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Abstract: The geosciences are confronted with data handling problems which
involve highly complex three dimensional objects. This complexity demands
advanced analytical systems similar to the conventional two dimensional geographic
information systems. Building such a system requires a thorough understanding of
the geometric concepts used in the geosciences, and the applicable data models and
data structures. Geometric concepts deal with geometry as perceived in geosciences
including the applicable spatial and temporal reasoning. Geometric data models are
the formalization of these concepts suitable for computer implementations. For each
data model, there are several data structures that can be used to implement them. The
concern for data structures is to provide the operations as required in the data models
in the most efficient way. This is usually done by varying the implementation
strategies to suit the applications.

1. Introduction

Discussions of data structures to model geometry for geographic information systems
(GIS) have progressed considerably over the last 15 years. The problem is essentially to
model] geometric concepts describing reality using a computer system. This does not seem
to be difficult. However, research and development efforts of recent years have often
contributed more to our understanding of the depth of the problem than to a final solution.

Initially, the problem was considered one of optimal data structures on a very low level,
close to the organization and operations of basic computer hardware. Examples of this level
of discussion can be found in [Dutton 1978], which is representative of the research at that
time. Most of the work treated the two dimensional, plane geometry, but there was some
consideration for applications that would require three dimensions {Thomas 1978; Tipper
1979]. Research during this time was concerned with the computer aided treatment of
cartographic data and industry produced computer assisted map maintenance systems. At
the same time, there were papers discussing the analytical capabilities a GIS could offer to
geography and other geosciences [Driel 1975; Weller 1975]. This appeared to be extremely
attractive, but revealed some problems with the treatment of geoscientific data as
represented by traditional maps.

Data structures to represent geometric data were also needed in CAD/CAM (computer aided
design/computer aided manufacturing) systems. They started as systems to facilitate the
production of paper drawings (CAD) but with the promise of extending further into the
design and manufacturing process. Similarly as in GIS, the limitations of representing
geometric concepts with the tools of traditional drawings became apparent. [Requicha
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1980] is a frequently referenced paper that gave a survey of suitable data structures to
model volumes. Two major structures appeared, i.e. constructive solid geometry and
boundary representation, and for each, a number of variants for implementation were
elaborated in the following years [Ansaldi, De-Floriani, and Falcidieno 1985; Gargantini
1982; Meagher 1982; Weiler 1985].

Understanding the limitations of computer assisted map maintenance systems pointed the
way to data structures which represent geometry, not the map image of geometric
phenomena. Frank [1984] argued for a clean differentiation between systems that deal with
data directly representing some geometric reality and systems that deal with map
representations. Only the first can support sophisticated geometric analytical functions,
whereas the latter facilitate the production of traditional maps that can be analyzed by skilled
geoscientists.

The discussion of geometric data models often included treatments of the conceptnal bases
and the theoretical foundations but then also gave, without much differentiation,
implementation details [Abel and Smith 1984]. For GIS, two standard models were
established: vector and raster methods. Peuquet [1984] even proposed a compromise
(vaster) idea. A very extensive literature for efficient implementation of raster models using
the quadtree data structure appeared [Samet 1989a; Samet 1989b] and was also applied to
D problems (octree) [Herbert 1985; Kavouras and Masry 1987].

Efforts to establish a theoretical base for geometric data models started at different points. A
landmark work by Corbett [1975] stressed the importance of topology as a basic
mathematical concept for organizing geometric data. Another work by Corbett [1979],
unfortunately not published in a journal, contains an extensive discussion of
implementation at the hardware and assembly language level, which somewhat obscures its
deep theoretical contribution. In [Frank 1983] a graph theory concept was found lacking.
Penquet [1988] used image processing concepts and Chan and White [1987] traced the
origin of the 'map algebra' concept propagated by Tomlin [1983] back to traditional
methods used by urban planners.

The National Center for Geographic Information and Analysis (NCGIA) organized a
workshop to discuss the connections between spatial languages and spatial concepts [Mark
1988]. One of the results of this workshop was the recognition of the importance of
discussing spatial concepts before any discussion of geometric data models and their
implementation. These concepts were further refined in [Mark et al. 1989]. The treatment in
this chapter follows and resumes the generic discussion in [Frank and Mark 1990] and
applies it to the special case of 3 dimensional geoscientific data.

The problem will first be defined and its complexity detailed in Section 2. In the same
section certain underlying assumptions valid for the remainder of the chapter will also be
defined and the terminology clarified. In the third section, there will be a discussion of
Euclidean geometry, analytical geometry and mathematical topology and how they apply to
the organization of geoscientific data. In Section 4, a number of geometric data models
using such concepts are formalized. In Section 5, the geometric data structures and their
implementation considerations are discussed. The understanding of geometry and the
applications to geosciences, especially geology is treated in Section 6. Section 7 concludes
the chapter by presenting a discussion on future research needs.
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2. Representation of Geometric Data

A representation of the geometric facts geoscientists deal with is needed in the computer
system. Computers are essentially machines to execute symbolic computations. A formal
system is therefore needed to represent the objects and the relations between them, and
rules that can be used to infer other relations between them. This is independent of the
programming language one uses or the subject matter that is dealt with. The rules for
dealing with the symbols representing the information about reality must be fully
determined in order for the computer to apply them. This is much more a problem of
conceptualization and structuring of our thinking, than a problem of actually writing a
program.

Formalizing a problem to the level that a program can be written is in principle similar to
other scientific endeavors: we try to idealize, abstract and formalize with rules some
relevant parts of our environment, such that we can deal with it in our thinking. Software
engineering is the discipline that has provided us with some guidelines and tools to
systematize this process [Sommerville 1989]. Software engineering evolved from the
concern with writing small programs - how to instruct a computer to solve a mathematical
formulation - so called 'programming in the small’. The most important contribution was
probably the concept of structured programming and the ALGOL programming language
[Dijkstra 1972; Wirth 1971]. It grew into dealing with the construction of large programs -
complexity being the issue - and methods to harness big projects, so called 'programming
in the large'. It was observed that writing programs that deal with ‘artificial' systems (e.g.
banking, insurance, business) is easier than the ones that model 'real’, physical systems
(e.g. aircraft, GIS, robots). In banking, the computer 'is' the system and its program
defines what can be done and how it is done (transactions other than the ones foreseen in
the program cannot be carried out). In modeling real systems, one has to assure that the
model and the behavior of the real system agree sufficiently to be useful. The program has
to foresee all possible reaction - 'not yet programmed' or 'this state not expected' is not an
acceptable error message for an aircraft guidance system.

In using artificial intelligence, which is for the purpose considered here just the most
advanced form of programming, it was found that problems are difficult to deal with if
they [Bobrow, Mittal, and Stefik 1986]:

» need to model spatial aspects

» contain time related reasoning

= require natural language understanding

+ deal with human conceptions

Given these precautions, we realize that most of what geology and geosciences in general
are interested in is very difficult to model formally. This is caused by the lack of
understanding of the relevant base theories (spatial and temporal reasoning), not to speak of
a complete formal theory of geology, and the absence of powerful abstractions, as we will
see in the following sections.

The problem is thus to understand and formalize the concepts geoscientists use in thinking
about the phenomena they are interested in. This leads to the basic question of how people
conceptualize the world and the objects in them. Cognitive science and related disciplines
have studied these problems and an ‘experientalist’ point of view is adapted here [Johnson
1987; Lakoff 1987]. In a very simplistic terms, this implies that we study the way people
understand the world, and do not concentrate on describing reality per se. Thus the
conceptual framework people use to structure their perception of reality becomes part of the
object to be studied. Nevertheless the subjective perceptions are comparable and can be
effectively communicated, based on the similarity of the fundamental experiences which
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form the concepts used; for example, all humans observe with eyes similar in physiological
construction.

From cognitive science, we gain insight into two unsolved problems, i.e. prototypes and
metaphors. Cognitive categories seem to be formed using a prototype or typical exemplar
and all other members of the category are more or less similar to this prototype [Lakoff
1987]. This is very different from a set theoretical concept of a category, where all elements
share a property and this property constructs the set (e.g. objects having four legs and bark
are dogs). It is evident that the cognitive methods to form categories are close to how
concepts like animals or mountains are formed. The set theoretic method is the one
formalized and used in programming.

The notions established in one context, usually from very concrete experience, can be
transferred to another one and used to organize a more abstract situation which in some
respects is comparable to the first one [Lakoff and Johnson 1980]. This metaphorical usage
of concepts, is reasonably understood in general terms, but it has escaped formalization so
far. Itis a very important method and often applied to spatial concepts.

Cognitive science has studied the basic relations humans use to structure the world as they
observe it. These studies have found that the spatial relations are fundamental. They are
mostly based on properties that relate to the human body (inside, in front of, etc.), but they
are then used not only to represent the positions of objects with relation to the human body,
but for other spatial relations in general. From there, spatial terms are then widely used
metaphorically to organize abstract concepts, like social organizations. Thus the analysis of
spatial relations is not only relevant for modelling spatial situations but for other situations
as well.

The problem thus is to understand the spatial concepts geoscientists use, and to find formal
representations, including the spatial and temporal reasoning relevant for them, The
problem is difficult to solve as we observe that there is more than a single concept of space
and spatial reasoning applicable. We see that human beings use one or the other spatial
concept, depending on the circumstances and the problem at hand. In the next section,
some of the best known tools to organize spatial knowledge, namely geometry and
topology are discussed, and then other concepts that may be more akin to the ones used in
‘geologic thinking' are presented.

3. Standard Geometry and Topology

In this section we will concentrate on the geometric aspects and separate them from
temporal ones. It is well understood that geology does most of its work in a spacio-
temporal continuum and spatial and temporal reasoning are intertwined and linked together.
However, each of these topics is a major research problem by itself and there needs to be
substantial progress in both before a connection can and should be attempted.

3.1 Euclidian Geometry

Formalizing geometric concepts was attempted by the Greeks, and Euclid gave a complete
axiomatization of geometry as it is still taught today in school. Euclid's five axioms are one
of the finest examples of abstraction from complex real situations and reduction to a very
small number of base concepts, namely points and lines, with only the most relevant
properties. It is very obvious that these abstract objects do not exist in reality, but
sufficiently good approximations of the behavior of real objects are formalized in the
axioms.



Nato ARW on 3D Modelling with Geoscientific Information Systems, Ed: Keith Tumer et. al.
Frank & Buyong

Despite the limitations of this axiomatic system and its obvious simplifications, Euclidian
geometry appears to be the description of geometric reality - despite the fact that there are
no infinite straight lines in this world and nobody has ever seen a dimensionless point.
During the 19th century, efforts to show the independence of the five axioms resulted in the
surprising discovery of 'other’ geometries and thus to a deeper discussion of the concept of
what constitutes the essence of geometry {Blumenthal 1986] (see Section 6). Despite its
mathematical formalization, Euclidian geometry is not very useful for computer
implementations. No complete system that allows the automatic proof of all geometric
propositions has been established. Its importance for computer implementation is due to the
availability of the mapping from geomelric to analytical concepts.

3.2 Analytical Geometry

Euclidian geometry discusses the relations of points and lines, and then of simple figures in
a plane. These concepts can be mapped to the coordinate plane, which is a mapping from
points in the plane to pairs of real numbers. There are analytical solution to all geometric
problems, which means that there is a homomorphism between Euclidian objects and
operations, and the analytical operations. Thus applying a geometric operation to geometric
objects and transforming the product to the analytical form or transforming the original
objects and operations to the analytical realm and applying analytical operations to the
images result in the same object (Figure 1).

£O)

t0)

systern 1 system 2

Figure 1: Homomorphism.

Analytical geometry, as founded by Descartes, is usually the basis for the implementation
of geometric ideas in a computer system (see section 4.1). It is however important to note
that analytical geometry is based on a continuum, i.e. a concept that there is another real
number between any two real numbers. This is necessary to fulfil the geometric equivalent,
where between any two points is another point (for example the middle point between the
original two).

3.3 Topology

3.3.1 Point Set Topology

Another mathematical formalization of spatial concepts is based on the same concept of
continuity and infinite sets of points of infinitesimal proximity. Defining sets of such points

which form neighborhoods, one can define interesting but simple axiomatizations which
represent very different properties from the Euclidian ones, but still geometric in essence.
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This so-called point set topology seem not to be very useful by itself, but can be extended
to analytical, or combinatorial topology.

3.3.2 Graph Theory

Graph theory deals with points (called nodes) and connections between them (called arcs).
A node is said to be incident with an arc. Despite its simplicity, this is a very useful formal
set of concepts. It can be used for most navigational tasks (i.e. problems of the type how to
get from here to there), as connectedness is the major concept and reasoning about
connectedness is simple (connectedness is for example transitive: if we can get from A to
B, and from B to C, then we can get from A to C). There is extensive literature about graph
theory and its application to practical problems [Deo 1974; Hensley 1973; Johnson 1972].

3.3.3 Combinatorial Topology

Graph theory lacks a concept of space - it just deals with nodes and connections between
them. Combinatorial topology uses the base concepts of cells and boundaries between them
[Giblin 1977]. These concepts can be used for a representation of space and objects in
space with their relations without taking into account the specific position or shape of the
objects [Pullar and Egenhofer 1988].

3.4 Taxonomy of Space and 3D Extension
3.4.1 Taxonomy of Geometry

The geometric concepts can be differentiated into:
« topology, based on the neighborhood property and relations between cells, and
» metric, based on a concept of distance between points.
Euclidian geometry is an example of a metric space, as it uses a notion of distance and
distance measure between points. A distance is a mapping from two points to a real number
such that:

d(A,A) =0 - reflexivity

d(A,B) =d(B,A) - symmetry

d(A,B) +d(B,C) =2 d(A,C) - triangle inequality
Vector spaces, as normally used for the analytical treatment of Euclidian geometry are
automatically metric.

3.4.2 Objects vs. Space

Among the different viewpoints humans can use to think about space, two are exemplified
in the above sections:

» space as 4 uniform realm populated by objects, and

« objects which fill space and thus make up 'the space'.

The first one can be associated with a Descartian point of view, the second one with a
Kantian. Each of them is valid, consistent and useful, but the two cannot readily be
connected.

It should be clear that we deal here only with a concept of objects with sharp boundaries
and clear limits. This is the way most geometric reasoning seems to proceed, even
understanding that this is not a very realistic assumption, especially for geology where one
seems to deal with boundaries of volumes that are not well defined or not precisely known.
This is a very important restriction, which needs considerable attention for future research
work.
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3.4.3 Extension to 3D

The concepts of Euclidean geometry, analytical geometry and topology discussed above
were first developed and used widely in 2D applications. The concepts are general enough
that they can be extended to 3D cases without difficulty. In Euclidean and analytical
geometry, instead of dealing with pairs of real numbers, we now need triplets of real
numbers to represent the three axes of 3D space. In topology, we have an additional cell
called volume. The treatment however, is much more demanding as there are more special
cases to take care of and also visualization in 3D space is limited by the available devices
which render projection on 2D surfaces.

4. Formalization of Geometric Concepts

In this section, the formalization of the previously discussed geometric concepts suitable
for implementations in computer systems is presented. This process also known as
modeling of geometry. Having an axiomatic, mathematical, formal base of the geometric
concepts simplifies implementation considerably.

4.1 Finite Computer Systems

There is a major problem related to the assumption of a continnum with an infinite number
of points. A computer, as any finite machine, can only represent a finite number of
different objects and cannot deal with the infinite number of points potentially necessary for
an implementation of analytical geometry. It is useful to remember that the floating point
numbers of a computer language are quite different from the real numbers in mathematics.
There is a non-countable infinite number of mathematical reals, whereas there is only a
finite number of FORTRAN REAL (indeed in 32 bits, there are slightly more integers than
floating peint numnbers).

4.2 Geometric Data Models

In simple terms, the problem of formalizing geometric concepts is how to construct a
geometry in a computer that reasonably behave like our notions of geometry. The concept
which we call 'geometric data model' is analogous to the concept of data model in database
management systems. A data model furnishes the conceptual tools to organize or structure
the representation of the application data, e.g. geological data. The geometric data model
provides the geometric concepts, which are used to structure the geometric ideas of
geology. Unfortunately, the difference between the abstract geometric concepts and the
concepts that can be implemented are substantial enough, that we cannot use the abstract
geometry (e.g. Euclidian geometry) as a data model; geometry on a integer plane (as
opposed to analytical geometry on the plane of real numbers) is quite different, and not yet
well understood or formalized in axioms.

There are two major ways to conceptualize a finite geometry: either by dividing the space in
a regular fashion or by dividing space in irregularly shaped cells. These two can be linked
to the notions previously discussed: the regular division of space stresses the uniform
nature of space and thus a Descartian view, and the irregular division of space stresses the
object which each occupies a piece of space and thus a Kantian view.

4.2.1 Regular Tessellations

Using regular tessellation to model solid bodies is one method to represent geometric facts
in a discrete system. This model is based on the subdivision of the ‘universe' of 3D space
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containing the geo-body into small cells known as volume elements (voxels). Each cell can
be either totally inside, partially inside or totally outside of the body. The interior volume is
the aggregation of the cells that are totally inside the geo-body. The conceptual smooth
boundaries of the body is approximated by staircase boundaries of the cells that are partially
inside the geo-body, following the boundaries of the regular cells. This method is
significantly different from representing values for a point or an average value for each cell
and assume that the values in between are smoothly changing and can be interpolated (see
section 4.2.4).

The primitive operations to create, intersect, etc. of cells are provided in the model. Higher
level operations on the geo-objects then use these primitive operations.

4.2,2 Irregular Tessellations

This data model is based on the concept of irregular sub-division of space. It is based on
the concept of cells as defined by algebraic topology [Alexandroff 1961; Spanier 1966].
Each cell is the simplest polyhedron of a given dimension (Figure 2). These are known as
(although terminology varies):

0-cell = point,

1-cell = arc,

2-cell = area,

3-cell = volume.

® 0-cell: O dimensional object that specifies the geometric
location

e ® 1-cell: 1 dimensional object that is a direct line
between two points

2-cell: 2 dimensicnal object that specifies an
area

Figure 2: Topological cells.

In principle, the points with coordinate values are used to fix the nodes in space. These
nodes are joined by the arcs. The areas are then defined by the arcs that delimit them.
References between areas, arcs and nodes allow us to determine the boundary and co-
boundary relations. For example, an arc is bounded by a point at each end and an arc is the
boundary between two areas. Note that the terminology used in this model is fluid, despite
atternpts to standardize some terms for the 2D case [USGS 1988]. As in the regular
tessellation, the primitive operations on the cells are provided in the model which are then
used by the higher level operations.
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4.2.3 Spaghetti

This is the simplest data model as it represents only points and lines without connections,
and does not have a concept of area or volume. The problem with this model is the inability
to deduce other interesting properties, e.g. the intersection of the lines cannot be
represented without recourse to the metric (coordinate) representation, which is an
approximation; point coordinate values are the result of measuring (which are subject to
errors) and computation (which accumulate rounding errors) operations. In this
approximation, we can not determine with certainty, if two lines intersect or not [Frank and
Kuhn 1986]. This data model is useful to represent the graphical renderings of geoscientific
maps, but it cannot help with many of the geometric and analytical operations.

4.2.4 Continucus Function

Phenomena like temperature, gravity field, topography, etc. are thought to be continuous;
there is a value at every point in space. The phenomena is represented by a mathematical
formula and is often a function of the position in space (x, y, z) and occasionally some
other parameters as well. Due to limitations of finite computer systems, this rigorous
approach may not be taken, and an approximate method of interpolating the value at the
desired point based on some measured discrete values is used.

4.3 Improvements

Moving away from objects we conceive as purely geometric, we can further structure space
by allowing some of the following ideas in the geometric data model:

* Aggregates: This refers to the building of hierarchies of objects, such that the aggregate
object contains the part objects. The concept is widely discussed in non-spatial context, but
we use it here as part of a spatial data model to imply that the aggregate spatially includes
the part.

» Errors and uncertainty: Data is known with a certain accuracy and precision. In fact, there
are different kinds of uncertainty in spatial data [Robinson and Frank 1985]. The specific
problem with geologic data, is that the precision may vary considerably from one data set to
another. It is desirable, if not imperative to preserve the precision and some indication for
other quality aspects for each data element [Goodchild and Gopal 1989].

* Variable resolution: Resolution contributes enormously to the cost of storing and
processing data. Thus representing data of low precision with high resolution is wasteful
but the high resolution is needed to deal with the precise data. Thus data structures should
be adaptable to the degree of precision of the data set. Quadtree-like structures have a
natural concept of resolution built in, which can be exploited to represent data with the
resolution needed. Similar ideas have been used for line data [Ballard 1981] and for surface
data [Dutton 1988].

» Multiple representations: The same object may be represented in various ways, using the
same or a different data model, depending on the task we intend to accomplish. It may be
appropriate to have more than one representation of the same object in a single system and
connect these multiple representations such that for each task the most appropriate one is
selected and that changes in one propagates into the other ones [Bruegger and Frank 1989].
This would lead to the notion that a system can contain more than one geometric concept
(and in consequence more than one implementation). Indeed in the 2D GIS, the unification
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of regular and irregular tessellation-based concepts, under the heading of integration of
raster and vector systems, is one of the most important areas of research [Aronoff, Mosher,
and Maher 1987; Ehlers, Edwards, and Bedard 1989]

5. Geometric Data Structures for Implementations

Geometric data structures are the specific implementations which provide the operation
demanded in the geometric data model using specific storage structures and algorithms.
From a conceptual point of view, all geometric data structures that implement the same data
model should be equal - they should offer the same operations and should compute the
same results. They may however differ in the amount of resources they utilize or the speed
of execution. In this section, we discuss some alternatives for geometric data structures.
Geoscientists should not concentrate on these aspects, but may want to understand the
methods employed. In general, computer scientists are working on such problems and need
from the application domain specialist, i.e. the geologists, only formal descriptions of the
problems requiring a solution [Buchmann et al. 1990].

5.1 Regular Tessellation

In 2D cases, a number of different regular tessellations have been studied [Diaz and Bell
1986], but very few systems use other than the square regular cell structure. In 3D
applications, only cube structures (the 3D equivalent of squares) have been widely studied
and used.

The major consideration for implementation is the use of the redundancy in the data to
reduce data storage and processing, without loosing resolution. This is even more
important in 3D than in 2D applications, as the amount of data increases even more rapidly.
To represent an area of 100x100 km and to a depth of 5000 m with a resolution of 1000 m
cubes, we need 50x103 cells; if we increase the resolution to 100m, we create 50x106 cells
and if we need a 10m resolution, then we will have to deal with 50x109 cells. It is
important to note that the Nyquist law applies here as well: no detail smaller than the size of
two cells can be included and we will have to filter with a high pass everything of higher
spatial frequency from the data. Thus finding the appropriate balance between resolution
and storage and processing requirements is a difficult task. The processing of the data, for
example in the 'overlay' operations is essentially linear in the amount of data stored; thus
increasing resolution does not only increase the storage requirements, but also the
processing time.

In a regular tessellation, we record the values for the properties we are interested in for each
cell. This contains considerable redundancies, as the auto-correlation from cell to cell 1s
very high; most of the time the neighbors of a cell contain the same or very similar values.
In order to exploit this characteristic, a method of run length encoding can be extended to a
3D structure: the cells are traversed in a row by row fashion and a sequence of values for a
property generated. This sequence will contain subsequences of the same value - these
subsequences are then replaced by a count and a single value. Algorithm to combine two
structures encoded in this form can be easily devised.

Another encoding method to capture large areas with similar values is based on guadtree
and its extension to 3D octree. The data structure is generated by the following recursive
procedure:
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procedure decompose(volume);
if uniform property value for volume
encode volume property
else
begin
split volume into octanis,
for each octant
decompose(octant);
end;
end decompose;

From a point of view of generalization, we can see that these methods are all variants on the
theme of:

1. Find a method to traverse the cells (e.g. row by row or in a "Morton' sequence for the
octree).

2. Identify sequences of similar values and replace them with a shorter mark, which
encodes the length of the run.

3. Encode the new sequence (e.g. as pointer octree, linear octree etc.).

The major criticism of these methods is their storage requirements. Despite considerable
compression, data sets of a realistic size for geological applications do become very large.
The octree is also not very suitable for fragmented ore body due to its deficiency in
modeling the boundary representation; being not invariant to translation and rotation (the
method uses approximations when converting to a boundary representation) made octree
implementation not suitable for surface analysis [Kavouras and Masry 1987].

5.2 Irregular Tessellation

In 2D, this is a method widely used with large number of commercially available
implementations. In a GIS, it is usually called a topological data structure, because it uses
topology and the 'boundary’ and 'co-boundary’ relations.

Two major variations exist in the present implementations of topological data structures.
First is the variation in the exact format that the boundary/co-boundary references are
computed, i.e. which ones are stored and which one is computed. The second variation is
the limitations and restrictions imposed from the most general cell model; while some
allows polygons of any dimension to exist, some require that objects must be triangulated.
The reasons for these differences lie in the problems of implementing this model, especially
dealing with the special cases.

We can allow or disallow curved lines between two nodes (or curved surfaces in the case
of 3D). This is not a limitation in concept but in the data model, because we can only
approximate curved lines and surfaces with an appropriate number of additional points.

The base operation in this structure is the intersection of cells. The problem is that,
intersection between whatever forms we allow must be computable and representable in the
same model:

» representable - in order for the model to be closed under intersection operation, the result
of the intersection of two object must have a boundary that is again representable in the
model. For example, a model must have provision for ellipse when allowing intersecting a
cylinder with an inclined plane.

« computable - the result of intersection must always be computable. This is not even true
for the intersection of two straight lines [Nievergelt and Schorn 1988]. Solutions require
some limitation in the original data, e.g. we can ask that two points are always sufficiently

11
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separated that an intermediate point can be computed. This is obviously limited to a single
intersection and must be tested again for the next intersection.

Conceptually allowing volumes of arbitrary shape is the most desirable as it imposes the
least restrictions on modelling; unfortunately it is impossible to implement in a pure form.
Simplifications are possible in different directions:

» approximation of arcs by straight lines and areas by planes or by class of curves. Splines
especially NURBS, are currently a popular choice. Important is that the class is closed
under intersection.

» the most general cell model leads to a large number of special cases, each of which must
be dealt with (e.g. a volume may contain a hole, which touches the exterior surface in a
point or an edge). This makes coding tricky and execution is slowed by testing for these
cases. One may restrict the complexity by disallowing holes or volumes with overly
complex shapes and forcing that objects are broken in similar parts. The extreme of this is a
triangulation model, where all volumes are constructed from tetrahedrons (the simplest
volume) [Frank and Kuhn 1986]. This model sidesteps ali the special cases and can be
implemented dimension independent - the same code works for 2D or 3D and does not
become more difficult for volume treatment. It can be based on a very elegant algebra, the
'chains', which is in its mechanics very similar to the manipulation of polynoms in regular
algebra, The cost for this simplicity is the increase in volume elements one has to treat ~ a
complex volume has to be divided into a number of tetrahedrons, which are then treated
individually.

Irregular tessellation models can be combined with concepts to represent non-manifold
geometry, which appear to be important for geological modelling.

6. Geometry in Geosciences
6.1 What is Geometry

It has been shown that there is more than one concept used to represent geometric facts and
geometric reasoning. We should now ask, what is the essence of geometry and how is it
used in geosciences. The different geometric data models represent different aspects and
depending on what aspects we model, one or the other problem becomes more easy to
resolve. We may follow the example of modern physics, where it was shown how
properties can be declared 'geometric’ (e.g. the distribution of mass) in order to make
formulae that describe other non-geometric aspects simpler (Lorentz's transforms).

In the last century, mathematicians discovered that there is not only a single geometry
(Buclidean ) but many different ones that can be constructed. It then became an interesting
problem to identify what makes a formal system become a geometry. Since the work of
Felix Klein [Klein 1872], geometry is predominantly seen as the study of invariant under
certain transformations [Blumenthal and Menger 1970]. The idea of transformation is
deeply rooted in the human conception of space, as the process of measuring distances,
areas and volumes is seen to rely on the comparison of unknown quantities with measuring
tools which are considered to have invariant size. Euclid's congruence theorems constitute
an early incorporation of invariance into geometry.

6.2 Geometric Concepts in Geosciences
At this point it seems appropriate to discuss the geometry we encounter in geoscientific

applications: what are the geometric concepts geoscientists use? It is obviously difficult to
do, for both the outsiders and the geoscientists themselves. For the geoscientists, these
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concepts are so familiar that they do not think of them in isolation, and for the outsiders, as

they observe the use of geometric objects, they may not understand the finer points of their
use.

‘The problem and the approach is similar to the discussion in [Frank, Palmer, and Robinson
1986], where the formalization of the spatial concepts useful for geomorphology was
attempted. The stress in that paper was to show, that methods can be formalized and formal
reasoning applied. It was argued that from such an approach, rigor in the analytical work
can be gained and the results made easier to compare, containing less subjective
interpretation. In geomorphology, a formal concept for the representation of the surface of
the earth is necessary. A triangulated surface representation was proposed, as this made
some definitions more intuitive, but a raster surface could have been used as well - with
differences in the definitions and the results. Remember that the formalization influences
the structuring and thus the way we conceptualize reality as we perceive it.

Geological work - from a layman's perspective - deals with processes in space and time.
The problem seems to be the construction of a plausible sequence of processes that would
result in a situation which corresponds to the observable facts. Note that geological
observations are very few and usually widely spread in space (and only a single point in
time). It has been said, that the geologic graphical products (e.g. geological maps and
diagrams) are difficult to read because they truly represent a sequence of processes but then

show only the last stage - and it remains to the viewer, to unravel the past [Simmons
1582].

The currently available applications of GIS technology to geology is similarly limited. It
becomes feasible to model in 3D and make these models visible in various ways, but we
cannot include the process that created the current situation in the model. Current GIS
technology does not include models of changes or processes nor do they include a notion
of time. Research in this direction is planned [NCGIA 1989).

In general, the formal descriptions of geological processes do not allow for inversion in the
time domain, i.e. we can not postulate a current situation and then solve for the previous
state. It is the geologists intuition and training that determines which sequence of processes
could have happened and what starting situation was appropriate. In a geological GIS, the
automatic inversion in time of geological processes is not necessary, but we need models of
processes such that a geologist can interpret a situation'and determine which sequence of
changes could have created it. This sequence can then be played forward and backward and
applied uniformly,

In an actual system [Pflug 1988], the concept of layers, overlaying and folding are
included. The modelling starts with a base layer and some assumptions of layer thickness.
This is then intersected with the observed terrain surface and produces a series of
geological maps; perspective views, isometric views of orthogonal sections and the
individual section. The model can be compared with the observed outcrops and duly
adjusted.

6.3 Data Models Revisited

Data models are more or less appropriate for geological modelling, depending on how well
they capture the essential aspects of geological spatial thinking, It is not necessarily the
most general model that is best. Two spatial concepts geologists seem to use often, namely
(1) boundary surfaces for volumes or discontinuity surfaces, and (2) layers of more or less
homogeneous material, can be used to construct a 3D models for geology.
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6.3.1 2% D Data Models

The previous discussion assumed a homogeneous and isotropic space; a space that has the
same properties in all directions and that is treated equally for all directions (or at least
close, as a regular tessellation has some preferred directions, but conceptually it tries to
mimic an isotropic space).

The object of study in geology, a thin layer on the outer rim of the earth is in most instances
more extended in 2 dimensions (x, y) then in the third one (z). It is therefore often
attempted to use a different data model for the 2 major dimensions than for the third one.
This is often called 2.5 D models and has nothing to do with Hausdorff or fractal
dimension, where 2.5 would have a different signification. Typically such systems
represent a 3D space with 2D surfaces, adding a third dimension to each node, and agree
on some interpolation method in between these points.

6.3.2 Layers

We could assume that the objects we deal with are layers which are relatively thin compared
to their horizontal extension and lay essentially flat. They lay one atop the other and the
boundary of one is also the boundary of the other. We could model these boundary
surfaces individually, but the model would then not contain an explicit representation of
volumes. To model volume but not going to a full isotropic 3D volume representation, we
may exploit the anisotropy in the situation. If the geometric data model is resiricted to
triangulation in the plane, we can use prismatic volume elements, allowing arbitrary cells in
the horizontal plane and vertical limits for the prism (Figure 3).

prism 1
prism 2
.. prism 3
prism 4

=

Figure 3: Prismatic volume concept.

¥,

i
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The prisms are each formed by projecting all layer boundary intersections to the ground.
On these areas of constant sequences of layers one erects a vertical prism. This is simple to
implement as there is only one geometric layer (in the horizontal plane) and z values to
define the intersection of the prism with the boundaries of the layers. The problem is how
to deal with deviations from the basic assumption in the model, namely layers which end,
and layers which fold over or fall in vertically. We may form aggregates from disjoint parts
of a layer [Carlson 1987].
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7. Future Research Needs and Conclusions
7.1 Geometric Modelling

Geologist often assume that the volumes they deal have well defined boundaries. This is
not only a convenience for their graphical representation but must also influence the way
geologists reason about them. One may build modelling systems, that include this ideal
property. On the other hand, geologic data is deduced from very few point samples and
other indices. The location of boundaries is interpolated between sparse points and often
not precisely known. A geological GIS could be built to allow uncertainty in the location of
boundaries and use this uncertainty to reconcile contradictory evidence to deduce better
data. Thirdly, the assumption of well defined boundaries for geo-bodies is not always
justified. Many phenomena geologist deal with are changing gradually in space and do not
have sharp boundaries. There is a need for modelling such situations.

Of course, some may wish to combine these three 'view points' in a single system, which
allows movement from one to the other freely. This may be a long term goal, but not
necessarily achievable today. First we have to understand and build individual systems,
each dealing with one of these aspects. Then we may be able to link them, such that
representations of a single object in one or the other are tied together and properties may be
transferred from one to the other. Ultimately one might construct a conceptual shell that
englobes all three ‘view points' in an uniform manner. The difficulty is not only in the
programming but also in constructing interfaces that are useful for geologists.

7.2 Process Models

A second line of extension of current 3D modelling tools is toward modelling of processes
important in geology. A static 3 dimensional view is helpful for geologist, but it appears
that most reasoning is in terms of processes, that change geometry.

One first thinks about elaborate tools that deal with folding of layers in full 3D, preferably
with attractive graphical presentations. This may be asking for much - given the problems
with representation of geometry discussed above - but simpler, less elaborate tools may be
feasible. If we assume that much of geological thinking is not dependent on the exact
location or extension of the bodies - and given our limited knowledge of their boundaries, it
cannot - but just on some of their special properties. Obvious examples are sequences of
layers, where the order of the layers is predominant and the layer thickness etc. is of less
importance and much more variable. This is in general terms a 'topological relation’, a
relation of sharing a boundary, and not dependent on exact measurements. Discrete
mathematics and especially symbolic reasoning can be used on such data to deduce
qualitative (not quantitative) results. Symbolic reasoning could be extended to include
qualitative formulation of processes on a level similar to the simplified block diagrams
included in geological texts.

On the quantitative and geometric side, one could include other properties, which must
remain invariant into the geometry. Obvious candidates seem to be constancy of volume or
mass, gravity as a dominant force, etc.

Crucial to all formulation of process is modelling of time in a GIS. Requirements from
geology are certainly different then say the requirements from the legal side to model
'property ownership' in time. Further study is necessary to determine which of the
different models is most appropriate [Barrera and Al-Taha 1990].
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7.3 Final Remarks

Geology poses very interesting demands of a GIS: modelling of geometry with uncertainty
and vagueness in the boundaries, modelling of time and processes etc. However, further
understanding of each of these aspects is required before integration of them is attempted.
On the other hand, results from 2D GIS and CAD/CAM and the systems that have been
constructed, are useful for geological applications.
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