
1 CONTENTS CONTENTS 1

Principles of SSG design

Why yet another static site generator? Pandoc provides nearly
everything and gives the desired functionality (code in Haskell,
markdown as primary text input, backup with git).

August 4, 2023

Contents

Goals 1
Packages available in Haskell 1
Well designe tools combine cleanly 2
Programmable 2
Uniform interfaces for packages used 2
Separate Theme and Content 2
Performance 3
Character file based to facilitate backup and version management 3
Let the directory structure reflect the structure of the site 3
Customization 3
Documentation not yet done 4
Desirable features 4

Support for the development of a web site 4
Allow some parts of a web site to be protected from the public 4

Goals
Goals

• Separate the presentation from the content.
• The structure of the site should map directly to the directory and

file structure of the stored content.
• All content should be ordinary text (UTF-8) files, which gives

a choice of tools for editing, version management, backup and
guarantees long term viability.

• Connect the tools with a full programming language.
• Build a SSG from available packages in Haskell, to reduce the code

which requires maintenance.



2 CONTENTS CONTENTS 2

• Demonstrate integration using the “uniform” approach to wrap
packages in integrable interfaces.

Packages available in Haskell
Packages available in Haskell

A number of tools are available from Hackage:

• Pandoc
• shake
• twich
• git
• citeproc
• doctemplates

They should be used as far as possible!

Well designe tools combine cleanly
Well designe tools combine cleanly

Tools which survive the test of time provide abstractions which
combine without unexpected interactions and confusions.

Programmable
Programmable

It is my experience when adaptation is needed anything short of a
complete (and well designed) programming language leads to an
infinite sequence of special case additions bolted on with some ugly
screws; I have the impression that this is a imitation of e.g. Sprinkles.

Uniform interfaces for packages used
Uniform interfaces for packages used

Wrap packages into a small interface layer to locally hide differences
between packages which hinder integration. In Haskell, such differ-
ences tend to show up as multiple options to achieve more or less
the same ends. I tend to think this is preferably over the use of a
special prelude which makes collaboration with others difficult.

My uniform approach

• use Text as the primary representation and use uniform-
strings to convert to and from other representations (with
local deviations from the rule)

• all functions are pure or in the ErrIO monad (ErrorT Text a
IO); operations in other monads are wrapped.

• represent path to files as with Path1, use uniform-fileio for all 1 Avoid the more general FilePath
type!operations to use the same interface for different file types and use

TypedFiles to connect file extensions to semantics (i.e. code to
transform from the external to the internal format),

https://hackage.haskell.org/package/pandoc
https://hackage.haskell.org/package/shake
http://hackage.haskell.org/package/twitch
https://en.wikipedia.org/wiki/Git
https://hackage.haskell.org/package/citeproc
http://hackage.haskell.org/package/doctemplates
https://github.com/tdammers/sprinkles


3 CONTENTS CONTENTS 3

• write top level code in a basic form of Haskell and eschew
use of special features, especially not relying on Template
Haskell(see Haskell style).

Separate Theme and Content
Separate Theme and Content

The data should be separated from the style of presentation, to

• allow changes in the data without entanglement in the typically
tricky descriptions of style,

• changes in the style must be applied regularly on all content and
should not require editing already existing data.

The theme (templates, css etc.) and the content should be sepa-
rated, with a documented interface. Default locations for theme and
content can be adapted to needs.

Performance
Performance

SSG is mostly a proof of concept and demonstration for small aca-
demic homepages, it is not optimized for humongous web pages for
large organizations. Performance is not designed in2; if performance 2 The caching mechanism of shake,

however, should make even large web
sites viable

is too slow for a specific use, localize the issue and tweak the code
were performance is an issue.

The use of twich and shake gives a nearly dynamic behavior:
changes are reflected quickly in locally served pages, when ssgbake
is run with the -w switch.3 3 The mechanism works well for local

changes in a page but requires some
tweaking when an index page is
produced during bake by collecting
data from multiple other pages in
a directory; typically delete at least
the index.html page in the baked
homepage and re-run ssgbake.

The conversion of the markdown to latex is, as currently imple-
mented, slow; it requires separate processes for different steps in the
conversion in a suboptimal fashion and could be improved.

Character file based to facilitate backup and version management
Character file based to facilitate backup and version management

The storage of content should be in text files which can be edited with
any editor4, versioned with git and backed up with ordinary tools5. 4 my preference is currently VScode,

but no special features are relied on
5 Git operations can conflict with other
tools to synchronize file content be-
tween installations (e.g. syncthing).

Let the directory structure reflect the structure of the site
Let the directory structure reflect the structure of the site

The primary structure of a site should be reflected in the directory
structure where the files for the pages are stored.

It is acceptable that the file names can be restricted (e.g. must not
include spaces) and facilities to translate the file names into readable
titles must be provided.

Many site generator, especially flexible content management
systems, use databases like SQL for storage of date; for small sites,

/Essays/SSGdesign/040HaskellStyle.html
http://hackage.haskell.org/package/twitch
http://hackage.haskell.org/package/shake
https://syncthing.net/


4 CONTENTS support for the development of a web site 4

full function databases are too complex and notoriously difficult to
integrate, backup and vulnerable to attacks from hacker.

Customization
Customization

A web site is infinitely customizable; the difficulty is to decide which
customizations are provided at a common user level, which others are
accessible only through tweaking the underlying technology and how
accessibly such tweaks are.

I have opted for a minimal set of options to customize:

• a banner image with two lines of text,
• a ribbon of links to directories,

and most everything else is simply text in sources for web pages.
Any further adaption relies on some understanding of the underly-

ing technology; accessible is

• the way text from web pages is arranged as html file in a template,
• layout is changeable in the css files.

Customization beyond will likely require forking the source code
and changes in it.

Documentation not yet done
Documentation not yet done

Desirable features
Desirable features

Support for the development of a web site

It should be possible to add new pages without them immediately
going live.

Allow some parts of a web site to be protected from the public

No everything in a web site should be automatically visible to
everybody; it should be possible to protect some pages or groups of
pages with passwords or some similar means.

Produced with ‘daino’ (Version versionBranch = [0,1,5,3,3], versionTags = []) from
/home/frank/Desktop/myHomepage/Essays/SSGdesign/06rationale/010Principles.md with
latexTufte81.dtpl

arguments

/home/frank/Desktop/myHomepage/Essays/SSGdesign/06rationale/010Principles.md

	Goals
	Packages available in Haskell
	Well designe tools combine cleanly
	Programmable
	Uniform interfaces for packages used
	Separate Theme and Content
	Performance
	Character file based to facilitate backup and version management
	Let the directory structure reflect the structure of the site
	Customization
	Documentation not yet done
	Desirable features

