{Frank, A. U. "Requi
Spatial Databases."

rements for Database Mangement Systems for Large

Geol. Jb. (1988): 75-96.

Geol. Jb. A 104 75-96 6 Fig. Hannover 1988

Requirements for Database Management Systems for
Large Spatial Databases

ANDREW U, FRANK

Database, management system, data processing

Abstract: First the notion of 'spatial information svseems® is introduced and the general trend
in information processing from batch to interactive processing is mentioned. Then the database
management system concept is explained and how i1 applies 10 the automatic processing and retrie-
val of geoscientific data. A list of functions a darabase management system should provide is in-
cluded and some quantitative estimales given on the size of a typical graphical retrieval.

In order to establish a base for discussion, the present state and trends in computer hard- and
software, as far as relevant for the issues, are reviewed,

In order to fulfill varying needs, a DBMS should be organized in lavers with specific functions,
This way parts may be tailored to suit specific requirements. The main part of the paper shows a
possible layered architecture for a Geo DBMS:

- physical storape level with clustering and buffer manazement,

- layer to protect data,

- access methods using key values,

- spatial access (supported by physical clusters),

- data modelling concepts and corresponding operations,

- support for abstract data types and object-oriented programming,
- methods to deal with consistency constraints,

- query languages.

This architecture has been used for the construction of the PANDA database system, which is
generally available for research applications. The paper concludes with a list of requirements for a
DBMS usable for peoscientific applications.

[Anforderungen an Datenbank-Verwaltungs-Systeme [iir grofe riumliche Datenmen-
gen]

Kurzfassung: Zuerst wird der Begriff des ,,riumlichen Informationssystems** eingefithrt und
der allgemeine Trend in der Datenverarbeitung, Stapelverarbeitung zu meiden und vermehrt inter-
aktive Systeme anzuwenden, erwihnt. Das Datenbank-Konzept wird erklirt und seine Wichtigkeit
fir die Verarbeitung der Daten in Geowissenschafien wird erldutert, Eine Lisie von Funktionen,
die ein allgemeines Datenbanksystem erfiillen sollte, zusammen mit einer quantitativen Abschit-
zung der typischen praphischen Abfrage, wird angegeben.

Author's address: Prof. Dr. A.U. Frank, University of Maine, Depariment of Civil Engineering,
103 Boardman Hall, Orono, ME 044659-0110, U.S.A.

gruber
Textfeld
Frank, A. U. "Requirements for Database Mangement Systems for Large Spatial Databases." Geol. Jb. (1988): 75-96.

76

Als Grundlage fiir die weitere Diskussion werden die relevanten Eigenschaften der gegenwirtig
erhttltlichen Computer Hard- und Software, sowie deren unmittelbar zu erwartende Entwicklung
gestreift,

Um verschiedenen Bediirfnissen zu genilgen, sollie Software fiir Datenbank-Verwaltungssysteme
in Schichten organisiert sein, die jeweils bestimmte Aufgaben erfiillen. Module in einzelnen Schich-
ten konnen ausgewechselt werden, sofern die Schnittstellen klar genug definiert sind. Wir stellen
solche Schichtenorganisation fiir ein Datenbank-Verwaltungssystem vor:

- Physische Speicherung mit Clusterung und Pufferverwaltung,
- Datensicherung und Datenschutz,

- Zugriffsmethoden mit Hilfe von Schlitsseln,

~ Zugriff auf Daten nach rilumdicher Selektion,

- Methoden zur Datenmodellierung,

- Unterstiitzung fiir objekt-orientierte Programmierung,

- Hilfe bei der Formulierung von Konsistenzbedingungen,

- Abfragesprachen,

Diese Architektur wurde filr das PANDA Datenverwaltungssystem verwender, welches fiir For-
schungsarbeiten erhéltlich ist.

Die Arbeit schiliefit mit einer Liste von Anforderungen, die ein Datenbankverwaltungssystem filr
peowissenschaftliche Anwendungen generell erfiillen sollte.

Contents

Page
1. Introduclion o vt e e e et e e e e e e e e e 77
2. Spatial Information SYSIEMS0 v it i ittt e e e 78
3. General Trends in Data Processing of GeoscientificData 78
3.1 Movetowards Interactive Processingo v i ittt e i e, 78
3.2 Storageof DatainDatabaseso o i i i e 79
3.3 Software Engineering u v ittt i ettt i i 79
4. Database ManagemenI SYSEMS . . o v v v v v v vttt et e n e 79
5. ASSUMPHONSE 4 -« o ittt ettt tetme e naaa e e e 81
6. Layered Architectureottt i iy 82
7. Requirements [or the Data Storage Layer 82
7.1 Interfacetothe Operating System o v it ittt en e e et 83
7.2 Physical CIUStering . . o v v i it i i e e e e 83
7.3 Buffering ..ot e e e e i e 84
8. Protection of Data . . v v v v it i i i it e e e 85
8.1 Protection against Losso v vt vttt e e e e 85
8.2 Secure Data from Unauthorized Usage 86
8.3 Transaction Mamagementt ittt ittt e e 87
8.3.1 Atomicity of Transactionst e it ninnnnnnrnesan 87
8.3.2 CONCUITEICY .« + v v v v s v v mem oottt o et o aa it s e s n et emaeas 87
B.AAINMEETILY « v v v v v e m e a ettt e e e e 87
B3 4Durability .. it e e s 88
8.4 CostofData Protection oo it i i e et e e 88
8.5 Using the Object Buffer for Transaction Management 88

8.6 Lomg Transactionsot rtin it nentnnenanneneeensns 88

9. AccessMethods %4
0.0 AccessbyUniqueKey 3]
9.2 Access Using ConstructionsofaDataModel 3G
9.3 Spatisl ACCESS . . o i e 34
10. DataModels g
Il. Absiract Daia Types or Object-oriented Design e e 23
11.1 Consistency Constraints in an Object-oriented Design 01
12, Query Languageo i e e e pL
13, Comelusions . . . o e e e e e 94
14, Referencest e e e e 94

1. Introduction

It is now becoming feasible to use computer systems to construct powerful informa-
tion systems for the geosciences. This is an important step in the quest for betier under-
standing of our environment, valuable for better management of the natural resources
and contributes to the overall quality of life (PETERSOHN & McLAUGHLIN 1986). {ufor-
mation systems for the geosciences must be comprehensive and bread and must include
more than the data for one or a few single aspects of our environment. The combination
of darta on different aspects and their integration does yield more insight than the analy-
sis of single components. Unfortunately, bringing data from different sources togzether
and managing them to make them available for research and decision making is a major
task: we have to solve hardware, sofiware and organizational problems.

Hardware problems are easiest ta solve - the components for storage and processing
of even large amounts of data are available from various manufacturers. Prices are quite
reasonable and the general trend is toward *zero cost hardware’ (DANGERMOND & MORE-
HOUSE 1987).

In recent years we have learned that generally software is much more difficult to build
than previously thought (the famous ’software crisis’) and that progress is usually much
slower than one expects. The software sysiem to manage geoscientific data must contain
a darabase management system. This paper deals primarily with this software conmipo-
nent and the requirements placed on it by applications from the geosciences, We use mo-
dern software engineering concepts to organize the discussion and are especially concern-
ed with the integration of database management systems with other software which is
specifically written for geoscientific data processing.

Before the more technical discussion starts, it must be noted that organizing the co-
operation of different groups to collect data individually and share the results is a very
difficult issue, for which few guidelines and rules are available. On the other hand, we
can sce that many projects fail not for technical reasons, but for lack of organizational
arrangements, or due to a poor undersianding of sacial or economic implications. [as-
sume that progress on these topics will be substantially slower than on building the

technical systems.

In this paper, we will first introduce some general trends in data processing which fos-
ter the use of darabase management systems. We will then introduce the database con-
cept and how it applies to processing of geoscientific data.

78

Section 5 gives some assumptions about the present srate and the probable fuiure de-
velopment of hard- and software systems, as relevant to the present topic. We also give a
quantitative description of the typical graphical retrieval, which could be used as a
benchmark.

The next section gives an overview of the layered architecture we propose for a data-
base management system and sections 7 through 12 discuss the functionality and imple-
mentation aspects of each layer:

- physical storage, buffer management and clustering,

- protection of data and the transaction concept,

- access methods based on unique keys or spatial location of objects,

- data models and how they integrate with object-oriented programming,
- query languages.

The paper concludes with some recommendation for building database management
systems for spatial information systems.

2, Spatial Information Systems

The use of computers for "batch’ processing, where all the input data are collected and
an output with the result is delivered later, has been largely replaced by interacrive infor-
mation systems, where the system maintains a collection of data which are then interro-
gated by the users as they need the information.

In general terms, an information system contains an image or model of reality, which
we can use to make decisions and need not investigate the facts each time anew. This is
extremely important in all situations, where data collection is expensive, cumbersome or
sfow, which is generally true for geoscientific data.

Of special interest to us are systems dealing with data related to locarions in real world
space - here referred to a spatial data. Many operations of government at all levels, as
well as planning and research, exploit data which has a spartial component, Such systems
are referred to by various headings, e.g. geographic information system, land informa-
tion sysiem, multi-purpose cadastre, etc. This paper conceniraies on general aspecis of
systems dealing with spatial data referred to as “spatial information systems®, without
consideration of differences between systems for differing purposes. An arempt 1o de-
fine a taxonomy is presented elsewhere (FRANK 1980).

This paper concentrates on systems which store data with an exact reference to lo-
cation and describes geometry using points and vectors. We believe there are applica-
tions for such vector systems, especially if one considers the siorage necessary for raster-
based systems. This is not to exclude systems of other ivpes - there are obvious advanta-
ges in the use of raster operations for certain tasks - but they seem o be substantially dif-
ferent and warrant a separate discussion.

3. General Trends in Data Processing of Geoscientific Data
3.1 Move towards Interactive Processing
Users are less and less willing to wait for the response produced by a central computing

facility. They want to use collected data in an interactive, conversational mode and they
know from the personal computer wave that this is technically leasible.

79

3.2 Srorage of Data in Databases

As we move away from batch processing and towards interactive systems, the traditio-
nal file structures, which are optimized for a single (or few) programs accessing the dara,
become impractical. In an information system, many different programs want to use the
daia and the database must respond. The database management system is the technical
answer making the daia collection independent of any specific application and generally
available,

3.3 Software Engineering

Research into the problem of writing the software needed for today’s complex sysiems
has resulted in some general rules and a shift of emphasis. in the past, it seemed that
writing the code to achieve some desired action was the problem. Today we see informa-
tion systems more as models of reality and the code as the exact description of the model.
Thus the representation of knowledge and structuring of data have become central
ihemes, and we use results from artificial intelligence research and methods used in the
construction of expert systems.

A current trend in software engineering is that of building software as a collection of
models of objects, such that each object has a specific set of operations applicable 1o i1.
These techniques are known under different names (with minor differences) such as “ab-
stract data types” (PARNAS 1972, GUTTAG, 1977) or “object-oriented design® (DITTRICH
1986, MEYROWITZ 1986), and have been shown to be especially effective in building engi-
neering or scientific systems.

4, Database Management Systems

Data collected in a database are valuable since much effort is necessary to collect and
insert the data into the system and keep the data up to date. These data must be available
for a long period of time to justify these expenses. Obviously, new, unforeseen changes
will occur in the application during the lifetime of the darta.

Under these circumstances the traditional simple file structure designed to facilitate a
special application program is no longer adequate. Generic storage structures for mul-
tiple access, however, are complicated to program, and it seems inappropriate to repeat
this effort over and over again.

A darabase management system should provide the following functionality:

- Storage and retrieval of data; selection of data using different and varying key fields;

- Standardizing access to data and separating the data storage and retrieval functions
from the programs using the data. This makes database and application programs in-
dependent of each other, so that changes in the one do not necessarily lead to changes
in the other. This independence is important in order 1o accommodate the changes
during the lifetime of a database:

- The interface between database and application programs should be based on a logical
description of the data, and not make details of the physical storage structure visible
to the applications;

- Making access functions in applications independent of the physical siorage structure,
so adaptations to expanding storage needs do not influence the application programs:

80

- Allowing for access 1o the data by several users at a time;

~ Providing for the definition of consistency constraints for the data which will then be
automatically enforced. Consistency constraints are rules which must hold for all data
stored, and are an excellent rechnique to reduce the number of errors in a large data
collection.

For a slightly different, more elaborate list see Cobp (1982).

Access 1o data should be possible both from a high level language and from a user-
friendlv query language. The integration of the database manipulation language with the
programming language used is crucial to ease of use and can help to avoid hard-to-track
bugs. A free-standing query language is helpful for casual users to retrieve data from the
database to answer ad-hoc questions without any formal programming; this makes the
database usable for one-of-a-kind questions, which are often posed in scientific research
work in planning applications.

A database management system is thus a method of encapsulating the valuable data to
make it available to a multitude of users programs while simultaneously proiecting the
daia. A database is not just a collection of data: we should use the term only for a collec-
tion of data together with the corresponding management system (Fig. 1).

<

Applicaticn (4 7 User
A

Database / b
I'é/lar;agernen! - » B User
ysiem '\
Data Base \ c » User

Infarmation System

F Y

Fig. 1: Database management system concept.

Sparial information systems typically require large data collections, stored in a perma-
nent roanner on mass storage devices (disk) and accessing only small parts of these col-
lections for the execurion of a simple operation.

Early in the history of data processing, programmers became aware of the similarity in
their needs to store data and retrieve them later for processing. In lieu of writing proce-
dures for these functions for each application anew, an attempt was made to write a gen-
erally applicable program to provide these services. The idea of a (generalized) darabase
management system was born (CODASYL 1962, 1971).

Several attempts have been made to use standard commercial database management
systems for spatial information systems, but they generally did not succeed. The assump-
tions about typical utilization in commercial systems were quite different from usage
patterns found in engineering and geoscientific databases (PLOUFFE et al. 1984).

81

On the one hand, research in the area of spatial informartion systems has shown that
functionality similar o siandard darabase management systems is required. It seems that
techniques used in commercial database management could be beneficial (FRANK & TAM-
MINEN 1982). On the other hand, researchers in darabase theory have become interested
in learning abour requiremenis for non-standard applications.

Research in non-standard daiabase management systems started in the early '80s
(FRANK 1981, HARDER & REUTER 1982, SCHEK & LU 1983) and continues to the present
(ManOLA et al. 1987),

This paper is the result of several years' work dedicared 1o applying the database con-
cept 1o spatial data handling at the Swiss Federal Institute of Technology Ziirich and the
University of Maiie at Orono. The ideas reported here are based on experience with the
PANDA database management system we built (FRANK 1982a, 1984, 1986, EGENHOFER
& FRANK 1987). They idemify methods successfully implemented, and include a critique
of methods which did not work and will be replaced in the future.

5. Assumptions

This paper is - like most papers - based on a series of assumptions. Some of them
should be made explicit in arder to prevent the confusion of the reader. The discussion is
based on today’s technology, which may be more advanced than found in some instafla-
tions. However, we exclude all experimental hardware.

Processor: We assume a VON NEUMANN hardware architecture and do not discuss fu-
ture parallel multiprocessor hardware. The extent ta which this can be beneficial to data-
base operations seems to be in dispute (DEWITT & HAWTHORN 1980} and hardly any
practical results are reported.

Storage media: We assume use of main siorage (formerly “core®) directly accessible by
the processor, and separated slower mass storage (clisk). Data in mass storage is only ac-
cessible after transfer into main storage. Access to data on mass storage is much slower
than to data stored in main memory (access times in range of 10,000 : 1), and access is in
larger chunks, with access time being essentially constant and independent of the amount
of data accessed.

Distribution of processing: Data stored on a central computer may be transferred for
use in an “intelligent* workstation having irs own processor and program. Qur assump-
tion is that all the darta are centrally stored and used by the workstations and do not treat
the distribution of the storage of data on several coaperative computers. It seems that
the basic problems of such an arrangement have not vet found a sufficiently general so-
lution (LAMPSON et al. 1981).

On the side of the application, we assume thar the amount of data to be stored is larger
than can be fitted into the main memory of the computer used. Thus a subset of the data
must be transferred from the permanent storage (disk) to the working memory.

The primary form of data usage is 1o draw maps on a display unit. We propose as i
sort of benchmark the retrieval of the set of daia necessary to construct such a display:

Estimates derived from counting objects on produced ocutput screens show that useful
screen drawings contain about 2000 1o 5000 objects. Screens with substantially less data

B2

seem empty and do not convey enough information about an area, whereas screens wiih
more data are too crowded and difficult to read. From literature abows human factors, it
is known that response time is very important for user satisfaction. We therefore set asa
goal the retrieval and display of “a screen full* of data within less than 20 seconds.

6. Layered Architecture

The framework for this study is a hierarchy of moduies, each providing ceriain types
of services or functions to the next upper layer. The lowest [ayer is direcily related to the
services provided by the operating system, whereas the top layer provides services to the
human user (Fig. 2).

I | | l I] Application Programs

| | Logical Data Structuring

l I r | Spatial Access Method
Access Methods Based on Kevs

| | Object Buffer Transaction Managment

| | Storage Access Mesthods,page buffering
(Disk () Data Storage

Fig. 2: The layers of a spatial database management system.

The bottom layer stores data, using the operating system to access the file system.
These layers are mainly concerned with improving the performance of access to daia by
clustering techniques and buffer management. Services offered are “store* and “re-
trieve operations for data elements (records) using internal keys.

The next layer will provide essentially the same operations, but will make them secure.
Changes in the database are guaranteed against loss or interference with other users.

The third layer adds different types of access methods, e.g. access to daia based on a
key value or spatial location.

The fourth layer offers a logical structuring tool for the data and manipulations based
on this logical schema. These services are then offered as an extension to a high level pro-
gramming langnage or an independent query language.

7. Requirements for the Daia Storage Layer

This bottom layer interfaces with the actual storage operations provided by the operat-
ing svstemn. Its main purpose is to interface with the operating system and to improve

83

speed of storage and retrieval. Perfomance of a database management system is prima-
rily perceived as response time 10 queries of general time to retrieve dara stored in the
system. Experience shows that retrieval time to data is determined by the number of
physical disk accesses and that processing time of data once transferred to working me-
mory is of minor influence (recall that access to data in working memory is 10,000 times
faster than accessing data on the disk).

The requirementis for this layer result from the maximum delay we aliow for the draw-
ing of a map on a screen. If each of the 2000 dara records necessary for “one screen full
of dara” were feiched from the disk with an independent access (taking 50 to 200 msec.),
the user would have to wait 2 10 4 minutes for the map to be drawn. Therefore, this layer
must reduce the number of physical accesses necessary to retrieve the records for the
map. Two basic techniques are known:

- clustering of data
- buffer management
and both of them will be used.

7.1 Interface to the Operating System

It is desirable that the interface 1o the operating system be simple and only use stan-
dard functions found on many operating systems (read and write to random access files).
This will facilitate transportability of the database management system and the applica-
tion using it from one computer 10 another. However, it must be noted that some of the
methods used in operating systems to improve performance of disk operations can inter-
fere with the methods a database uses, and it may be advantageous to use low level direct
disk access operations.

7.2 Physical Clustering

A physical access 1o the disk brings in a iarger chunk of data, usually called a disk
page: it is 512 bytes to a few 1000 bytes large. If we can arrange our records on disk pages
in such a way thar each page contains several data records necessary for the map draw-
ing, the number of time-consuming disk accesses to transfer the data to working memory
will be greatly reduced. In 20 sec. we can possibly read about 200 pages; if each conrains
25 records which are needed (and possibly some others), all the necessary data are read.

This is feasible in all cases where a reasonable prediction of what data will be used to-
gether is possible. These data are then stored together and form a physical cluster {SAL-
TON & WONG 1978). Fortunarely for spatial retrieval for map drawings such predictions
are easy, based on the neighborhood relation of abjects. We retrieve data for a map
from objects situated within a certain area. If we retrieve a data element of an abject,
chances are good that data from other objects in the vicinity are needed next. If such
data are clusiered 1ogether and retrieved with one physical access, we can achieve the
goal of retrieving a map within a short time span, permitting interactive work (Fig. 3).

In simple terms: it is necessary to find a mapping from real worlds space to the linear
storage space which preserves neighborhood relationships.

84

A O B G
N

@

Reqular distribution

of data on disk Clustered storage on disk
—$ many ECCesses — few accesses
—» s5iow response —» fast response

Fig. 3: Spatial clustering.

A database system for spatial data must at least provide for physical clustering of data
(typically a command like “STORE NEAR X* where x is an already stored record). This
requirement excludes many of the simpler relarional database implementations, where
the physical storage is directed by the primary key and cannot be influenced by the user.
It seems also advantageous if data of different types (e.g. houses, roads and rivers) can
be stored on the same page and do not necessarily require different physical accesses.

However, it is neither necessary nor desirable that physical clustering be visible on the
level of the user interface; it should rather be used internally for fast spatial access and be
of no concern to the user.

7.3 Buffering

Many programs show a locality of access, using the same data elements repeatedly
over a short period of time. If these data elements can be kept in a buffer, the number of
physical accesses 1o a slower mass storage device can be reduced: for each data element
only the first access uses the slow device, and all following requests are satisfied using the
buffered data. This strategy is generally employed in computers (virtual memory, cache
etc.). A database usually coniains a single level of buffering for pages brought in from
the disk. This is indispensable in order to exploit a physical clustering of data on the
mass storage device,

Programs dealing with spatial data typically show much locality of access to data but
use a large working set (all the records for a map drawing). This is especially imporiant
for interactive programs. Users tend to work in a geographical area for several interac-
tions before they request another base map. Very often they ask for an overview map
first, then zoom in on a detail of interest and start to work on this.

In our experimental database management systern PANDA we included a second level
of buffering for single data elements. We currently set the size of the buffer to 5000 re-
cords, which allows us to keep a complete map drawing in buffer, Redrawing a map or
zooming in does noi require any additional physical accesses and is consequently very
fast.

We found that this concept has considerable influence on the programming style of an
application: no attempts are made to keep darabase darta stored in program variables
since a second access 1o data is always very fast. In our computer graphics programs, for

85

example, we do not use linear display lists but produce graphics directly from the data-
base records.

8. Protection of Data

Large collections of geographic or administrative data are, as other data collections,
valuable assets and must be guarded against loss. Even if the information is maintained
in parallel in other, traditional forms (registers, maps, etc.), the cost of transferring this
information into machine readable form is considerable.

But it is not only the cost of reestablishing a machine-readable data collection thar
makes us protect data. Information that may be deduced from the data may be of
enormous economic value for someone who knows how to take advantage of it: infor-
mation is power. Even if this aspect is probably less pronounced for a spatial database
than for most databases in commercial companies, the data collected must be guarded
against unauthorized use. For example, most national statistical bureaus collect data
which must only be disclosed as staristical aggregates which do not permit tracking down
values for individuals.

In order to avoid the costs of reestablishing a data collection and to prevent unautho-
rized use, it is necessary to protect the stored data. Looking at the technical problems, it
is customary to differentiate the following four classes of threats:

- Loss due to errors in operating or malfunctioning of hard-, software or erroneous ma-
nipulation by authorized users;

- Destruction and access by unauthorized users;

- Introduction of false data by authorized personnel using correct procedures;

- Corruption of data by multiple users at the same time (concurrent updates).

Unlike other resources, data are more complex to guard and organizations typically
have much less experience in managing data resources. First, human beings cannot sense
the presence (or absence) of data direcily: ore needs computer equipment and programs
to assess a data collection. Second, data collections cannot easily be measured, as the
presence of data does not yet guarantee that the data is useful, correct, updated and
complete.

The layer described in this paragraph will not add substantial new functionality but
will increase security of operations. Most of the functions in this layer will reduce perfor-
mance - that is the price we have 1o pay for the security gained (“there ain’t no such thing
as a free lunch!®).

In order to determine the appropriate measures, we must assess possible damages re-
sulting from loss of data (cost of reentering daia, cost assaciated with interruption of op-
erations eic.) and balance them against the cost of operations to prevent such losses. It is
generally assumed that most commercial operations place more importance on interrup-
ted operations and confidentiality. in consequence, very involved but secure schemes
have been devised. In our area of application, lower levels of security may be acceptable.

8.1 Protection against Loss

Protection of the data against loss by malfunctioning hardware or software is abso-
lutely necessary. In all situations in which more than just infrequent changes are made,

86

the protection mechanism should include the updates of the database. A change the user
affected and the confirmation received from the database must not be lgst any time later,
independent of any interruption by hard- or software problems.

It is customary to distinguish two types of problems:

Interruption of the database management program due to operaiing errors, problems
in the operating system or failure of the hardware. Such interruptions occur in most in-
stallations quite frequently (one per day..one per week). During such events all contertis
of main memory are lost, and it is therefore necessary to write changed data to perma-
nent mass storage before confirmation of an update.

Loss of the storage media, again due to errors in operations or hardware defects (the
so-called “head crashes®). Such problems are usuaily rare (once a year) and slower recov-
ery procedures are acceptable. Traditional data processing used the “rwo generation*
system, keeping the copies of data on magnetic tape for at least two previous defined sta-
tes and for al} updates in between. A similar method is applicable 1o database manage-
ment: the database is copied to magnetic tapes at regular intervals, and all changes ber-
ween the copies are not only used to change the database but also written to an additio-
nal log file (in fact they should be written to the log file first).

The services offered in commercial database management systems are generally suffi-
cient. However, many of the systems for use on smaller micro- and personal compuiers,
as well as the systems specialized in geometric and geographic data, very often de not
provide the functionality necessary to manage large data collections over long periods of
use, :

8.2 Secure Data from Unauthorized Usage

Some databases will contain confidential or secret information, and it is necessary (o
protect it against unauthorized use. This means first, not to grant access to the database
to people who must not have access to any of its contents. But it also includes measures
to exclude certain, otherwise authorized users from access to certain classes of data. For
example personnel in the town planning office need not know the amount of morigages
on a property. Finally, not only must unauthorized access be prevented but changes to
the database must also be controlled. A data collection is easily destroyed by adding
wrong data. Clear regulation of responsibility for data quality is required and only the
groups responsible can be allowed to finalize changes.

In general we may assume that the operating system contains methods 10 screen out
unauthorized users as well as to identify authorized users. However, the daiabase ma-
nagement system can make only certain parts of the database accessible to certain users.
Different methods are known and used, providing varying levels of selectivity in access
and security.

A special problem in statistical darabases (and many spatial databases will be used as
such) is that of restricting authorized users to generalized information only and prevent-
ing direct access to individual data, Most of the known systems have proved insufficient,
and the proposed methods are extremely involved (DENNING & SCHLORER 1980).

87

8.3 Transaction Management

Transaction management deals with all safeguards to secure the data against acciden-
tal foss by authorized users. We especially have to deal with user input errors, but must
also consider all sorts of hardware malfunctioning. Despite power-lass, errors in pro-
grams, multiple simultaneous users etc., the overall goal is 10 prevent loss of data due to
all sorts of errors by authorized users, including the introduction of new, false dara,

This conirol of authorized users is primarily concerned with changes inseried into the
dara collection, assuming that read-only accesses do not change the database and thus
cannot introduce errors.

It is customary to group rogether a number of logically connected changes to the dara-
base to form a transaction. The transaction management in a database management sys-
tem is concerned with
- Atomicity of the transactions,

- Concurrency of transactions by multiple users,
- Integrity of the database afier the transaction, and
~ Durability of the transactions.

8.3.1 Atomicity of Transactions

From the point of view of the database, all the changes included in a transaction are
logically connected - that is the idea expressed in bundling them together as a 1ransaction
- and thus either all of them should be executed or none. A database should never con-
tain partial results of a transaction, even if a transaction is stopped by a sudden hard-
ware failure (or loss of power).

Atomicity allows programs to be restarted and continue their work after a sudden
stop, as the database is always in a defined state (namely at the end of the last execured
transaction) and the program needs never deal with the pariial execttion of a iransaci-
ion.

8.3.2 Concurrency

Several users may access and change the same piece of data at the same time. Such
concurrent actions may conflict and must be synchronized. In a database management
system one generally requires that concurrent users see only the effects of completed
transactions and cannot observe any partial results of transactions run by other users.
Further, the database management system must check that the actions of one user do not
invalidate changes another user has applied.

Commercially available systems for spatial data management typically do not contain
automatic prevention of conflicts berween users and rely on organizational mechanisms
that only one user is working on a file at a time. This places a restriction on the organiz-
ation of work and limits the availability of the data. As technical solutions are known
they should be applied.

8.3.3 Integrity

A collection of data can easily be destroyed by adding *wrong' data. Users will not use
a database from which they often get erroneous or contradictory information. Unfortu-

88

nately, there are no easy ways to have a program check that entered data {(or changes) are
correct, meaning that the data describe reality correcily, Computers cannot go out and
check! However, we can have the program check that a new (or changed) data item is not
in contradiction to other facts already stored in the database. We say that a database is
consistent if it is free of such contradictions. Each transaction must be checked to ensure
that it does not violate a consistency constraint and introduce inconsistent data into the
database.

8.3.4 Durability

A transaction which is once confirmed should never be lost, independent of malfune-
tioning hardware etc. A database management sysiern should include some mechanism
for maintenance of a journal of all changes posted such that an archival copy, which is
made regularly, can be updated to the newest version if the current data storage is lost.

8.4 Cost of Darta Protection

Methods for transaction management are well-known, but are unfortunately expen-
sive to use. They add considerably 1o the processing of transactions and can decrease
performance roughly by half. This is the reason they are often not included in the com-
mercially available spatial information systems.

In comparison of systems (in benchmarking for example) it must always be specified
what type of transaction management is used and what levels of protection of data
against inconsistencies and loss are taken.

8.5 Using the Object Buffer for Transaction Management

In the experimental PANDA database management system we have included a large
object buffer, which can hold all the data objects a user accesses during a transaction.
With this buffer, we can prepare all changes to the database in the buffer and not affect
the data files. Once the transaction is completed, all the changed objects are written out
to disk at once. This is a relatively simple scheme which can be expanded to include
transaction logging, as a journal of all changes can be {must be) written before any upda-
tes of database files are done.

8.6 Long Transactions

The use of the transaction management to achieve several competing goals restricts the
flexibility of what can be defined as a transaciions. If transactions serve as units for du-
rability they must be short, because it is not acceptable to lose much work. Similarly,
transactions used to control concurrency must be quick, because barring other users
from changing data for longer periods of time cannot be tolerated.

On the other hand, certain operations are much oo complex to be aceomplished in a
short transaction. In some applications final values only become available long after the
original measurements were taken. We must be able to record the location of the meas-
urements before the resulis are available, but consistency demands that ultimately the
values are entered. Such situations are generally called "long transactions® and no detai-
led concepts for treatment are available or implemented (BORGIDA 1984}).

89

9. Access Methods

The layers discussed so far provide storage and retrieval of data using an internal iden-
tifier {(database key) which is assigned to a data recard when it is first stored. The record
iselfl is considered by these methods as an uninterpreied {ixed number of bytes which are
stored and later reproduced. For nonstandard applications it is especially important that
the storage system does not depend on interpretation of the data stored because this
would limit the flexibility of arranging informarion in a record and produce undesirable
dependencies between the different layers of the system. The database subsystem of a
larger application must handle arbitrarily structured data records without dependency
on their internal structure. The record data structure composed as a hierarchy of the ba-
sic daia Lypes, i.e. integers, reals, and strings, is not even sufficient for commercial appli-
cations, as exemplified by numerous extensions offered (data types for money, date

efc.).

The access methods discussed in this section use parts of the data stored in a record. In
order ta achieve independence of the data description, the defining modules must export
access functions to the relevant data elements which are then used for the access me-
thods.

It should be pointed out that we are describing logically defined methods for accessing
data. An implementation must include algorithms and storage organizations in order to
realize these methods and achieve Fast responses.

9.1 Access by Unigque Key

Users often need access to data records based on the value of one or several data fields
(key fields). This requires in the simplest case that the stored values for these fields be
unique, so that given values unequivocally identify the desired record. (This will be a
consistency constraint of the database). It is generally necessary to be able to define more
than one key for a record, so the record can be found using either value (e.g. number or
naine).

9.2 Access Using Constructions of a Data Model

The data model permits the grouping of objects to units of a higher order. Such com-
binations create access paths, as users must be abie to go from an object to the groups it
is contained in or to the objects it consists of.

9.3 Spatial Access

A great deal of data in a spatial information system is related to objects in space. Lo-
cation and extension are known for these objects. Many applications need access to data
based on location {BURTON 1978). This is obvious for all retrievals associated with map
production: all objects within the map frame must be retrieved and then graphically ren-
dered. Similar accesses are necessary for internal operations to check incoming geome-
tric data and for geometric manipulations of stored data. Spatial access to data is based
on a query of the form:

Retrieve all (object-type) within (area), where (area) is the description of the area of in-
terest (Fig. 4).

90

@2 ¢ @ 2
%

\
D

Fig. 4: Query window.

In order to provide a general efficient function, it seems appropriate to reduce (area)
to a rectangular box parallel to the coordinate system. Similarly for each object the lo-
cation and extension is recorded as a rectangular box (minimal bounding reciangle) (Fig.
5). This seems to be a general and computationally simple solution.

Fig. 5; Object with box (minimal bounding rectangle).

More specific requests are then treated in 1wo steps. In a first siep, all dara within the
rectangular envelope of the area are retrieved (based on a comparison of the query rec-
tangle and the object box). The more expensive, exact selection process is performed in a
second step only on the data passing the first test.

The result of such a retrieval may be a large number of objects; a map drawing of the
size of a CRT is, in our estimation, composed of 2000 to 5000 objects. We have seen that
this is only possible if a special data structure has been built and the data is physically
clustered - a sequential scan of the complete, large database rakes much too long.

“The access method should be divided into (1) a method of physical clustering to
achieve a minimal number of physical disk accesses, and (2} a logical data structure,
which permits spatial access and guaraniees its correctness, preferably even in the pre-
sence of some shortcomings in the physical clustering.

The physical clustering will speed up the retrieval of map output - ail objects on a map
are close to each other - and it benefits many other forms of geometric data processing.
We can thus exploit the specific geometric locality of access observed in most algorithms
of computational geometry (DuTTON 1978).

91

The traditional approach found in many of the systems on the markel is Lo divide the
world space into map sheets (sometimes called 'lacettes’), and to store the data of these
map sheets as individual files. The amount of data within such a file is then small enough
1o permit the use of linear search methods. This is in our opinion insufficient for the fol-
lowing reasons:

- The granularity of access is fixed and provides rapid access only if the query area is
comparable to the sheet size. For queries about much larger areas response is slow
since many different files must be opened and read in;

- Access to more than one sheet requires recombination of objects at the sheet borders.
This is a complicated and time consuming operation and only possible with an under-
standing of the internal structure of the representation of the objects. Thus the types
of geometric objects treated are defined in the storage layer, and it is difficult for a
user to add new geometric object definitions;

~ Most systems do not hide the sheets from the user, nor do they provide a query lan-
guage working automatically across sheet boundaries. It seems acceptable to ask
draftsmen to know which map sheet they update; it is however clearly inappropriate 1o
require this knowledge of a casual user needing a thematic map.

Only a few logical daia structures are known to permit fast response to this type of
2-dimensional range query. They are all based on self-adjusting partition of space and
clustering data of one partition in a disk page, so that access to one page brings in many
entities useful for producing the requested map (NIEVERGELT et al. 1984, TAMMINEN
1982, GUTTMAN 1984, SAMET 1984). The method described in NIEVERGELT et al. (1984)
is an adaption of a more general hash based structure for storage of multidimensional
objects. It turns out to be very similar to the FIELD TREE method we have developed
(FRANK 1981} and refined during the last few years (FRANK 1983b).

In the FIELD TREE method, clustering is not only guided by location and extension
of objects but includes also a component of level of importance of an object. This speeds
up responses to “overview® requests (large area, few objects) and for detail maps (small
area, all objects). Response time for queries is linearly dependent on the number of ob-
jects retrieved. Other influences are the size of the area of the query and the number of
objects stored for this area. The total number of objects stored in the system has virtu-
ally no influence on response time.

10. Data Models

A data model provides a method to logically describe the data necessary for an appli-
cation domain. It must contain tools to describe the entities and the relationships bet-
ween them in a structured, (semi-) formal way.

Often users will be forced to use two different data models:

- A very high level model, which contains tools 1o integrate many of the semantics of the
data for the design of the database, and
- a lower level model, used with the database management system.

In this section we will briefly discuss requirements for the data model used for design.
It is then important to check that the data model used with the selected database manage-
ment system can render the situation expressed in the design data model adequately, and
rules for translating constructs from the one to the other must be established.

92

As was stated before, a data model must provide tools to describe the situation as ac-
curately as possible, following the circumstances we find in the real world. Ar least dur-
ing the design of the database we should not consider aspects to facilitate data process-
ing, but strive to picture the real world as closely as possible.

The task is similar to problems treated in Artificial Intelligence, there known 45 "kow-
ledge organization’. Three fundamental conceptual tools for abstraction have been iden-
tified, namely:

- Classification: forming a group of entities with the same properties;

~ Apgregation: combining several different classes to a new one; and

- Generalization: extracting from several different classes a more general one (SMITH
1977, MYLOFOULOS 1980).

Most data models provide tools for classification and aggregation, but generalization
is often lacking. These structuring methods can be used to access dara, as there are oper-
ations fo find all the components of an aggregation or 10 go from a component to the ag-
gregation it belongs (o, ete. We also include access methods using keys within an aggreg-
ation, where the key values must only be unique within the aggregation. This reduces the
need for artificially constructed, globally unique keys to identify objects.

NODE STREET PERSON
nr name name
coardinates address
Y

EDGE HOUSE v
L SAARE

part

ARC !
| 4 PARCEL
use

Fig. 6: Simple conceptual database schema.

We currently use a system related to the entity-relationship model (CHEN 1976), stress-
ing graphical, visual aids to make the data structure easy to understand (Fig. 6). Our me-
thod is based on entities, attributes, and relationships (sets) between the entities, com-
parable to many other data models propoesed in the literature. However, we are presently
reducing the role of attributes to gain more flexibility in the allowed data types and to
observe the rules of ’information hiding’ (PARNAS 1972} in software engineering.

We extended this model with generalization to be able to adequately express the rela-
tionship between, for example, a 'straight line’, an ’arc of cycle' and the general concept
of *line’. This has proved to be a very important and often used concept, and should be
included in any software design method (BORGIDA 1984).

This schema can be translated either into the database description language used for a
CODASYL type database (network) or into a relational database description. The en-
coding for the PANDA database management system is straightforward, as PANDA of-
fers all three constructs for abstraction.

93

11. Absiract Data Types or Object-oriented Design

Combining the data base concept with the requirements of object-oriented software
design is not easy. A number of standard assumptions in most regular data models con-
tradict the methods of data encapsulation used in an object-oriented design. Further, the
database seems Lo be an implementation of a generic abstract data type, which offers a
number of standard operations on darabase objects (e.g. store or retrieve using an access
pathi) but this is orthogonal to an independent definition of the same objects with speci-
fic operations (e.g. for a parcel operation such as change owner or subdivide) (TROYER et
al. 1986).

We have found, however, that object-orienied design methods are crucial for madel-
ling real world objects in a spatial information system. This is clearly the case to solve the
difficult problems of geometric modelling in a generic way, independent of specific pro-
perties of individual geometric abjects and object classes (FRANK & KUHN 1986).

In practice, an object-oriented software engineering method is based on the construc-
tion of software modules which encapsulate data objects modelling a single type of ob-
jectin reality together with the pertinent operations. Higher level objects are then imple-
mented as combinations of such lower-level objects, and higher-level operations are con-
structed from the operations on the lower-level objects. This method helps to reduce the
complexity of designing software modules to a level which can be easily managed. Never-
theless powerful systems can be built from the combination of these simple parts.

It is difficult to achieve these goals using commercially available databases, as they ty-
pically do not include generalization in their data model and the number of data types
available to build data records is also limited.

11.1 Consistency Constraints in an Object-oriented Design

An object-oriented approach provides a powerful solution to the formulation of con-
sistency constraints. Database management systems today attempt to provide tools to ex-
press restrictions on the data which exclude contradictory data from being entered in the
data collection. The languages to express such restrictions are limited to a few con-
structs, generally useful in a commercial environment, but by far not sufficient to ex-
press the complex consistency constraints necessary to describe, for example, the con-
straints of an arc-node topological data structure. We have concluded that the full power
of a programming language is necessary to deal with the consistency consiraints often
found in spatial or engineering databases, The object-oriented paradigm of the encapsul-
ation of an object with the appropriate operations shows a different solution. For each
legal operation on an object type we write a procedure or function which tests all the
consistency constraints (the preconditions for this operation) before any change to the
database is executed. As these procedures are written in our regular programming lan-
guage, every computable condition can be inciuded and tested.

As a top level for the application programmer, we make all these operations available,
but do not permit the general use of the generic database operations - thus this layer of
object definitions including all legal operarions guarantees consistency of the stored
data. There are just no operations which can perform changes in the database which
would violate the consistency constraints.

94

This method only covers the regular (short) transactions: it is not usable for the so-cal-
led ’long transactions’. It is presently a topic for research to see how to extend these con-
cepts to handle scripts which prescribe and enforces legal succession of operations.

12. Query Language

Query languages are very important for the retrieval of data to satisfy certain imme-
diate needs, which were not planned for and for which no programmed access procedu-
res are available. Interactive languages for ad-hoc queries are vusually included in com-
mercial database management systems. It appears today that the SQL language origi-
nally developed by IBM {ASTRAHAN et al. 1976) is becoming the accepted standard, and
a respective proposal is currently being dealt with in the American National Standards
Institute. A number of groups are presently working on extensions of SQL to make it
useful for spatial data bases. This raises, however, a number of questions, as a sparial
application not only poses special requirements to data retrieval but specifications for
the graphical rendering of the data must also be included in the query (FRaNK 1982D).

13. Conclusions

We conclude with a number of recommendations:

- Spatial data collections should be built using the database management sysiem con-
cept. This concept is crucial for interactive information systems which can serve mul-
tiple users and multiple requirements;

— Spatial data collections pose some special requirements, which renders the commer-
cially available database management systems unsuitable. They generally lack the spe-
cial provision to achieve physical clustering necessary for fast access to map data, and
they are optimized for data with quite different characteristics. Their performance is
generally observed to be insufficient;

- Spatial database management systems must include many of the standard features
found in commercial systems, especially data protection and transaction management
10 preseve loss of data due to malfunctioning hardware and to permit concurrent
users.

We recommend a layered architecture of the spatial database management system,
with a database kernel providing generally required services, and additional modules to
adapt the darabase management system to the special needs of an application area
(HARDER 1586).

Finally, we feel that an increase in the modelling power of database management sys-
tems is most imporiant. They should include some of the best features of knowledge rep-
resentation systems from Artificial Intelligence research. The methods of Abstract Data
Types or of object-oriented software design should be employed to build applications in
geosciences, and therefore the database management system must support such techni-
ques.

14. References

ASTRAHAN, M.M. & CaameerLiN, H. {1976): Sequel 2: A Unified Approach to Daia Definitions,
Manipulations and Control. - [BM Journ. Research and Development, 20: 560.

BORGIDA, A., MyLoprouLos, T. & Wong, H. (1984): Generalization as a Basis for Software Speci-
fication. - In: Brobig, M. (Ed.): On Conceptual Modelling - Prespective from Artificial In-
telligence, Databases, and Programming Languages. - New York (Springer).

93 .

BurTon, W, (1978): Efficient Retrieval of Geographical Information on the Basis of Locaiion. -
In: DutToN, G. (Ed.): First International Advanced Study Symposiunt on Topological Data
Structures for Geographic Information Systems. - Harvard papers on Geographic Informa-
tion Systems; Cambridge, Massachusetts (Harvard Univ.).

CHEN, P. (1976): The Entity-Relationship Model: Towards a Unifizd View of Data. - ACM Trans-
actions on Dartabase Systems, I, 1: 9-36; New York.

CopasyL, (1962): An Information Algebra. ~ Phase | Report, Commun. ACM, 5: [90-204; New
York,

- - (1971): Data Base Task Group (DBTG) Report.

Cobp, E.F. (1982): Relational Database: A Practical Foundation for Productivity. ~ Commun.
ACM, 25: 109; New York.

Darton, G, & WoNG, A. (1978): Generation and Search of Clustered Files. - ACM Transaciions
on Database Systems, 3; New York.

DANGERMOND, J, & MOREHOUSE, 5. (1987): Trend in Hardware for Geographic Information Sys-
tems. - In: CHRISMAN, N. (Ed.): Proc. Bth int. Symposium on Computer-Assisted Carto-
graphy; Baltimore.

DennNivg, D.E. & SCHLOERER, U, (1980): A Fast Procedure for Finding & Tracker in a Statistical
Database. - ACM Transactions on Database Sysiems: 3; New York.

Dewrrr, D.E. & HAWTHORN, P.B. (1980): A Performance Evaluation of Database Machine Archi-
tectures. - [n: ZaNtoLO, C, & DELoBEL, C. (Eds.): Proe. VIl int. Conf. on Very Large Daia-
bases: 199; Cannes.

DrrrricH, K.R. (1986): Objeci-Oriented Database Systems: The Notion and the Issues. - Proc.,
1986 int. Workshop on Object Systems; Pacific Grove, Calif.

Durron, G. (1978): Navigating ODYSSEY. - In: DutToN. D. (Ed.): First International Advanced
Study Symposium on Topological Daia Struciures for Geographic Information Systems. —
Harvard papers on Geographic Information Systems; Cambridge, Massachusetts (Harvard
Univ.).

EGENHOFER, M. {1984): Implementation von MAPQUERY, - Rep. 79, Inst. f. Geodisie und Photo-
grammetrie, ETH Zilrich; Ziirich.

- & FRANK, A. (1987): PANDA: An Object-Oriented Database Based on User-Defined Ab-
stract Data Types. - Rep. 62, Surveying Engineering, Univ. Maine; Qrono, ME,

Frang, A. (1980): Landinformationssysteme - Ein Versuch zu einer Abgrenzung. Nachr. aus dem
Karten- u. Vermessungswesen, 1, 81; Frankfurt a.M.
- {1981): Applications of DBMS to Land Information Svstems. - in: ZanioLo, C. & DELO-
BEL, C. (Eds.); Proc. VII int. Conf. un Very Large Databases: 488; Cannes.
- (1982a); PANDA: Pascal Netzwerk Datenbank. - Rep, 62, Inst. f. Geodésie u. Photo-
grammetrie, ETH Ziirich; Ziirich,
- (1982b): MaPQuUERY: Data Base Query Language for Retrieval of Geometric Data and
their Graphical Representation. - SIGGRAPH '§2, Conf.Proc., Computer Graphies, 16:
199; San Francisco.
- (1983a): Datenstrukturen Fir Landinformationssysieme - semantische, topologische und
raumliche Bezichungen in Daten der Geo-Wissenschaften. - Diss. ETH Zirich; Zitrich.
- (1983b): Storage Methods for Space Related Data: The FIELD TREE. - In: Barr, M.
(Ed.): Spatial Algorithms for Processing Land Daia with a Microcomputer, Boston (Lin-
coln Inst. of Land Policy).
- (1984): Extending a Network Database with Prolog. - In: KERSCHBERG, L. (Ed.): Expert
Database Systems. ~ Proc. Ist. Workshop on Expert Daiabase Sysiems; Kiawah Island,
South Carolina.

56

- (1983a): Distributed Daiabase for Surveying, - ACSM Journ. Surveying Engineering,
111, 1; New York,

~ (1983b): Inregrating Mechanisms for Storage and Retrieval of Data. - Proc. on the Work-
shop on Fundamenta] Research Needs in Surveying, Mapping and Land Informarion Sys-
lems, V.P.I. and S.U.; Blacksburg, Virginia,

- {1986a): PANDA: An Object Oriented Pascal Network Database Management System. -
Rep. 57, Surveying Engineering, Univ. Maine; Orono, ME.

- & KunN, W, {1986): Cell Graph: A Pravable Carreet Method for the Treatment of Geo-
metry. ~ Proc.int.Symp.onSpar Data Handling, Seattle; 4] 1-436; Williamsville.

- & TAMMINEN, M., (1982): Management of Spatially References Data, - fn: LEIcx, A (Ed.):
Proc.int.Symp.Land Information on the Local Level, Univ. of Maine; 330; Orono, ME,

GUTTAG, A. (19B4): New Features for a Rejational Database Sysiem to Support Computer Ajded
Design. - Mem. UBC/ERL M84/52, Elecironic Research Laboratory, College of Engineer-
ing, Univ. California; Berkley.

HARDER, T. (1986): New Approaches o Object Processing in Engineering Database. - Proc. 1986
int.WorkshoponObjec[Systems; Pacific Grove, Calif,

- & REUTER, A. (1982): Daiabase Systems for Non-Standard Applications. - Report 54/82,
Fachber. Informatik, Univ. Kajserslautern; Kaiserslautern,

Lanmpson, B.W. (1981): Distributed Systems - Architecture and Implementation. - Lecture Notes
in Computer Science, 105; Berlin (Springer).

ManNoLA F., ORENSTEIN, J. & Davar, U, (1987): Geographic Information Processing in the Probe
Database System. - In: CHRIsMAN, N, (Ed.): Proc. 8th int. Symp. on Compuier-Assisted
Cartography; Baltimore.

MEyrowitz, N. (1986); Object Oriented Programming Systems, Lanpuages and Applica-
tions (OOPSLA). - Conf.Proc., ACM SIGPLAN Neotices, 21, 11: New Yark,

MyLorouros, T. (1980): An Overview of Knowledge Representation. - Proe, of the Waorkshop on
Data Abstraction, Dartabases and Conceptual Modeling, SIGMOD Record, 11: 5: Pingree
Park, Colorada.

NIEVERGELT,], (1984): The Grid File: An Adaptable Symmetric Muliikey File Structure, - ACM
Transactions on Database Systems, %; New York.

PARNAS, D.L. (1972): On the Criteria to be Used in Decomposing Systems into Modules, - Com-
mun. ACM, 15; New York.

PETERSON, F.K. & McLAUGHLIN, J. (1986): Multi-Purpose Land Information Systems A must 1o
Improve the Quality of Life. - Professional Surveyor, 6, 4: 21-24; Fallchurch,

PLOUFFE, W. (1984): A Database System for Engineering Design. - Quart.Bull. of the [EEE Com-
puter Society Technical Commitiee on Database Engineering, 7, 2.

SAMET, H. (1984): The Quadtree and Related Hierarchical Data Structures., - ACM Computing
Surveys, 16, 2: 187-260; New York.

Scuer, H.-1, & Lun, V. (1983): Compiex Data Objects: Text, Voice, Images: Can DBMS Manage
them?, - In: SCHROLNICK, M. & THANOS, C. (Eds.): Proc, 9th int. Conf, on Very Large Da-
tabases; Florence.

SMITH, I.M. & SyiTH, D.C.P. {1977): Database Absiration: Aggregation and Generalization. -
ACM Transaction on Dargbase Systems, 2; New York.

TAMMINEN, M. {1982): Efficient Spatial Access to a Database, ~ Proc. SIGMQOD Conf.; San Fran-
cisco.

Trover, 0.D., KEUSTERMANS, 1. & MEERSMAN, R. (1986): How Helpful is an Object-Orienied
Language for an Object-Oriented Database Model? - Proc. 1986 int. Workshop on Object
Systems; Pacilic Grove, Calif.

