1

CONTENTS

Impressions of the SSG sprin-

kles

My impression with trying to use sprinkles, which I hoped could
satisfy all my needs.

August 4, 2023

Contents

Reasons to try it 1
Observations 1
Button to get clean start 2
Breaking the program in independent services 2
Many small files connected by same parameter names 2
Theme folder 2
Preview not correctly rendered 2
Parameter for pages and posts 2
Archetypes for pages 2
Terminology 2

Conclusion 3

Reasons to try it

Reasons to try it

I spend some time with trying Sprinkles as a foundation for my own
homepage. It was attractive because it seemed to fulfill most of my

requirements:

it is written in Haskell,

uses Ginger, the Haskell implementation for the Jinja2 theme
languages,

it builds a static site which can be uploaded to a host of my choice,
is design and setup with YAML files,

clean design using a compiled, site independent engine; all site
design is in files,

support for markdown (using pandoc).

CONTENTS

1



2 CONTENTS

Some points I perceived as rather negative:

o small (very small) developer and user base,

e static site generation is possible, dynamic sites goal,

e issues with caching between invocations (makes development
difficult).

Observations
Observations

During my tests, I found some things which could be improved and

which became also ideas which were later included in my SSG design.

Button to get clean start

Provide a method to force a clean restart and, if possible, force
it automatically when certain files change. For example, when
project.yml changes, do a clean restart without user intervention.

Breaking the program in independent services

The monolithic nature with a very large number of dependencies
makes it hard to maintain and probably difficult to attract others to
contribute.

For example:

o factor out, e.g. string conversion, error handling, file IO
e avoid import of qualified Prelude3

I think it could be possible to have a separate program for bake
and one for serving, with a common sprinkles-core.

With ginger I had the impression that part of the complexity
comes from using an extended version of JSON.Value.4

Many small files connected by same parameter names

The structure of the different YAML files to define the design, to-
gether with the templates (in Jinja2), the css styles and others are
hard to grasp and keep aligned.

Theme folder

I'liked the Pelikan approach to have a theme folder, which sepa-
rates the theme from the remainder.

Preview not correctly rendered

The preview operation seems not to properly treat markdown.>

BUTTON TO GET CLEAN START 2

* Is this better than roll you own?

> my uniform approach

3 Despite the well known issues with
the current Prelude; I prefer to use it
unchanged and work arount the issues,
mostly to make code integratable with
code written by others.

4TI understand the reasons for adding
specific types but feel it would be better
to wrap the type for Http around a
JSON.Value and not produce a separate
value which then needs conversions etc.
etc.

5 The three tick style, which should give
a typewriter font, gives spaced text.



3 CONTENTS PARAMETER FOR PAGES AND POSTS 3

Parameter for pages and posts

I would prefer a structure for the pages as two yaml docs, separated

by ——--, where the first contains proper yaml with key - value pairs
and the second the markdown text.? ¢ Pandoc has adopted this approach and
T use it for SSG.
Archetypes for pages
I liked the idea to define archetypes for pages and a function, which
defines the values and an archetype to the proper place and fill the
values correctly.
Terminology
I think
e theme for the overall layout arrangements (including styles) is a
nice word, and I prefer it over blueprints.
e byline seems to be an established term for the subtitle of a
newspaper and in analogy to a blog.
Conclusion
Conclusion
I was impressed with sprinkles enough to try to combine it with
sitepipe and later s1ick which then moved to use shake. I
eventually decided to go directly to build on top of pandoc and
shake 7. 7 all packages can be found on hackage.

Produced with ‘daino” (Version versionBranch = [0,1,5,3,3], versionTags = []) from /home/
frank/Desktop/myHomepage/Essays/SSGdesign/o6rationale/oogaboutSprinkles.md with
latexTufte81.dtpl

arguments


https://hackage.haskell.org/packages/
/home/frank/Desktop/myHomepage/Essays/SSGdesign/06rationale/009aboutSprinkles.md
/home/frank/Desktop/myHomepage/Essays/SSGdesign/06rationale/009aboutSprinkles.md

	Reasons to try it
	Observations
	Conclusion

