
1 CONTENTS CONTENTS 1

Impressions of the SSG sprin-
kles

My impression with trying to use sprinkles, which I hoped could
satisfy all my needs.

August 4, 2023

Contents

Reasons to try it 1
Observations 1

Button to get clean start 2

Breaking the program in independent services 2

Many small files connected by same parameter names 2

Theme folder 2

Preview not correctly rendered 2

Parameter for pages and posts 2

Archetypes for pages 2

Terminology 2

Conclusion 3

Reasons to try it
Reasons to try it

I spend some time with trying Sprinkles as a foundation for my own
homepage. It was attractive because it seemed to fulfill most of my
requirements:

• it is written in Haskell,
• uses Ginger, the Haskell implementation for the Jinja2 theme

languages,
• it builds a static site which can be uploaded to a host of my choice,
• is design and setup with YAML files,
• clean design using a compiled, site independent engine; all site

design is in files,
• support for markdown (using pandoc).



2 CONTENTS button to get clean start 2

Some points I perceived as rather negative:

• small (very small) developer and user base1, 1 Is this better than roll you own?

• static site generation is possible, dynamic sites goal,
• issues with caching between invocations (makes development

difficult).

Observations
Observations

During my tests, I found some things which could be improved and
which became also ideas which were later included in my SSG design.

Button to get clean start

Provide a method to force a clean restart and, if possible, force
it automatically when certain files change. For example, when
project.yml changes, do a clean restart without user intervention.

Breaking the program in independent services

The monolithic nature with a very large number of dependencies
makes it hard to maintain and probably difficult to attract others to
contribute.

For example:

• factor out, e.g. string conversion, error handling, file IO2 2 my uniform approach

• avoid import of qualified Prelude3 3 Despite the well known issues with
the current Prelude; I prefer to use it
unchanged and work arount the issues,
mostly to make code integratable with
code written by others.

I think it could be possible to have a separate program for bake
and one for serving, with a common sprinkles-core.

With ginger I had the impression that part of the complexity
comes from using an extended version of JSON.Value.4 4 I understand the reasons for adding

specific types but feel it would be better
to wrap the type for Http around a
JSON.Value and not produce a separate
value which then needs conversions etc.
etc.

Many small files connected by same parameter names

The structure of the different YAML files to define the design, to-
gether with the templates (in Jinja2), the css styles and others are
hard to grasp and keep aligned.

Theme folder

I liked the Pelikan approach to have a theme folder, which sepa-
rates the theme from the remainder.

Preview not correctly rendered

The preview operation seems not to properly treat markdown.5 5 The three tick style, which should give
a typewriter font, gives spaced text.



3 CONTENTS parameter for pages and posts 3

Parameter for pages and posts

I would prefer a structure for the pages as two yaml docs, separated
by ----, where the first contains proper yaml with key - value pairs
and the second the markdown text.6 6 Pandoc has adopted this approach and

I use it for SSG.

Archetypes for pages

I liked the idea to define archetypes for pages and a function, which
defines the values and an archetype to the proper place and fill the
values correctly.

Terminology

I think

• theme for the overall layout arrangements (including styles) is a
nice word, and I prefer it over blueprints.

• byline seems to be an established term for the subtitle of a
newspaper and in analogy to a blog.

Conclusion
Conclusion

I was impressed with sprinkles enough to try to combine it with
sitepipe and later slick which then moved to use shake. I
eventually decided to go directly to build on top of pandoc and
shake 7. 7 all packages can be found on hackage.

Produced with ‘daino’ (Version versionBranch = [0,1,5,3,3], versionTags = []) from /home/
frank/Desktop/myHomepage/Essays/SSGdesign/06rationale/009aboutSprinkles.md with
latexTufte81.dtpl

arguments

https://hackage.haskell.org/packages/
/home/frank/Desktop/myHomepage/Essays/SSGdesign/06rationale/009aboutSprinkles.md
/home/frank/Desktop/myHomepage/Essays/SSGdesign/06rationale/009aboutSprinkles.md

	Reasons to try it
	Observations
	Conclusion

