Frank, A. U. "Requirements for Database Systems Suitable to Manage'
Large Spatial Databases." 26. Orono, Maine, USA: Department of Civil

Engineering, 1984.

Department of Civil Engineering

SURVEYING ENGINEERING

REQUIREMENTS FOR DATABASE SYSTEMS
SUITABLE TO MANAGE LARGE SPATIAL
DATABASES

Andrew U. Frank

Report No. 39

This paper was presented to the International Symposium on
Spatial Data Handling, held in Zurich (Switzerland)

August 20-24, 1984, "It appeared in the proceedings, edited
by - _

Copyright A. Frank 1984

University of Maine at Orono
103 Boardman Hall
Orono, Maine 04469

gruber
Textfeld
Frank, A. U. "Requirements for Database Systems Suitable to Manage Large Spatial Databases." 26. Orono, Maine, USA: Department of Civil Engineering, 1984.

REQUIREMENTS FOR DATABASE SYSTEMS SUITABLE TO MANAGE LARGE SPATIAL DATABASES

Dr. Andrew U. Frank
University of Maine
103 Boardman Haill
Orono, Maine 04469
U. S. A.

1. Introduction 4

Information systems dealing with data related to location
in real world space - here referred to as spatial data - are of
increasing interest today. Many operatipns of government of all
levels as well as planning and research éxploit data about facts
in relation to space. Such systems are:found under different
headings e.g. geographic information system, land information
System, multi-purpose cadastre etc. This paper concentrates on
general aspects of systems dealing with spatial data referred to
as "spatial informatien systems", without consideration for dif-
ferences between systems for differing purposes; an attempt for a
taxonomy is presented elsewhere (Frank, 1980). This paper con-
centrates on systems which store data with an exact reference to
location and describes geometry using points and vectors. We be-
lieve there are applications for such vector systems, especially
if one considers the storage necessary for raster based systems.
This is not to exclude systems of other types - there are obvious
advantages in raster operations for certain tasks - but they seem
to be substantially different and warrant a separate discussion.

Spatial information systems typically need large data
collections, stored in a permanent manner on mass storage devices
(disk) and accessing only small parts of these collections for
execution of a simple operation. Early in the history of data
processing users became aware of the similarity in their needs
to store data and retrieve them later for processing.. In lieu
of writing procedures for these functions for each application
anew, it was attempted to write a generally applicable program
to provide these services. The idea of {generalized) database
management system was born (CODASYL, 1962, 1971}).

These efforts came from the commercial data processing world
and were consequently oriented towards systems treating large
commercial databases., In the past research efforts have been
limited to commercial data collections and only in the newest
literature discussions of "non-standard" database applications,
1ike bibliographic databases, databases for Computer Aided
Design, Geographic, and Land Information Systems, have emerged
(Harder and Reuter, 1982) (Scheck and Lum, 1983). 0On the one
hand, research in the areaz of spatial information systems has
shown that functionality similar to standard database management
Systems 1s required. It seems that techniques used in commercial
database management could be beneficial (Frank and Tamminen, 1982).
On the other hand, researchers in database theory became interest-
ed in learning about requirements for non-standard applications,
Non-standard applications raise other demands for the data base
functions, and this paper will investigate into the specific re-

quirements for large spatial datahase,

It becomes evident that some of the decisions typically em-
bodied in a database management system depend on the intended
application area, and systems designed for standard commercial
applications are thus not automatically suitable for non-standard
applications. One conclusion from the discussion of two recent
international panels-on non-standard databases is the necessity
to construct database management systems as toolbexes from which
an application can select building blocks precisely suited for
its needs. This not only to assemble;the functions the applica-
tion needs, but also to select suitable implementations of these
functions, and finally to exclude unnelessary functions which only
add to the complexity and the cost of,ghe application.

_ As a framework for insuring compatibility between the build-
ing blocks,we use a hierarchically layered model, similar to the
widely accepted model describing communication between computers
(ISQ/TCY7/5C16). ' '

This paper is the Tesult of several years' work dedicated to.
applying the database concept to spatial data handling at the
Swiss Federal Institute of Technology Zurich and now at the Uni-
versity of Maine at Orono. The ideas reported here are based on
experience with the PANDA database management system we built
(Frank, 1982a), and reflect either methods successfully implement-
ed, or are a critic of methods which did not work and will be re-
placed in the future.

2. Reasons for using database management systems

The generally cbserved trend away from batch processing to-
wards interactive, dialogue oriented applicaticns changes the re-
quirements for data storage: Many application programs access
parts of the same data files in an unpredictable order. Users
increasingly demand immediate access to large data collections.

Data collected in a database are valuable as much effort is
necessary to collect and insert the dats in the system and keep
the data updated. These data must be available for a long period
of time to justify the expenses, and obviously new, not foreseen
changes in the application will occur during the lifetime of the
data.

Under these circumstances the traditional simple file struc-
ture designed to facilitate a special application can not do any-
more. Storage structures for multiple access, however, are com-
plicated to program, and it seems inappropriate to repeat this
effort over and over again.

A database management system should provide the following
functionalities:

- Storage and retrieval of data; selection of data using
different and varying key fields.

- Standardizing access to data and separating the data sto-
rage and retrieval functions from the programs using the

data. This makes database and application programs in-
dependent of each other, and changes in the one do not
necessarily lead to changes in the other. This indepen-
dence is important in order to accomodate the changes
during the lifetime of a database.

- Interface between database and application programs should
be based on a logical description of the date and not make
any detail of the physical storage structure visible to
the applications. .

- Making access functions in applications independent of
the physical storage structurel-so adaptations to expand-
ing storage needs do not influence the applicatien pro-
grams.

- Allowing for access to the data by several users at a time.

- Providing for the definition of consistency contraints for
the data which will then be autematically enforced. Con-
sistency constraints are rules which must hold for all
data stored,and are an excellent technique to reduce the
number of errors in a large data collection.

For a slightly different, more elaborate list sce (Codd, 1882}.

Access to data should be possible both from a high level lan-
guage and from a userfriendly query language. The intergration
of the database manipulation commands in the high level pro-
gramming language is crucial to ease of use and can help to avoid-
hard-to-track bugs. A free-standing query language is helpful
for casual users to retrieve data fraom the database to answer ad-
hoc questions without any formal programming; this makes the data-
base usable for one-of-a kind question.

All these basic requirements are valid for commercial data
processing as well as for spatial data collections. However,
- the details of the requirements, especially for treatment of
geometric objects and for production of graphical output are
new to the database world.

3. Method

The framework for this study is a hierarchy of modules, each
providing certain types of services or functions to the mnext
upper laver. The lowest layer is directly related to the services
provided by the operating system whereas the top layer provides
services to the human user.

The bottom layers store data using the operating system for
accessing the file system; these layers are mzinly concerned
with improving the performance of access to data by clustering
techniques and buffer mandggement. Services offered are 'store!
and 'retrieve' operations for data elements (records) using in-
ternal keys.

The next layers will provide essentially the same operations,
only making them secure., Transaction management defines at the

end of a successful transaction a point where consistency con-
straints are checked. Changes in the database are guaranteed
against loss or interferences with other Users.

The third layer adds different types of access methods, e.g.
access to data based on a key value or spatial location.

The fourth layer offers a logical structuring tool for the
data and manipulations based on this logical schema. These ser-
vices are then offered as extension to a high level programming
language or an independent query language.

4. Assumptions

This paper is - like most papers - based on a series of
assumptions. Some of them should be made explicite in order to
prevent confusion of the reader.

4.1 Technologz

The discussion in this paper is based on today's technology
which may be more advanced than found in some installations.
However, we exclude all experimental hardware. '

Processor: We assume a VonNeumann hardware architecture and
exciude futuTe parailel multiprocessor hardware. The extent to
which this can be beneficial to database operations seems to be
in dispute (deWitt and Hawthorn, 1981).

Storage media: We assume use of main storage (formerly
"core") directly accessible by the processor, and separated slow-
er mass storage. Data on mass storage is only accessible after
transfer into main storage. -Access to data on main storage is
much slower than to data stored in main memory {access times in
the range of 10,000:1), and access is in larger chunks,
with access time essentially constant and independent of the
amount of data accessed.

Distribution of processing: Data stored on a central computer
may be transferred for use 1 an "intelligent' workstation having
its own processor and program. We will exclude from the dis-
cussion the distribution of the storage of data on several co-
operative computers. It seems that the basic problems of such
arrangement have not yet found sufficiently general solution
(Lampson et al, 1981},

Software technology: The considerations discussed in this
paper are based on current programming techniques, using modern
transportable, high level language.

OQur implementation is all done using Pascal and a precompiler
to facilitate modular programming and providing transportability
of code to different hardware (IBM 370 VM/CMS, DECsystem-10,
PERQ) .

4.2 Application area

Size of the data collection: A spatial information systenm
usually contains a Iarge collection of data. Specifically, we
assume that the size of the data collection is too large te fit
in the main memory and must bhe kept on a mass storage device.

Number of different data types: It is assumed that the data
consist only of a small number (<1000) of different data types,
of which a great many of instances are stored.

Many applications: We further assume that the data stored
will be used for a mumber of different applications.

These three assumptions are typical for the application of
database software. In other cases simpler, cheaper or hetter
adapted solutions are sometimes available,

Spatial data: A spatial information System typically stores
data with known relations to Space, and the treatment of data
makes use of these spatial relations. The position in space is
expressed as coordinate values in a given coordinate system.

Geometric data in vector form: Part of the data in spatial
information systems describe geometric form and extension of ob-
jects in space, and the processing often explores geometric pro-
perties, and the rendering of results in form of maps is common.
Geometric forms are expressed using vectors between known points,

Interactive retrieval for map presentation: In order to
draw a map on an interacti

1ve terminal screen, a large number of
data elements (records) must be retrieved. Estimates from count-
ing point densities on produced outputs are over 2000 records,
mainly point and line records, but also many different records
describing the visible units (e.g. house, village and road des-
criptions). Retrieval of all data necessary for a map should be
Completed within 20 seconds, preferably faster to allow for truly-
interactive work.

5. Requirements for the Data Storage Layer

- This layer interfaces with the actual storage operations pro- -
vided by the operating system. Its main purpese is to improve
speed of storage and retrieval., The requirements for this layer
result from the maximum delay we allow for the drawing of a map
On & screen. Some tests show that about 2000 data records are
hecessary for a drawing: in order to retrieve them in 20 seconds,
average access time for a record must be less than 10 msec.
Access times to physical storage on disk including overhead of
operating systems are in the order of 50 to 200 msec. Therefore,
this layer must reduce the number of physical accesses necessary
;o retrieve the records for the map. Two basic techniques are

nown:

- clustering of data
- buffer management

It is desirable that the interface to the operating system

be simple and only use standard functions found on many operation
systems {read and write to random access files). This will make
transporting the database management system - and the application
using it - much simpler: However, it must be noted that some of
the methods used in operating systems to improve performance of
disk operations are detrimental to database access times, and it
is advantageous 'if low level direct disk access operations. can be
used.

5.1 Physical Clustering

A physical access to the disk brings in a larger chunk of
data, usually called a disk page. If we can arrange our records
on disk pages in a way that each page contains several data re-
cords necessary for the map drawing, this scheme will reduce the
number of physical accesses to disk pages by the average number
of useful records per page.

This is feasible in all cases where a reasonable prediction
of what data will be used together is possible. These data are
then stored together and form a physical cluster (Salton and
Wong, 1878). Fortunately for spatial retrieval for map drawings
such predictions are easy, based on vicinity of objects. ' For a
map we retrieve data from objects situated within a certain area,
If we retrieve a data element of an object, chances are good that
data from other objects in the vicinity are needed next. If
such data are clustered together and retrieved with one physical
acCess, we can achieve the goal of Tetrieving a map within a short
time span, permitting interactive work.

A database system for spatial data must at least provide for
physical clustering of data (typically a command like 'STORE NEAR x"
where X is an already stored record). . This requirement excludes
many of the simpler relational database implementations, where
the physical storage is directed by the primary key and can not
be influenced by the user. It seems also advantageous, if data
from different types (e.g. houses, roads and rivers) can be
stored on the same page and do not necessarily require different
physical accesses.

However, it is neither necessary nor desirable that physical
clustering be visible on the level of the user interface; it
should rather be used internally for fast spatial access and be
of no concern to the user. ' :

5.2 Buffering

Many programs show a locality of access, using the same data
elements repeatedly over a short period of time. If these data
elements can be kept in a buffer, the number of physical accesses
to a slower mass storage device can be reduced: for each data
element only one access to the slower device is necessary, and all
following requests are satisfied using the buffered data. This
strategy is generally employed in computers (virtual memory,
cache etc.),

A database usually contains a single level of buffering for
pages brought in from the disk. This is indispensable in order

to exploit a physical clustering of data on the mass storage de-
vice,

Programs dealing with spatial data typically show much lo-
cality of access to data but use a large working set (all the
records for a map drawing). This is especially important for
interactive programs. Users tend to work in an area for several
interactions before they request another base map. Very often
they ask for an overview map first, zoom then in on a detail of
interest and start work on this.

In our experimental database management system PANDA we in-
cluded a second level of buffering for single data elements. We.
currently set the size of this buffer to 3000 records, which allows
us to keep a complete map drawing in buffer. Redrawing of a map
does not require any additional physical accesses and is in con-
sequence very fast.

We found that this concept has considerable influence on the
programming style of an application: no attempts to keep data-
base data stored in program variables are made since a second -
access to.data is always very fast. For example, we do not use
linear display list but produce graphics directly from the data-
base records.

A database management should include utilities to determine
optimal buffer sizes, according to a task.

6. Requirements for data security

The services offered in commercial database management sys-
tems are generally sufficient. However, many of the sytems for
use on smaller micro-and personal computers, as well as the Sys-
tems specialized in geometric and geographic data, do very often
not provide the functionality necessary to manage large data
collections. over long periods of use, s

The layer in this paragraph will not add substantial new
functionality but increase security of operations. Most of the
functions in this layer will reduce performance - that is the
price we have to pay for the security gained ("there ain't such
a thing as a free Iunch!"}. ' '

6.1 Transactions

The contents of a database must fulfill some constraints, so
called integrity constraints which help to guarantee long term
usability of data by detecting clearly erroneous data before they
are stored. To this end, a user introducing changes into a
database starts a transaction and then changes the data records
affected by these updates. All these changes are of a tentative
nature until the user finally confirms them. Then the system
checks that the new or changed data do not violate the integrity
constraints. Only after these checks the changes are posted to
the data collection as a permanent update. Each transaction leads
the database from an initial (congistent) stare to a new, again
consistent, state; in this manner it is virtually impossible

that the database becomes inconsistent. The transaction concept

is also very convenient for the design of interactive update
procedures - the user can do all his intended changes and still
have the option to abandon the changes completely.

6.2 Concurrent users

Large data collections are powerful but costly resources
which must be put to their best use. In many cases more than
one user must be able to access the database at a single moment
in time. This is not very difficult as long as all users only
retrieve data, but it becomes more dangerous if one or more users
need to introduce changes in the database. If po special pre-
cautions are taken, a change from one user may wipe out a pre-
viously introduced change by another user or changes from dif-
ferent users may interfere and produce strange and unforeseeabhle
results. It is insufficient to rely on manual procedures which
are not integrated into the database management system as they
are currently recommended for some graphical data management
systems. Automatic control of concurrent use of a database is
based on the transaction concept: the effects of a change are
made visible to other users only at the end of the transaction.
Concurrent users never see the effect of an incomplete trans-
action and interference between twoc concurrent users is resolved
at the transaction level (Kung and Robinson, 1981). :

6.3 Security against loss of data

Large collections of geographic or administrative data are
valuable assets and must be guarded against loss. Even if the
information is parallelly maintained in other, traditional forms
(registers, maps, etc), the cost of transferring this informa-
tion inteo machine readable form is considerable. In order to
avoid such costs, it is necessary to protect the stored data from
loss due to errors in operating or malfunctioning of hard-or
software.

In order to determine the appropriate measures, we must
access possible damages from loss of data (cost of reentering
data, cost associated with interruption of operations etc.) and
balance them against cost of operations to prevent such losses.
It is generally assumed that most commercial operations place more
importance on uninterrupted operations and, in consequence, very
involved but secure schemes have been devised. In our arca of
application, lower levels of security may be acceptable, but as
a minimum requirement a mechanism to prevent loss of data must
be in place.

in all cases where more than just infrequent changes are
made, the mechanism should include the updates of the database.
A change the user has committed and the confirmation Teceived
from the database must not be lost any time later, independent
of any interruption by hard-or software problems. The trans-
action serves here as the unit of recovery: uncommitted changes
may get lost but committed and confirmed ones are permanent,

It is customary to distinguish two types of problems:

Interruption of the database management program due to op-
erating errors, or problems in the operating systém or the hard-
ware. Such interruptions occur on most installations quite fre-
quently (one per day .. one per week). During such ‘events all
contents of main memory are lost and it is therefore necessary
to write changed data to permanent mass storage before confirma-
tion of a transaction. '

Loss of the storage media, again due to errors in operations
or hardware defects (the so called "“head crashes"). Such problems
are usually very seldom (once a year) and slower procedures for
recovering are acceptable, Traditional data processing used the
"two generation" system, keeping the copies of data on magnetic
tape for at least two previous defined states and for all updates
in. between. A similar method is applicable to database manage-
ment: the database is copied to magnetic tapes in regular inter-
vals and all changes between the copies are not only used to change
the database but also written to an additional log file (in fact
they should be written to the log file first).

6.4 Protection against unauthorized users

Some databases will contain confidential or secret informa-
tion, and it is necessary to protect it against unauthorized
users - more often against reading but also against changing the
data. The requirements will vary greatly:

- keeping unauthorized users from accessing the database, a
service the operating system should provide;

- making only certain parts of the database accessible to cer-
tain users - different methods are known and used, providing
varying levels of ‘selectivity in access and security.

- restricting the user to generalized information only and pre-

- venting direct access to individual data - most of the known
~ Ssystems have been proven insufficient, and the proposed me-
thods are extremely involved (Denning and Schlorer, 1980).

7. Access methods

The layers discussed so far provide storage and retrieval of
data using an internal identifier (database key) which is assign-
ed to a data record when it is stored first. The record itself
is considered by these methods as an uninterpreted fixed amount
of bytes which are stored and later reproduced. For non-standard
applications it is especially important that the storage system
does not depend on interpretation of the data stored because this
would limit the flexibility of arranging information in a record
and produce undesirable dependencies between the different layers
of the system. The database subsystem of a larger application
must handle arbitrarily structured data records without depen-
dency on their internal structure. The often provided records of
one hierarchical layer composed of the basic data types, i.e.
integers, reals, and strings, are not even sufficient for com-
mercial applications, as examplified by numerous extensions
offered (datatypes for money, date etc.}. The access methods
discussed in this section use parts of the data stored in a record;
in order to achieve independence of the data description, the
defining modules must export access functions to the relevant

data elements which are then used for the access methods.

It may be pointed out that we describe here logically defined
methods for accessing data. An implementation must include al-
gorithms and storage organizatioms in order to realize these
methods and achieve fast responses.

7.1 Access by uniqué key

Users often need access to data records based on the value
of one or several data fields (key fields). This requires in
the simplest case that the stored values for these fields be
unique, so that given values unequivocally identify the desired
record. (This will be a consistency constraint of the database).
It is generally necessary to be able to define more than one key
for a record, so the record can be found using either value (e.g.
number or name).

7.2 Access in hierarchies

Very often values identify an entity within one area, and
the same value can be found in another area again, This typically

lappens in a hierdrchy such as state, county and town. ‘T¢ fully
identify an entity, all values must be given and only their com-

bination must be unique.

7.3 Generalized access

We found that human users very often use names that are
'nearly' unique: names of towns or names of clients are almost
always unique, but in special cases some additional information

1s necessary to identify the desired entity (e.g. the county of
a8 town or the address of the client). '

By the same token, we also allow for defining more than one
key value for retrieving the same entity. - In our PANDA data-
base management system this access method was implemented and it
seems very helpful to treat a common situation adequately,

7.4 Spatial access

A greal deal of data in a spatial information system sre
related to objects in space. For these objects location and
extension are known. Many applications need access to data
based on location (Burton, 1078). This is obvious for all re-
trievals in order to produce a map: all objects within the map
frame must be retrieved and then graphically rendered. Similar
accesses are necessary for internal operations to check incoming
geametric data and for geometric manipulations of stored data.
Spatial access to data is based on a query of the form:

Retrieve all <object-type> within <areas,

where <area> is the description of the area of interest. In .
order to provide a general efficient function, it seems appropriate
to reduce <area> to a rectangular box parallel to the co-
ordinate system. More specific requests are then treated in two
steps: in a first step all data within the rectangular envelope

of the area are retrieved, and the more expensive, exact sel-~
- ection process is done in a second step only on the data passing
the first test. ’ :

The result of such a retrieval may be a large number of ob~
jects; a map drawing in the size of a CRT is, in our estimation,
composed of 2000 .. 3000.objects. For an interactive application
these data must be retrieved and displayed in a few seconds.

This is only possible if a special data structure has been built
before - sequential scan of the complete database takes much too
long. Second, the data necessary must be physically clustered on
the disk and accessible with a few disk access dperations (if
each object would be accessed individually, approxXimately 2000°50

msec = 100 sec ppuld be required).

- In simple words, it is necessary to find a mapping from real
world space to the linear storage space, preserving vicinity,

[~
SNV VA BN

- e [T

regular distribution of clusteredasxqragqﬂpnﬁdisk
data on disk . ' :
—> many accesses -> few accesses
-> slow response —» fast response

figure 1

Only a few data structures are known to permit fast response
to this type of two-dimensional range queries. They are all
based on self-adjusting partition of space and clustering data of

in many entities useful for producing the requested map (Nievergelt
et al., 1984) (Tamminen, 1982)}. The method described in-
(Nievergelt, 1984) is an adaptation of a more general hash based
structure for storage of multidimensional objects. It turns out
to be very similar to the method we have developed (Frank, 1981)
and refined during the last few years (Frank, IQSS).

This speeds up the retrieval of map output - all objects on
& map are close to each other, and it benefits many other forms
of geometric data processing. We can thus exploit the specific
geometric locality of access observed in most algorithms of com-
putational geometry (Dutton, 1978). '

In the FIELD TREE method clustering is net only guided by lo-
Cation and extension of objects but includes alsg a component of
-level of importance of an object. This speeds up responses to
_"overview" requests {small area, all objects). Response time for
queries is linearly dependent on thée number of objects retrieved.

Other influences are the size of the area of the query and the
number of objects stored for this area. The total number of ob-
jects stored in the system has no measureable influence on re-
sponse time.

The traditional approach found in many of the systems on the
market is to divide the world space into map sheets (sometimes
called 'facettes'), and to store the data of these map sheets as
individual files. The amount of data within such a file is then
small enough to permit the use of linear search methods. This is
in our opinion insufficient for the following reasons:

- the granularity of access is fixed and gives fast access
only if the query area is comparable to the sheet size;
for queries about much larger areas response is slow
since many different files must be opened and read in;

- access to more than one sheet requires recombination of
objects at the sheet borders. This is a complicated and
time consuming operation and only possible with under-
standing of the internal structure of the representation
of the objects. Thus the types of geometric objects
treated are defined in the storage layer, and it is
difficult for a user to add new geometric object defini-
tions;

- most systems do not hide the sheet decision from the user,
nor do they provide a query language working automati-
cally across sheet boundaries. It seems acceptable to
ask draftsmen to know which map sheet they update; it is
however clearly inappropriate to require this knowledge
from a casual user needing a thematic map.

8. Datamodels

- A data model provides a method to describe the data necessary
for an application domain. It must contain tools to describe
the entities and the relationships between them in a structured,
(semi-) formal way.

Often users will be forced to use two different data models:

- a very high level model, which contains tools to integrate
many of the semantics of the data for the design of the
database, and

- a lower level model, used with the database management
system.

In this section we will briefly discuss requirements for the
data model used for design. It is then important to check that
the data model used with the selected database management system
can render the situation expressed in the design data model ade-
quately, and rules for translating constructs from the one to
the other must be established.

As was stated befdre. a data model must provide tools to des-
Ccribe the situaticn as accurate as possible, following the cir-

cumstances we find in the real world. At least in the phase of
the design of the database we should not consider aspects to

facilitate data processing, but strive for a picture of the real
world as correct as possible.

The task is similar to problems treated in Artificial In-
telligence, there labeled 'knowledge organization'. Three funda-
mental conceptual tools for abstraction have been identified,
namely:

- classification: forming a group of entities with the same
properties

- aggregation: combining several different classes to a new
one, and

- generalization: extracting from several different classes
& more general one (Smith 1977) (Mylopoulos, 1980).

, Most data models provide tools for classification and aggre-
gation, but generalization is often lacking,

We use currently a System related to the entity-relationship
model (Chen, 1976), stressing graphical, visual aids to make the
data structure easy to see. Our method is based on entities,
attributes, and relationships (sets) between the entities, com-
parable to many other data models proposed in the literature.

- We extended this model with generalization to be able to ex-
press adequately the relationship .between €.g. a 'straight line',
an ‘'arc of circle' and the general concept of 'line'. This has
proven to be a very important and -often used concept and should
be included in any method te design software (Borgida, 1984).

NODE STREET PERSON

nr : . name name
coordinates - address
\; , HOUSE
EDGE ' nr VY
SHARE
STRAIGHT part

PARCEL |
ARC identifier
parameter 13 use
EDGE- |- :

[FREE- ForM] IN-NET

figure 2

In figure 2 we show a simple example of a schema using our schema
design method (Frank, 1883a) .

We use the same data model in the PANDA database, and only
minor changes are needed from the design schema to the imple-
mentation schema.

It is possible to translate generalization to datamodels
lacking this concept, but this results in more complicated schema
and programs which do not naturally express their intents. It
seems desirable to use high level programming languages which can
support generalization, e.g. Pascal using records with variant
parts, or languages that are based on generalization and inheritance
(Simula, Smalltalk (Goldberg, 1583)),

9. Abstract Data Types

Some data models provide only one level of aggregation (re-
cord) and only the base data types found in most programming
languages (i.e. integer, real, character string). This is clear-
1y insufficient for mon-standard applications like spatial in-
formation system. We encounter typically new datatypes like:

- values with associated error estimates
- points described by several coordinate values
- lines described by a sequence of points

and it is desirable that we can use the concept of 'Abstract
Data Types' to design our software (Parnas, 1972) (Guttag, 1977).
An Abstract Data Type is a package which contains a data struc-
ture and operations on this data structure. Such a package can
be abstractly specified without discussing the implementation
just by stating the results of applications of the operations.
Application programs are only allowed to use the operations de-
fined to manipulate these data and must never make use of special
not specified properties of the implementation, nor directly
access or change these data.

This technique for software design and programming carries
considerable advantages since small, self contained and easy-to-
test programs may be written, each embodying one single idea. It
minimizes the dependencies between different parts o% a progranm,
and therefore simplifies software maintenance and improvements.

Such an abstract data type can, for example, be defined and
implemented for chain encoded lines and should support operations
like:

- vector to chain encoding and reverse

- display routines for different cutput devices

- detection of intersections of such lines, etc.

If the database supports abstract data types, these encoded
lines can be stored, retrieved and connected to other entities in

the database, without any special programming.

This example shows clearly that generalization is advanta-
geous, as such chain-encoded lines are just a special form of
line (others being e.g. straight vector, arc of circle), and it
is easier if on a higher level of programming we can use the same
operations for all these lines, completely disregarding the spe-
cific form of storage. A generalized Abstract Data Type ‘'line’
will then offer the operations:

- display line
- detection of intersection of line

and internally select the correct algorithm for the representation
at hand.

10. Special treatment of geometric data and their consistency
constraints

‘An example how abstract data types help to treat geometric
data was given in the previous section. Using abstract data
types and generalization it is possible to build a complete pack-
age of routines to treat all sorts of geometric data.

In (Cox and Rhind, 1980) (Burton, 1979) examples of geomet -
ric data types , defined as abstract data types, are described.
These proposals must be carefully revised to see if they can be
applied to a certain problem domain. Special attention should be
paid to treatment of the inevitable errors associated with mea-
suring. :

Using these basic building blocks more ‘complex structures
can be built, including polygon and network/partition structures
{(figure 3). . :

e ‘ 1

OO]
]

figure 3

These structures do not only contain metric information on
the position of the points and the form of the Tines, but also to-
pological information on the connections between the points and
on which areas are adjoining. Certain types of applications make
explicite use of toplogical structures (e.g. shortest path de-

tection), and new abstract data types must be formed to treat such
objects.

Two aspects must be included in the definition of these ab-
stract data types which make them somewhat different from other
areas of application. :

Graphic rendering: For most objects treated in a spatial
database, operations for graphical rendering on a map must be in-
cluded. First, this entails the connection of the database mana-
gement system to the'graphical output system. Our studies of
existing graphics packages and the operations they offer, reveal
two problems:

- they offer some, relatively primitive data structuring
tools (e.g. segments (GKS 1984)), which are not suffi-
cient to represent topological or other typical informa-
tion structures, but are complicated and costly to use.

- they offer only few functions useful for cartographic
applications, and most operatiomns necessary for produc-
tion of maps are either missing or do not provide the
quality required {e.g. line styles).

It seems that a thorough investigation into the graphic
operations necessary for cartography is inevitable. We con-
cluded that we rather build our own library of graphics proce-
dure and use directly the data in the database without additional
storage. However, graphical output operations can not be in-
cluded in the operations of an abstract data type of a stored
object (e.g. a house, or a country) as the graphical rendering
of the geometry of the object is subject to changes according to
map style and scale. An additional mapping of geometric ob-
jects to graphical output is necessary.

Consistency constraints: For every large data collection
intended for long term usage controls to check all incoming data
must be installed. Without such checks in the long run small
-errors will invariable creep in and make the data collection
worthless. Obviously no computerized system can check whether
the data entered are correct (i.e. conforming to the exterior

reality) or not, but we can at least make sure that the new data
- follow some pre-established rules and do not contradict data al-
ready stored. Internal contradictions in the data do not con-
tribute to the confidence the users have in the answers they re-
ceive from the information system. All inconsistencies can cause
problems when algorithms rely on certain conditions in the input
data, and behave unexpectedly if the input data does not conform
to these rules (e.g. exit of the program, loops, etc.). Al-
gorithms may of course be written in crder to guard against the
most disturbing consequences of such inconsistencies, but in
general it is not possible to produce the correct result (e.g.
what is the area of the figure 47).

figure 4

The rules that specify conditions the data must fulfill are
called integrity or consistency constraints. They may come in
different forms, e.g. specifying a range for a value like "the
age of a person is between 0 and 120 years", or more complex,
"the boundary polygon of a county is closed".

Integrity constraints for geometric descriptions are usually
more involved and not easy to formulate. On the other hand,
their violation - especially that of topological comnstraints -
can not be forgiven by most exploiting programs. The U. S.
Bureau of Census, which holds probably the largest collection of
topologically structured spatial data, has spent considerable
effort to install checking procedures for DIME files {Corbett
and Farnsworth, 1972) (Cranford, 1978) (White, 1984).

We generalized this topological approach to several different

geometrical structures (some examples given in figure 5) which
can be characterized by few topological conditions (Frank, 1983).

vl

ot

a) connected, planar, b} connected, planar,
no cycles some cycles

e O

c)not connected, d)not connected,
planar, not planar,
all cycles . all cycles
figure 5

Figure 5a, forms a 'tree' and there are no cycles, but all edges
are connected., In contrast, in figure 5c all edges are part of
cycles, but the graph is not connected.
Tentatively we use the three conditions
- connected - not connected

- all cycles - some cycles - no cycles

- planar graph - nonplanar graph (i.e. edges may/must
not cross).

This seems to cover at least a large class of applications.

In an interactive environment it is necessary to check these
conditions after each change that affects the topological struc-
ture, at least for the entities affected. At the moment we work
on improving the efficiency of these checks.

11. Interactive Query Language

The discussion so far has described design criteria which are
primarily important for the programmer of application programs,
and determine the effort and cost involved in designing, program-
ing, documenting and maintaining applications dealing with spa-
tial data.

Often users need answers to relatively simple problems, but
they do not have the time or the knowledge to write special pro-
grams in a high level programming language. In such cases an
interactive query language can provide a method to express a
simple information need in a language easy to learn and to get
an immediate answer. Interactive query languages are the casual
user's key to the wealth of data stored in an information system!

Interactive query languages are available for most commercial
database management systems. They are widely used, and several
studies were made to determine their Telative user-friendliness
(Reisner et al., 1975).

They are usually based on the relational data model, and
provide a method to select the data the user is interested in
using some form of predicate calculus. In figure 6 a typical
formulation in SQL (Chamberlin et al., 1976) is given for
illustration. o

- SELECT StreetName, HouseNr
FROM House
WHERE HouseNr = 20
AND StreetName =
SELECT StreetName
FROM Street
WHERE . StreetName = 'Main Street!

figure 6

Second, they provide some mechanism to describe the form the
answer is desired in; this part of the query specification is
usually not given by the user and default values are used. The
output is in all systems a list, some more advanced programs also
offering simple forms of graphics.

Commercially oriented systems do not provide any methods to
retrieve data, and have them presented as a map. They may be
marginally useful for retrieval of spatial data in alphanumeric
form, but can not fulfill the requirements of a user of a spatial
information system.

Essentially the same functionality is necessary for an inter-
active query language in a spatial information system, but input
and output must be possible in form of map drawings., In (Frank
1982b) we present the design of MAPQUERY, a query language for
retrieval of spatial data. In the meantime it has been imple-
mented (Eggenhofer, 1984).

The following special problems, added to those addressed in
alphanumeric query languages, had to be solved:

= selection of data: it is not sufficient in most cases
just to retrieve the data element the user asks for, but
sufficient other data must be retrieved and rendered to
build a context within which the user's data may be in-
terpreted. The context can be either explicitely select-
ed by the user or it may be a named standard context.

- selections of a map window: it is necessary to deter-
mine the area which must be shown (and for which the con-

viously drawn Map, or selected by the system in order to

dccommodate the object the user has selected (e.g. a county,
a house, or a Street).

- defining the map symbols to be used for representing the
data, Usually the user will be content with some stand-
ard lists of conventional signs, but in certain cases the
graphical differentiation based on a selected attribute
and value will be necessary {e.g. show all houses of a
town with different crosshatching depending on age),

- input of selection Criteria using a pointing device and
the map resulting from the previous query,

The implemented prototype proved feasibility of the idea.
Inspection of the code - approximatively 5000 lines of Pascal -
reveal some points warranting closer scrutiny before a new im-
Plementation is started: :

- the information on the data structure in the database
ust be accessible to the query language program (it is
advantageous to make it generally available).

- more descriptive information on the data structure, in-
cluding geometric Properties etcy, should be Present in
the database.

- advanced forms of mappings from the conceptual schema
used for the database design to the partial and simpli-
fied schema (user view) the user needs for formulating a
query are necessary; such mappings must include simpli-
fications of the geometric structures internally used to
a single attribute "geometry" in the users view,

1

12, Conclusions

Database management systems offer many advantageous pro-
perties over traditional file structures:

- increased modelling power to better render the data
Structure of the application area;

- use of data by several users at the same time, and for
many different applications;

- easier maintenance of programs and faster adaptation to
changing requirements.

To apply the database concept to spatial data collections
seems the only way to realize more complex multi-purpose spa-
tial databases. . However, many of the database management sys-
tems available were designed for commercial applications, and
aré not well suited for the management of spatial data.

This paper has drawn a framework for discussion of the im-
Plementation of a database management system, and enumerated
features important for spatial data bases:

- In order to achieve fast response time, attention must
be paid to the physical clustering of data on the stor-
age device;

- the bﬁffering schema must allow to hold all data necessary
for a map drawing to avoid repeated reads from the storage
device, ' :

- consistency constraints are rules describing properties
of the data which must heold always, and which are en-
forced automatically. Consistency constraints must in-
clude descriptions of the geometric properties of the
data. This reduces errors introduced in the data collec-
tion and makes data collection usable for a long time,

A database management system especially suitable for spatial
data handling has been built to show viability of the solutions
proposed. Building a database of sewer line data on & personal
computer (PERQ workstation), including graphical interaction, was
then easy. Presently we work on improving the modeling of geo-
metric data structures and operations for cartographic rendering,
independently of application area.

Most database management systems offer an interactive query
language to retrieve data from the database without formal pro-
gramming. A similar feature for spatial databases, including
cartographic output, has been shown feasible. Such query lan-
guages are invaluable tools for casual users to exploit the
wealth of information collected in a database.

BIBLIOGRAPHY

Burton, W., 1978. "Efficient Retrieval.of Geographical Informa-
tion on the Basis of Location". In (Dutton, 1978).

Burton, W., 1979. 'Logical and Physical Data Types in Geographi-
cal Information Systems". Geo-Processing. Vol. 1 p. 167.

Borgida, A., T. Mylopoulos and H. Wong., 1984, "Generalizatien
as a bases for software specification". In M. Brodie et al.
(Eds}. Perspectives on Conceptual Modeling. Berlin Springer.

Chamberlin, D.D., and et al., 1976. "Sequel 2: a unified approach
to data definitions, manipulations and control'. IBM
Journal Research and Development Vel. 20 p. 560.

Chen P., 1976. "The entity-relationship model: toward a unified
view of data'. ACM Transactions on Database Systems.
Vol. 1 p. 9.

CODASYL, 1962. '"An Information Algebra, Phase I report",
Commun ACM Vol. S5, p. 190-204.

CODASYL, 1971. Data Base Task Group (DBTG) Report, 1971,

Codd, E.F., 1982. "Relational Database: A Practical Foundation
for Productivity". Commun. ACM. Vol. 25 p. 109.

Corbett, T. and G. Fransworth, 1972. "Theoretical Bases of Dual
Independent Map Encoding (DIME)". International DIME
Colloquium Conference Proceedings. Census Bureau, Washing-
ton, D.C. -

Cox, N.J., B. K. Aldred and D.W. Rhind, 1980, "A relational data
base system and a proposal for a geographical data type".
Geo-Processing Vol. 1 p. 217. o

Cranford, G.F., 1978, "Editing and updating Geographic Base
Files - A Discussion of Practical Processing Alternatives',
in (Dutton, 1978).

Denning, D.E., U. Schldrer, 1980. "A Fast Procedure for Finding
a Tracker in a Statistical Database". ACM Transactions on
Database Systems. Vol. §.

DeWitt, D.J. and P.B. Hawthorn, 1981. "A Performance Evaluation
of Database Machine Architectures". 1In: C. Zaniolo and
C. Delobel (Eds.). Proceedings VII International Conference
on Very Large Database. Cannes (France) p. 199,

Dutton, G. "Navigating ODYSSEY" In: (Dutton, 1978).

Dutton, G. (Ed), 1978. First international advanced study sympo-
sium on toplogical data structures Ior geopraphiC information
systems'. Harvard Papers on Geographic Information Systems.
Aarvard University, Cambridge, Massachusetts.

Eggenhofer, M., 1984. "Implementation of MAPQUERY" (in germaﬁ).
Institute of Geodesy and Photogrammetry, Swiss Federal
Institute of Technology. Zurich, Switzerland.

Frank, Andre, 1980. "Land Information System - an attempt for
definition" (in german): Nachrichten aus dem Karten - und
Vermessungswesen, Reihe 1, Heft 81. Frankfurt (FRG), 1980.

Frank, A., 1981. *"Applications of DBMS to Land Information
Systems". In C. Zaniolo and C. Delohel {BEds.} Proceedings
VII International Conference on Very Large Data Bases. Cannes
(France). p. 448. :

Frank, A., 1982a. PANDA: Pascal Network Database Management
System (in german). Report 62. Institute ToT Geodesy and
P%otogrammetry, Swiss Federal Institute of Technology,
Zurich, Switzerland.

Frank, A. 1982b. "MAPQUERY: Data Base Query Language for Re-
trieval of Geometric Data and their Graphical Representation".
. SIGGRAPH '82 Conference Proceedings, Computer Graphics.
Vol. 16. p. 199.

Frank, A. and M. Tamminen, 1982. "Management of spatially re-
ference data". In Leick, A. (Ed.) Proceedings International
Symposium Land Information at the Local Level. University
of Maine at Orono. P. 330.

Frank, A., 1983a. Data Structures for Land Information Systems-
Semantic, Topological and Spatial Relations in Data of Geo-
Sciences (in german). Ph.D. thesis. Swiss Federal Institute
of Technology. Zurich, Switzerland.)

Frank, A., 1983b. 'Storage Methods for ‘Space Related Data: The
FIELD TREE". 1In: M, Barr (Ed.) Spatial Algorithms for Pro-
cessing Land Data with a Microcomputer. Boston, Lincoln
institute of Land Policy. C

GKS. Graphical Kernel System American National Standard Draft
Proposal. X 3. 124-198x. Computer Graphics Vol. 18.

Goldberg, A. and D. Robson, 1983. Smalltalk - 80: The Language
and its Implementation. Addison Wesley,

Guttag, J., 1977. "Abstract Data Types and the Development of
Data Structures'. Commun. ACM, Vol. 20 p. 396.

Hirder, Th. and A, Reuter. Database Systems for Non-Standard
Applications. Report 5478Z, Fachbereich Information,
niversitat Kaiserslautern. (FRG).

IS0/TC97/8C16. "I50 Reference Model of Open System Inter-
connections", Version 4 as of June 1979.

Kung, H.T. and J.T. Robinson, 1981. "QOn Optimistic Methods for
Concurrency Control". ACM Transactions on Database Systems.
Vol. 6 p. 213.

Lampson, B.W, et al., 1981. Distributed Systems - Architecture
and Implementation. LectUTe Notes in Computer S5cience 1035,
Berlln, Springer.

Mylopoulos, T., 1980. 'An Overview of Knowledge Representation’.
Proceedings of the Workshop on Data Abstraction, Databases,
and Conceptual Modeling. Pingree Park, Colorado. SIGMOD
Record. Vol. 11 p. 5. .

Nievergelt, J. et -al., 1984, "The Grid File: An Adaptable
Symmetric Multikey Pile Structure'. ACM Transaction on
Database Systems. Vol. 9. '

Parnés, D.L., 1972Z. "On the Criteria to be Used in Decomposing
Systems into Modules"™. Commun. ACM. Vol. 15 p. 1053.

Re¢isner, P., R.F. Boyce, D.D. Chamberlin, 1875. "Human Factors
Evaluation of Two Data Base Query Languages - Square and
Sequel, AFIPS Conference Proceedings, 1975 National Com-
puter Conference, Vol. 44, AFIPS Press, 1975.

Salton, G. and A. Wong, 1978. 'Generation and Search of Cluster-
ed Files". ACM Transaction on Database Systems. Vol. 3,

Scheck, H.J. and V. Lum, 1983. ‘'Complex Data Objects: Text,
Voice, Images: Can DBMS Manage them?" In: M. Schkolnick,
C. Thanos (Eds). Proceedings 9th International Conference
on Very Large Databases. Florence (Italy).

Smith, J.M. and D.C.P. Smith, 1977. “"Database abstraction:
Aggregation and Generalization". ACM Transactions on Data-
base Systems. Vol. 2 p. 105, ~

Tamminen M., 1982, “Efficient Spatial Access to a Database".
Proceedings ACM SIGMOD Conference. <

White, M.S., 1984. "Technical Requirements and Standards for a
Multipurpose Data System". The American Cartographer.
Vol. 11 p. 15.

" REPORT: Surveying Engineering Publications and Reprints -
The following reports were published and are available upon request

1. Defining the Celestial Pole, A, Leick, Manuscripta Geodetica, Vol. 4, No. 2.

2. A New Generation of Surveying Instrumentation, A. Leick, The Maine Land
Surveyor, Vol. 79, No. 3.

3. The Teaching of Adjustment Computations at UMO, A. Leick, The Maine Land
Surveyor, Vol. 79, No. 3.

4. Spaceborne Ranging Systems - A useful tool for network densification,
A, Leick, The Maine Land Surveyor, Vol. 80, No. 1.

in

Potentiality of Lunar Laser Range ~ Differencing for Measuring the Earth's
Orientation, A. Leick, Bulletin Geodesique.

6. CGrustal Subsidence in Eastern Maine, D. Tyler, J. Ladd and H. Borns;
. NUREG/CR-0887, Maine Geological Survey, June 1979,

7. Land Information Systems for the Twenty-First Century, E. Epstein and
W. Chatterton, Real Property, Probate and Trust Journal, American Bar
Association, Vol. 15, No. 4, 890-900 (1980).

8. Analysis of Land Data Resources and Requirements for the City of Boston,
Epstein, E.F., L.T. Fisher, A. Leick and D.A. Tyler, Technical Report,
Office of Property Equalization, City of Boston, December 1980.

9. Legal Studies for Students of Surveying Engineering, E. Epstein and
J. McLaughlin, Proceedings, 41st Annual Meeting, American Congress on
Surveying and Mapping, Feb. 22-27, 1981, Washington, D.C.

10. Record of Boundary: A Surveying Analog to the Record of Title, E. Epstein,
ACSM Fall Technical Meeting, San Francisco, Sept. 9, 1981.

11, The Geodetic Component of Surveying Engineering at UMO, A. Leick, Proceedings
- of 41st Annual Meeting of ACSM, Feb. 22-24, 198].

12. Use of Microcomputers in Network Adjustments, A. Leick, ACSM Fall Technical
Meeting, San Francisco. Sept. 9, 1981. {co-author: Waynn Welton, Senior
in Surveying Engineering). .

13. Vertical Crustal Movement in Maine, Tyler, D.A. and J. Ladd, Maine Geo-
logical Survey, Augusta, Maine, January 1981,

14, Minimal Constraints in Two-Dimensional Networks, A. Leick, Journal of the
Surveying and Mapping Division (renamed to Journal of Surveying

Engineering), American Society of Civil Engineers, Vol. 108, No. suz,
August 1982,

15. "Storage Methods for Space Related Data: The FIELD TREE", A. Frank in:
: MacDonald Barr (Ed.} Spatial Algorithms for Processing Land Data
with a Minicomputer. Lincoln Institute of Land Policy 1983,

16. "Structure des données pour les systémes d'information du territoire",

(Date Structures for Land Information Systems),-A. Frank in: Proceedings
‘Gestion du territoire assistee par ordinateur’s, November 1983,
Montreal. :

17. "Semantische, topologische und raumliche Datenstrukturen in Landinfoymations-
systemen (Semantic, topological and spatial data structures ih Land
Information Systems) A. Frank and B. Studenman, FIG XVII Congress Sofia,
June 1983. Paper 301.1.

18. Adjustment Computations, A. Leick, 250 pages.

19. Geometric Geodesy, 3D-Geodesy, Conformal Mapping, A. Leick.

2. -Text for the First Winter Institute in Surveying Engineering, A. Leick,
D. Tyler, 340 pages.

2}, Adjustment Computations for the Surveying Practitioner, A. Leick, (co-
author: D. Humphrey, Senior in Surveying Engineering).

22, Advanced Survey Computations, A, Leick, 320 pages.
23. Surveying Engineering Annual Report, 1983-84.

24. Macrometer Satellite Surveying, A. Leick, ASCE Journal of Surveying Engineering,
August, 1984,

25. Geodetic Program Library at UMO, A. Leick, Proceedings, ACSM Fall Convention,
San Antonio, October, 1984, .

26. €GPS Surveying and Data Management, A. Leick, URISA Proceedings, Seatle,
August, 1984,

27. -Adjustments with Examples, A. Leick, 450 pages.
28. Geodetic Programs Library, A. Leick.

29. Data Analysis of Montgomery County (Penn) GPS Satellite Sdrvey, A. Leick,
Technical Report, August, 1984,

30. Macintosh: Rethinking Computer Education for Engineering Students, A. Frank,
August, 1984,

31. Surveying Engineering at the University of Maine {Towards a Center of
Excellence), D. Tyler and E. Epstein, Proceedings, MOLDS Session,
ACSM Annual Meeting, Washington, March, 1984.

32. Innovations in Land Data Systems, D. Tyler, Proceedings, Association of State
Flood Plain Managers, Annual Meeting, Portland, Maine, June 1984,

33.
34.

35.

36.

37.

38.

39.

40.

41.

42,
43.

44,

45,
46.

Crustal Warping in Coastal Maine, D. Tyler et. al., Geology, August, 1984,

St. Croix Region Crustal Strain Study, D. Tyler and A. Leick, Technical Report
submitted to the Maine Geological Survey, June 1984.

Applications of DBMS to Land Information Systems, A. Frank, in: C. Zaniolo,
C. Delobel (Ed.), Proceedings, Seventh International Conference on Very
Large Databases, Cannes (France), September, 1981.

MAPQUERY : Database Query Language for Retrieval of Geometric Data and Their
Graphical Representation, A. Frank, Computer Graphics Vol. 16, No. 3,
duly 1982, p. 199 {Proceedings of SIGGRAPH 82, Boston).

PANDA: A Pascal Network Data Base Management System, A. Frank, in:
G, Gorsline (Ed.). Proceedings of the Fifth Symposium on Small Systems,
(ACM SIGSMALL), Colorado Springs (CO), August, 1982,

Conceptual Framework for Land Information Systems - A First Approach,
A. Frank, paper presented to the 1982 Meeting of Commission 3 of the FIG
in Rome (Italy) in March 1982.

Requirements for Database Systems Suitable to Manage Large Spatial Databases,
A. Frank, in: Duane F. Marble, et. al., Proceadings of the International
Symposium of Spatial Data Handling, August, 1984, Zurich, Switzerland.

Extending a Metwork Database with Prolog, A. Frank, in First International
Workshop on Expert Databases Systems, October, 1984, Kiawah Island, SC.

The Influence of the Model Underlying the User Interface: A Case Study in
2D Geometric Construction, W. Kuhn and A. Frank.

Canonical Geometric Representations, A. .Frank

Computer Assisted Cartography - Graphics or Geometry, A. Frank,

Journal of Surveying Engineering, American Society of Civil Engineers,
Vol. 110, No. 2, August 1984, pp 159-168.

Datenstrukturen von Messdaten, A, Frank and B. Studemann., paper presented at
IX International Course for Engineering Surveying (Graz, Austria)
September 1984, :

Combining a Network Database with Logic Programming, A. Frank

Montgomery County (PA) GPS Survey, A. Leick and J. Collins,
ASP/ACSM Annual Meeting, Washington, D.C., March 10-15, 1985,

