)
	The Static Site Generator
	My Goals with SSG
	Installation and test for functionality

	Build your site with SSG
	The overall setup of a site
	Details of the Settings for a site
	Topical subdivision of content
	Landing page
	Resources directories

	The structure of the page files
	The YAML header
	Web page content
	Index pages
	Referencing images and other static content
	Pages rendered as PDF


	II Rationale for the SSG
	Some comments on Static Site Generator available in 2018
	Impressions of the SSG sprinkles
	Reasons to try it
	Observations
	Conclusion

	Principles of SSG design
	Goals
	Packages available in Haskell
	Well designe tools combine cleanly
	Programmable
	Uniform interfaces for packages used
	Separate Theme and Content
	Performance
	Character file based to facilitate backup and version management
	Let the directory structure reflect the structure of the site
	Customization
	Documentation not yet done
	Desirable features

	What remains to be designed after deciding on the tools?
	content as markdown text
	Build Site Generator around Pandoc
	Directory structure
	Description of site source layout in a text file

	Private and public, publish and publish state
	Which web pages should be published

	Three options to manage a home page
	Write the page directly in HTML
	Complete systems for managing a web presence
	A UNIX tools approach: Markdown and Pandoc


	III The use of daino, a Static Site Generator (SSG)
	Architecture of the bake process
	Command line processing:
	Processing of Layout (file settingsN.yaml)
	Watching for changes
	Shake for rebuilding
	Transformation of filepath to Path

	Command Line Interface (CLI) for bake
	30. PackagesUsed.md
	40 use of pandoc . md
	Read Markdown
	Extract all information into Context
	Convert the Data to target format
	Fill the converted pieces into template.



