
Rationale for the SSG

Observations during testing of other static site generators
available a few years ago lead to a set of goals for my own.

August 4, 2023

Contents

Some comments on Static Site Generator available in 2018 2
Some comments on other Static Site Generator 2

Impressions of the SSG sprinkles 4
Reasons to try it 4
Observations 4

Button to get clean start 4
Breaking the program in independent services 5
Many small files connected by same parameter names 5
Theme folder 5
Preview not correctly rendered 5
Parameter for pages and posts 5
Archetypes for pages 5
Terminology 5

Conclusion 6

Principles of SSG design 7
Goals 7
Packages available in Haskell 7
Well designe tools combine cleanly 7
Programmable 8



2 CONTENTS CONTENTS 2

Uniform interfaces for packages used 8
Separate Theme and Content 8
Performance 8
Character file based to facilitate backup and version management 9
Let the directory structure reflect the structure of the site 9
Customization 9
Documentation not yet done 10
Desirable features 10

Support for the development of a web site 10

Allow some parts of a web site to be protected from the public 10

What remains to be designed after deciding on the tools? 11
content as markdown text 11
Build Site Generator around Pandoc 11
Directory structure 12
Description of site source layout in a text file 12

Private and public, publish and publish state 13
Which web pages should be published 13

Separate readiness for publication and visible to everybody 13

Coding in the yaml head of every blog page 13

Current implementation (version 0.1.5.1 of SSG) 13

Three options to manage a home page 15
Write the page directly in HTML 15
Complete systems for managing a web presence 15
A UNIX tools approach: Markdown and Pandoc 15

I experimented with a number of static site generators to build a
web site for my own use in 2018. The observations lead to a set of
requirements, which are detailed here.

http://hackage.haskell.org/package/pandoc


Some comments on Static Site Generator available in
2018

Why yet another static site generator? Pandoc provides nearly
everything and gives the desired functionality (code in Haskell,
markdown as primary text input, backup with git).

Some comments on other Static Site Generator

Constructing a simple homepage, perhaps with a blog and some
images can be done in a few hours, possibly days with a tool like
wordpress. To make a homepage satisfying some special require-
ments takes a bit of planning of content and how it can be served.

I have tried a few tools to produce an homepage for an university
researcher, but I observed in late 2018 some limitations where I
desired simpler handling or more flexibility for my use:

• Not easily (i.e. out of the box) to make work with markdown
(e.g. the often used WordPress),

• Hard to exclude commercial interests1 and connections to un- 1 especially from the companies and
agencies which are trying to convince
us that they constantly improve their
service “to serve us better” and force us
to change our code accordingly

wanted services2,

2 (for example, WordPress seems to link
Google Analytics and similar by default

• Missing integration with BibTex to produce references and a list of
publications from BibTex files,

I prefer to work in the language I know already and not to learn a
new set of obscure quirks (e.g. WordPress, Sprinkles), and shy away
from approaches “batteries included” (e.g. Jekyll or Hakyll; a similar
comment) by the author of an Haskell based approach, forcing users
to learn lots of detail, and look for extensible and composable tools,
following the initial Unix philosophy3. 3 whatever composable means for a site

generator?I was very impressed with static site generators, e.g. SitePipe
which demonstrated how much functionality is available in packages
(e.g. from Hackage)4. 4 The predecessor SitePipe proveded

some inspiration for SSG.I later learned of the Multimarkdown-CMS, which seams also to
show how much can be achieved with current, existing packages.
Unfortunately, it converted into a closed system for the Mac.

In searching for how to adapt the Tufte style to the design of
a home page I found Jekyll, which uses the Ruby environment

http://hackage.haskell.org/package/slick-0.2.0.0
https://github.com/chrispenner/sitepipe
https://fletcherpenney.net/multimarkdown/cms/
https://jekyllrb.com/


4 some comments on static site generator available in 2018 4

but includes pandoc and Tufte packages adapted to pandoc. It
demonstrated that a webpage Tufte style is possible.



Impressions of the SSG sprinkles

My impression with trying to use sprinkles, which I hoped could
satisfy all my needs.

Reasons to try it
Reasons to try it

I spend some time with trying Sprinkles as a foundation for my own
homepage. It was attractive because it seemed to fulfill most of my
requirements:

• it is written in Haskell,
• uses Ginger, the Haskell implementation for the Jinja2 theme

languages,
• it builds a static site which can be uploaded to a host of my choice,
• is design and setup with YAML files,
• clean design using a compiled, site independent engine; all site

design is in files,
• support for markdown (using pandoc).

Some points I perceived as rather negative:

• small (very small) developer and user base5, 5 Is this better than roll you own?

• static site generation is possible, dynamic sites goal,
• issues with caching between invocations (makes development

difficult).

Observations
Observations

During my tests, I found some things which could be improved and
which became also ideas which were later included in my SSG design.

Button to get clean start

Provide a method to force a clean restart and, if possible, force
it automatically when certain files change. For example, when
project.yml changes, do a clean restart without user intervention.



6 impressions of the ssg sprinkles 6

Breaking the program in independent services

The monolithic nature with a very large number of dependencies
makes it hard to maintain and probably difficult to attract others to
contribute.

For example:

• factor out, e.g. string conversion, error handling, file IO6 6 my uniform approach

• avoid import of qualified Prelude7 7 Despite the well known issues with
the current Prelude; I prefer to use it
unchanged and work arount the issues,
mostly to make code integratable with
code written by others.

I think it could be possible to have a separate program for bake
and one for serving, with a common sprinkles-core.

With ginger I had the impression that part of the complexity
comes from using an extended version of JSON.Value.8 8 I understand the reasons for adding

specific types but feel it would be better
to wrap the type for Http around a
JSON.Value and not produce a separate
value which then needs conversions etc.
etc.

Many small files connected by same parameter names

The structure of the different YAML files to define the design, to-
gether with the templates (in Jinja2), the css styles and others are
hard to grasp and keep aligned.

Theme folder

I liked the Pelikan approach to have a theme folder, which sepa-
rates the theme from the remainder.

Preview not correctly rendered

The preview operation seems not to properly treat markdown.9 9 The three tick style, which should give
a typewriter font, gives spaced text.

Parameter for pages and posts

I would prefer a structure for the pages as two yaml docs, separated
by ----, where the first contains proper yaml with key - value pairs
and the second the markdown text.10 10 Pandoc has adopted this approach

and I use it for SSG.

Archetypes for pages

I liked the idea to define archetypes for pages and a function, which
defines the values and an archetype to the proper place and fill the
values correctly.

Terminology

I think

• theme for the overall layout arrangements (including styles) is a
nice word, and I prefer it over blueprints.

• byline seems to be an established term for the subtitle of a
newspaper and in analogy to a blog.



7 impressions of the ssg sprinkles 7

Conclusion
Conclusion

I was impressed with sprinkles enough to try to combine it with
sitepipe and later slick which then moved to use shake. I
eventually decided to go directly to build on top of pandoc and
shake 11. 11 all packages can be found on hackage.

https://hackage.haskell.org/packages/


Principles of SSG design

Why yet another static site generator? Pandoc provides nearly
everything and gives the desired functionality (code in Haskell,
markdown as primary text input, backup with git).

Goals
Goals

• Separate the presentation from the content.
• The structure of the site should map directly to the directory and

file structure of the stored content.
• All content should be ordinary text (UTF-8) files, which gives

a choice of tools for editing, version management, backup and
guarantees long term viability.

• Connect the tools with a full programming language.
• Build a SSG from available packages in Haskell, to reduce the code

which requires maintenance.
• Demonstrate integration using the “uniform” approach to wrap

packages in integrable interfaces.

Packages available in Haskell
Packages available in Haskell

A number of tools are available from Hackage:

• Pandoc
• shake
• twich
• git
• citeproc
• doctemplates

They should be used as far as possible!

Well designe tools combine cleanly
Well designe tools combine cleanly

Tools which survive the test of time provide abstractions which
combine without unexpected interactions and confusions.

https://hackage.haskell.org/package/pandoc
https://hackage.haskell.org/package/shake
http://hackage.haskell.org/package/twitch
https://en.wikipedia.org/wiki/Git
https://hackage.haskell.org/package/citeproc
http://hackage.haskell.org/package/doctemplates


9 principles of ssg design 9

Programmable
Programmable

It is my experience when adaptation is needed anything short of a
complete (and well designed) programming language leads to an
infinite sequence of special case additions bolted on with some ugly
screws; I have the impression that this is a imitation of e.g. Sprinkles.

Uniform interfaces for packages used
Uniform interfaces for packages used

Wrap packages into a small interface layer to locally hide differences
between packages which hinder integration. In Haskell, such differ-
ences tend to show up as multiple options to achieve more or less
the same ends. I tend to think this is preferably over the use of a
special prelude which makes collaboration with others difficult.

My uniform approach

• use Text as the primary representation and use uniform-
strings to convert to and from other representations (with
local deviations from the rule)

• all functions are pure or in the ErrIO monad (ErrorT Text a
IO); operations in other monads are wrapped.

• represent path to files as with Path12, use uniform-fileio for all 12 Avoid the more general FilePath
type!operations to use the same interface for different file types and use

TypedFiles to connect file extensions to semantics (i.e. code to
transform from the external to the internal format),

• write top level code in a basic form of Haskell and eschew
use of special features, especially not relying on Template
Haskell(see Haskell style).

Separate Theme and Content
Separate Theme and Content

The data should be separated from the style of presentation, to

• allow changes in the data without entanglement in the typically
tricky descriptions of style,

• changes in the style must be applied regularly on all content and
should not require editing already existing data.

The theme (templates, css etc.) and the content should be sepa-
rated, with a documented interface. Default locations for theme and
content can be adapted to needs.

Performance
Performance

SSG is mostly a proof of concept and demonstration for small aca-
demic homepages, it is not optimized for humongous web pages for

https://github.com/tdammers/sprinkles
/Essays/SSGdesign/040HaskellStyle.html


10 principles of ssg design 10

large organizations. Performance is not designed in13; if performance 13 The caching mechanism of shake,
however, should make even large web
sites viable

is too slow for a specific use, localize the issue and tweak the code
were performance is an issue.

The use of twich and shake gives a nearly dynamic behavior:
changes are reflected quickly in locally served pages, when ssgbake
is run with the -w switch.14 14 The mechanism works well for

local changes in a page but requires
some tweaking when an index page is
produced during bake by collecting
data from multiple other pages in
a directory; typically delete at least
the index.html page in the baked
homepage and re-run ssgbake.

The conversion of the markdown to latex is, as currently imple-
mented, slow; it requires separate processes for different steps in the
conversion in a suboptimal fashion and could be improved.

Character file based to facilitate backup and version management
Character file based to facilitate backup and version management

The storage of content should be in text files which can be edited
with any editor15, versioned with git and backed up with ordinary 15 my preference is currently VScode,

but no special features are relied ontools16.
16 Git operations can conflict with other
tools to synchronize file content be-
tween installations (e.g. syncthing).Let the directory structure reflect the structure of the site

Let the directory structure reflect the structure of the site

The primary structure of a site should be reflected in the directory
structure where the files for the pages are stored.

It is acceptable that the file names can be restricted (e.g. must not
include spaces) and facilities to translate the file names into readable
titles must be provided.

Many site generator, especially flexible content management
systems, use databases like SQL for storage of date; for small sites,
full function databases are too complex and notoriously difficult to
integrate, backup and vulnerable to attacks from hacker.

Customization
Customization

A web site is infinitely customizable; the difficulty is to decide which
customizations are provided at a common user level, which others are
accessible only through tweaking the underlying technology and how
accessibly such tweaks are.

I have opted for a minimal set of options to customize:

• a banner image with two lines of text,
• a ribbon of links to directories,

and most everything else is simply text in sources for web pages.
Any further adaption relies on some understanding of the underly-

ing technology; accessible is

• the way text from web pages is arranged as html file in a template,
• layout is changeable in the css files.

Customization beyond will likely require forking the source code
and changes in it.

http://hackage.haskell.org/package/twitch
http://hackage.haskell.org/package/shake
https://syncthing.net/


11 principles of ssg design 11

Documentation not yet done
Documentation not yet done

Desirable features
Desirable features

Support for the development of a web site

It should be possible to add new pages without them immediately
going live.

Allow some parts of a web site to be protected from the public

No everything in a web site should be automatically visible to
everybody; it should be possible to protect some pages or groups of
pages with passwords or some similar means.



What remains to be designed after deciding on the tools?

What remains to be designed? The description with in the
abstract will be followed up with the specifics.

content as markdown text
content as markdown text

Pandoc allows a metadata block in YAML before the text written in
markdown17. 17 Pandoc markdown has many exten-

sions. There is an effort underway to
specify markdown more precisely as
commonmark. The extensions must
include at least - footnotes - references
to be included from bibtex - images -
hyperrefs - table of content

The design must fix the information to include in the metadata
block and decide on the markdown extension to be included.

A decision on the editor is not required; it is recommended that
the editor used should include spell checking tools for multiple
languages. I think that spell checking is part of editing the source and
not part of the baking of a site.

I wish tools to systematically process text from input on an US-
keyboard where input of accented characters and similar (umlaut,
“ñ”, “¿” etc.) is difficult.

It should be possible to collected several shorter markdown texts
and produce a booklet.

Build Site Generator around Pandoc
Build Site Generator around Pandoc

Pandoc translates many different text file formats into html, it can
handle BibTex references in text and produce publication lists (with
pandoc-citeproc now with citeproc.

It works well with doctemplates, which is a small template sys-
tem18 with just conditionals and loops. It is produced by the same 18 similar to moustache

author as pandoc.
Pandoc works with conversion of files into value. Files can include

metadata as YAML blocks in the text source.
It is possible to produce pdf files from the blog entries, which

gives a printable format (better than printing the html document).
Pandoc uses internally JSON, which in Haskell means using aeson.

https://pandoc.org/MANUAL.html#pandocs-markdown
https://pandoc.org/MANUAL.html#pandocs-markdown
https://commonmark.org/
https://salsa.debian.org/python-team/packages/bookletimposer
http://hackage.haskell.org/package/pandoc
http://hackage.haskell.org/package/pandoc
http://hackage.haskell.org/package/pandoc-citeproc
https://hackage.haskell.org/package/citeproc
http://hackage.haskell.org/package/doctemplates
https://mustache.github.io/
https://hackage.haskell.org/package/aeson


13 what remains to be designed after deciding on the tools? 13

Directory structure
Directory structure

The design fixes the file structure: theme and content (dough) is
separated from the baked site. The source for the web pages(dough),
the layout and appearances (theme) are stored in a directory. The
produced web pages go into a different directory (baked site).

The resulting html files served are stored elsewhere. (Storage of
Site Data)

Description of site source layout in a text file
Description of site source layout in a text file

The layout of the source directories and the target directory can be set
out in a YAML file (settings.yml). In the same file, other general
parameters of the web site can be included as well.

Principle: only one settings file in structured text format (YAML).

DefaultFileLayout.html
DefaultFileLayout.html


Private and public, publish and publish state

Only pages which are not containing private material (i.e. are
public) and which ready to publish (i.e. not a publish)

Which web pages should be published
Which web pages should be published

The publicly visible homepage should only include material which
the author deems public and ready for publication. It must be possible
to collect in the directories material which is in preparation and not
yet ready for publication but also material which is of a private nature
and not visible in the finished homepage.

Separate readiness for publication and visible to everybody

The web is in principle a medium where material is accessible to
everybody - unless restricted. It must be possible to produce version
of the homepage for public visibility and other versions which are
restricted.

There are two reasons for excluding material from public visibility:

• not yet fulfilling quality standards, e.g., spelling not checked,
incomplete content, only a first idea sketched, etc.

• private material which for should not be available to everybody
or must not be included in a published version for, e.g., lack of
copyright (i.e. material where somebody else has the copyright and
is not public domain).

Coding in the yaml head of every blog page

In the head of every blog page two keywords are included:

• visibility: which can have values private or public.

• version: which can have values publish, draft, idea.

Current implementation (version 0.1.5.1 of SSG)

Only markdown files with public and publish are baked into the
site. Two switches -d and -p are included to include files which are



15 private and public, publish and publish state 15

not intended for public view or not ready for publication to include
such files in the bake process. Be careful not to have the produced site
served on a publicly visible port!



Three options to manage a home page

Some of my friends confronted the same question and found
different solutions. I see three options discussed here.

There are probably many ways to build and maintain a home page. I
see three models that some of my friends use:

• Write HTML directly,
• write markdown text and transform it into a web page, or
• use one of the ready-made complete programs for managing a web

presence.

Write the page directly in HTML
Write the page directly in HTML

Colleagues who started web sites very early and learned HTML when
MOSAIC19 first appeared.20 Some still write HTML and maintain 19 https://en.wikipedia.org/wiki/

Mosaic_(web_browser)
20 I remember having MOSAIC on my
Macintosh then, but was busy with
other things and didn’t see the potential.

their web sites21.

21 e.g. https://web.eecs.umich.edu/
~kuipers/opinions/old-web-page.html

Complete systems for managing a web presence
Complete systems for managing a web presence

The large market for tools to help with web presence has spawned a
number of more or less complete packages, of which Wordpress is
perhaps the best known. I have found that such complete systems,
advertised as batteries included, are easy to get started with, but then
have a steep learning curve to figure out all the parts you have no
intention of ever using and sometimes the solutions offered still do
not include the one you want.

Often the systems are easy to get into but hard to get out of:
content is in a proprietary format and the user is trapped.22. 22 Getting out of Wordpress was all

right, but still a loss of investment in
non-portable tricks

A UNIX tools approach: Markdown and Pandoc
A UNIX tools approach: Markdown and Pandoc

Unix has been successful at building tools that can be combined
and reused. I thought that combining the markdown' language,
which helps the author focus on content, andpandoc’
to translate content into HTML, with a few more tools to manage the
site, could be an interesting project.23. So my homepage is produced 23 I was not alone with such ideas!

[06rationale/009aboutSprinkles.md]

https://en.wikipedia.org/wiki/Mosaic_(web_browser)
https://en.wikipedia.org/wiki/Mosaic_(web_browser)
https://web.eecs.umich.edu/~kuipers/opinions/old-web-page.html
https://web.eecs.umich.edu/~kuipers/opinions/old-web-page.html


17 three options to manage a home page 17

using daino, a package written in Haskell that runs on both AMD
and ARM hardware24. 24 Raspberry Pi 4

The combination of these tools allows to produce PDFs that give
nicer printed pages and I plan to experiment with this.

Produced with ‘daino’ (Version versionBranch = [0,1,5,3,3], versionTags = []) from /home/
frank/Desktop/myHomepage/Essays/SSGdesign/06rationale/index.md with latexTufte81.dtpl

arguments booklet

/home/frank/Desktop/myHomepage/Essays/SSGdesign/06rationale/index.md
/home/frank/Desktop/myHomepage/Essays/SSGdesign/06rationale/index.md

	Some comments on Static Site Generator available in 2018
	Impressions of the SSG sprinkles
	Reasons to try it
	Observations
	Conclusion

	Principles of SSG design
	Goals
	Packages available in Haskell
	Well designe tools combine cleanly
	Programmable
	Uniform interfaces for packages used
	Separate Theme and Content
	Performance
	Character file based to facilitate backup and version management
	Let the directory structure reflect the structure of the site
	Customization
	Documentation not yet done
	Desirable features

	What remains to be designed after deciding on the tools?
	content as markdown text
	Build Site Generator around Pandoc
	Directory structure
	Description of site source layout in a text file

	Private and public, publish and publish state
	Which web pages should be published

	Three options to manage a home page
	Write the page directly in HTML
	Complete systems for managing a web presence
	A UNIX tools approach: Markdown and Pandoc


