
1 CONTENTS CONTENTS 1

What remains to be designed
after deciding on the tools?

What remains to be designed? The description with in the
abstract will be followed up with the specifics.

August 4, 2023

Contents

content as markdown text 1
Build Site Generator around Pandoc 1
Directory structure 2
Description of site source layout in a text file 2

content as markdown text
content as markdown text

Pandoc allows a metadata block in YAML before the text written in
markdown1. 1 Pandoc markdown has many exten-

sions. There is an effort underway to
specify markdown more precisely as
commonmark. The extensions must
include at least - footnotes - references
to be included from bibtex - images -
hyperrefs - table of content

The design must fix the information to include in the metadata
block and decide on the markdown extension to be included.

A decision on the editor is not required; it is recommended that
the editor used should include spell checking tools for multiple
languages. I think that spell checking is part of editing the source and
not part of the baking of a site.

I wish tools to systematically process text from input on an US-
keyboard where input of accented characters and similar (umlaut,
“ñ”, “¿” etc.) is difficult.

It should be possible to collected several shorter markdown texts
and produce a booklet.

Build Site Generator around Pandoc
Build Site Generator around Pandoc

Pandoc translates many different text file formats into html, it can
handle BibTex references in text and produce publication lists (with
pandoc-citeproc now with citeproc.

It works well with doctemplates, which is a small template system2 2 similar to moustache

http://hackage.haskell.org/package/pandoc
https://pandoc.org/MANUAL.html#pandocs-markdown
https://pandoc.org/MANUAL.html#pandocs-markdown
https://commonmark.org/
https://salsa.debian.org/python-team/packages/bookletimposer
http://hackage.haskell.org/package/pandoc
http://hackage.haskell.org/package/pandoc
http://hackage.haskell.org/package/pandoc-citeproc
https://hackage.haskell.org/package/citeproc
http://hackage.haskell.org/package/doctemplates
https://mustache.github.io/


2 CONTENTS CONTENTS 2

with just conditionals and loops. It is produced by the same author as
pandoc.

Pandoc works with conversion of files into value. Files can include
metadata as YAML blocks in the text source.

It is possible to produce pdf files from the blog entries, which
gives a printable format (better than printing the html document).

Pandoc uses internally JSON, which in Haskell means using aeson.

Directory structure
Directory structure

The design fixes the file structure: theme and content (dough) is
separated from the baked site. The source for the web pages(dough),
the layout and appearances (theme) are stored in a directory. The
produced web pages go into a different directory (baked site).

The resulting html files served are stored elsewhere. (Storage of
Site Data)

Description of site source layout in a text file
Description of site source layout in a text file

The layout of the source directories and the target directory can be set
out in a YAML file (settings.yml). In the same file, other general
parameters of the web site can be included as well.

Principle: only one settings file in structured text format (YAML).

Produced with ‘daino’ (Version versionBranch = [0,1,5,3,3], versionTags = []) from /home/
frank/Desktop/myHomepage/Essays/SSGdesign/06rationale/011design.md with latexTufte81.dtpl

arguments

https://hackage.haskell.org/package/aeson
DefaultFileLayout.html
DefaultFileLayout.html
/home/frank/Desktop/myHomepage/Essays/SSGdesign/06rationale/011design.md
/home/frank/Desktop/myHomepage/Essays/SSGdesign/06rationale/011design.md

	content as markdown text
	Build Site Generator around Pandoc
	Directory structure
	Description of site source layout in a text file

