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Most known methods for spatial reasoning translate a spadal problem into an
analytical formulation in order to solve it quantitatively. This paper describes a
method for formal, qualitative reasoning about distances and cardinal directions in
geographic space. The problem addressed is how to deduce the distance and direction
from point A to C, given the distance and direction from A o B and B o C.

We use an algebraic approach, discussing the manipulation of distance and direction
symbols (e.g. "N°, *E’, ‘S* and “W*, or ‘Far’ and ‘Closc’) and define two operations,
composition and inverse, applied to them. After a review of other approaches, the
desirable properties of deduction rules for distance and direction values are analyzed.
This includes an algebraic specification of the ‘path’ image schema, from which mest
of the properties of distance and direction manipulation follow. Specific systems for
composition of distance are explored. For dircctions, a formalization of the
well-known triangular concept of directions (here called cone-shaped directions) and
an alternative projection-based concepr are explored.

The algebraic approach leads to the completion of distance or direction symbols
with an identity element, standing for the direction or distance from a point to itself,
The so completed axiom system allows deductions, at least ‘Euclidean-approximate’,
for any combination of input values.

1. Introduction

HuMANs reason in various ways and in various situations about space and spatial
properties. The most common examples for reasoning about geographic or large-scale
space [1] are navigational tasks in which the problem is to find a route between two
given points given certain conditions [2] and decisions about the location of a
resource, which translates to a mundane household question like “where should the
telephone be placed?’, or the major problem of locating a nuclear waste facility.
Military applications using spatial reasoning for terrain analysis, route selection in
terrain, etc. are frequent [3, 4]. Indeed, spatial reasoning is so widespread and
common that it is often not recognized as a special case of reasoning.

Spatial reasoning is a major requirement for a comprehensive geographic informa-
tion system (GIS) and several research efforts are underway to address this need for a
better understanding of spatial reasoning [5, 6]. A GIS must carry out spatal tasks
which include specific inferences based on spatial properties in a manner similar to a
human expert, and must then explain the conclusion to users in terms they can
understand [7]. In current GISs, such spatial reasoning tasks are most often
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formalized by translating the situation to Euclidean geometry using an analytical
treatment for finding a solution. Though Euclidean geometry is a convenient and
sometimes the only known model of space available for rigorous analytical ap--
proaches, this is admuttedly not an appropriate model for human reasoning [1] and
thus does not lead to acceptable explanations. A similar problem was found in physics
and a formalization of the physical laws used in everyday life, so called ‘naive
physics’, was started [8] using more qualitative than quantitative approaches [9, 10].

This paper treats qualitative reasoning with cardinal directions and distances
berween point-like objects in a two-dimensional geographic space. Spatial reasoning is
influenced by the concept of the underlying space and the task to be solved; here
‘geographic’ or large-scale space and people that have ‘survey knowledge’ of the
points and their location, are assumed. Examples for locations would include cities,
landmarks, etc. The reasoning task treated is not directly related to navigation, which
is usually restricted to a network of navigable routes, but assumes a uniform space.
Specifically, distances are thought of ‘as the crow flies’ and not measured along routes.
Reasoning about cardinal direction is carried out in a globally fixed reference frame,
and radial reference frames, as are customary, for instance in Hawaii [11], are excluded.

Rules for inferring cerrain direction relations from a set of directional data about
some points can be established. These basic capabilities are necessary for solving the
more complex spatial reasoning problems [12Z]. A previous paper with the terms
‘qualitative reasoning’ in its title [13] is essentially based on analytical geometry. In
contrast, the treatment in this paper is entirely qualitative and uses Euclidean
geometry only as a source of intuition in Sections 3 to 5 to determine the desirable
properties of reasoning with cardinal directions and distances.

As an example, consider the following information:

Chicago is far and north of St Louis, Los Angeles is near and south of San Francisco, St
Louis is far and east of San Francisco, New Orleans is near and south of St Lowuis, etc.

This is sufficient information to conclude that Chicago is north of New Orleans, using
the reasoning rules presented here.

This work is part of a larger effort to understand how human beings describe and
reason about space and spatial situations. Within the research initiative 2, ‘Languages
of Spatial Relations’ of the National Center for Geographic Information and Analysis
[6] a need for multiple formal descriptions of spatial reasoning—both quantitative—
analytical and qualitative—became evident [14-17].

This paper is organized as follows: the remainder of this section reviews previously
presented approaches to spatial reasoning, most of them using analytical geometry.
Section 2 introduces the concept of qualitative reasoning and relates it to spatial
reasoning using analytical geometry; a definition of ‘Euclidean exact’ qualitative
reasoning based on a homomorphism is presented. In the following section an algebra
for “path’, the relevant imaging schema [18] is defined. From this Sections 4 and 5
deduce the desirable properties of distance and direction reasoning systems. Section 6
compares a few different qualitative distance systems, whereas Section 7 discusses the
direction system based on cone-shaped (triangular) areas and a direction system based
on projections. The last section integrates the distance and direction reasoning systems
into a single one and assess 1ts deductive power. The conclusions give a summary of
the results and lists topics for future research.
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1.1. Previous Approaches

A standard approach to modeling human spatial reasoning is to use Euclidean
geometry in the plane or three-dimensional space and represent the task using
analytical geometry formulae. Many problems can be expressed as an optimization
problem with a set of constraints, such as location of a resource and the shortest path
in this framework.

Similarly, the important field of geographic reference frames in natural language
[197 has mostly been treated using an analytical geometry approach. Typically, spatial
positions are expressed relative to positions of other objects. Examples occur in every
day speech in forms such as ‘the church is west of the restaurant’. In the past these
descriptions were translated into Cartesian coordinate space and the mathematical
formulations were analyzed. A special problem is posed by the inherent undertainties
in these descriptions and the translation of the uncertainties into an analytical format.
McDermott [12] introduced a method using “fuzz’ and in Dutta [13, 20] fuzzy logic
[21] is used to compose such approximately metric data.

An approach that is entirely qualitative, and thus similar to the thrust of this paper,
is the work on symbolic projections. This approach translates exact metric informa-
tion (primarily about objects in pictures) in a qualitative form [22, 23]. The order in
which objects appear, projected vertically and horizontally, is encoded into two
strings and spatial queries are executed as fast substring searches [24].

Hernandez [25] discusses qualitative reasoning between extended objects, based on
Allen [26], and uses topological relations (adjacent, overlap, etc.} between objects, but
not distances—thus avoiding the problem of defining distance relations between
extended objects. His approach also includes the composition of reference frames. It
uses eight cone shaped directions (left, mght, front, back and the intermediates
left-front, etc.) and four steps of distance, expressed as topological relations. A similar
approach is taken by Guesgen [27] and Munkerjee [28, 29].

2. Qualitative Approach

2.1. Qualitative Reasoning

This paper gives a set of qualitative deduction rules for a subset of spatial reasoning,
namely reasoning with cardinal directions and qualitative distance descriptors,
without relying on qualitative calculations (e.g. square roots, trigonometric functions)
or analytical geometry. In qualitative reasoning a situation is characterized by
variables which ‘can only take a small, predetermined number of values’ [30, p. 116]
and the inference rules use these values and not numerical quantities approximating
them. It is clear that the qualitative approach loses some precision, but simplifies
reasoning and allows deductions when precise information is not available.

Without debating whether human reasoning follows the structure of propositional
logic, there is some evidence that human thinking is at least partially symbolic and
qualitative [18, 31, 32]. Formal, qualitative spauial reasoning is crucial for the design of
flexible methods to represent spatial knowledge in GISs and for constructing usable
GIS expert systems [12, 33]. Spatial knowledge is currently seldom included in expert
systems and is considered ‘difficult’ [34].
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The problem is, given a set of propositions about the relative positions of objects in
a plane, how to deduce other spaual relationships [13]. The relations focused on are
the cardinal directions and distances. In terms of the example given in the
introduction, the following chain of reasoning deduces a direction from Chicago o
New Oreleans.

1. Use ‘Chicago is north of St Louis” and “New Orleans is south of St Louis’, two
statements which establish a sequence of directions Chicago—St Louis—New
Orleans.

2. Deduce ‘St Louis is north of New Orleans’ from ‘New Orleans is south of St
Louis’

3. Use a concept of transitivity: ‘Chicago is north of St Louis’ and ‘St Louis is north
of New Orleans’ thus conclude ‘Chicago is north of New Orleans’.

This paper formalizes such rules and makes them available for inclusion in an expert
system.

2.2. Advantage of Qualitative Reasoning

A qualitative approach can deal with imprecise data, and therefore yields less precise
results than the quantitative one. This is highly desirable [6, 35], because:

» precision is not always desirable; and
* precise, quantitative data is not always available.

Qualitative reasoning has the advantage that it can deal with imprecise data and need
not translate it into a quantitative form [36). Verbal descriptions are typically not
metrically precise, but sufficient for the task intended. Imprecise descriptions are
necessary in query languages where one specifies some property that the requested
data should have, for example a building about 3 miles from town. It is difficult to
shaw this condition i a figure, because the figure necessarily over-specifies (Figure 1
also determines a direction) or is overly complex (Figure 2). Qualitative reasoning can
also be used for query simplification to transform a query from the form in which it is
posed to another equivalent one that is easier to execute, In other cases, the available
data is in qualitative form, most often text documents. For example Tobler and
Wineberg [37] tried to reconstruct spatial locations of historic places from scant
descriptions in a few documents. Verbal information about locations of places can
leave certain aspects imprecise and force humans to deduce information from such
descriptions (for example, in order to analyze automatically a description of a location
in natural science collections [38]).

Als

o
A town

Figure 1. Overspecific visualization
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iles

Figure 2. Complex visualization

2.3. Algebraic Methods for a Qualitative Approach

The approach proposed here discusses combinations of directional symbols in terms
of an algebra, and introduces an identity symbol which makes reasoning more
powerful. The description of directional relationships between points in the plane can
be formulated as propositions, such as ‘A is north of B’ or ‘north (A, B)’. From a set
of propositions one can then deduce other relative positions as the induced ser of
spatial constraints [13]. In Herndndez [25] the result of the typical composition—
given an item of information about the relation of A and B and another one for B and
C, conclude the relation from A to C—is a set of possible outcomes. If a position is
determined by more than one chain of reasoning, one selects the intersection of all the
results. This is a widely used convention, assuring that the result of a deduction chain
is certainly containing the correct value. The underlying assumption is that the
qualitative symbols describe sharply bounded intervals. This assumption contradicts
the evidence from human reasoning, which points towards prototypes and radial
categories [18]. The rules developed here result always in a single value (not a set of
values), which may be only approximately correct. Other mechanisms than isolated
reasoning with distances and directions are used to correct for potential errors.

Following an algebraic concept, in this paper rules are given for the manipulation of
the directional or distance symbols when combined by operators, e.g. composition. In
order to have rules that yield a single result for all possible combinations of input
values, inference rules that are only Euclidean approximate (defined in the next
subsection) may be necessary.

In this context, one would typically use the well known algebra of vectors. The
operations, e.g. vector addition ‘+," or vector subtraction ‘—.’, are qualified by a
subscript, to indicate the specific algebra (subscripts are used extensively throughout

Table 1. The components of an algebra [44].

An algebra consists of:
« A set of symbols, D, called the domain of the algebra—comparable to the concept of data
type in computer programming languages (e.g., D = {N, E, W, §}).
+ A set of operations over D, comparable to functions in a computer program (primarily
operations to reverse and to compose directions).
+ A set of axioms that set forth the basic rules explaining what the operations do.
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the paper to indicate the type to which the operation applies). The typical axioms for
a vector algebra are:

a+,0,=a 0, is identity element (1)

at, b=b+,a commutative law (2)
at+,(b+.c)=(a+, b))+, c=a+,b+,c  associative law (3)
—v(—va)=a (4)

at,(0—,a)=0, inverse for +, (5)

2.4. Exact and Approximate Reasoning

The result of a qualitative reasoning rule is compared with the result obtained by
translating the data to analytical geometry and applying the equivalent functions to
them. If the results are always the same, i.e., 2 homomorphism (Figure 3), the
qualitative rule is called Euclidean exact. If the qualitative rule produces results, at
least for some data values, which are different from the ones obtained from analytical
geometry, it is called Enclidean approximate.

This general definition applies, for example, to the operation to compose two
directions and deduce the direction of the resultant (introduced in Section 4.3, see
Figure 5). The vectors (P, P;) are mapped into symbolic directions using a function
dir (P;, P;). For reasoning with distance, the function dist (P;, P;) maps vectors into the
distance symbals. In both cases, vector addition (+,), with the regular properties is
carried to symbolic composition (+*,) for direction and (+,) for distance.

DEFINITION 1: a rule for qualitative reasoning on directions is called Enclidean
exact {or short exact), if dir (P, P,) is a homomorphism.

dir (Py, Ps)wdir (Pa, P3) = dit (P, Py) -+, (P2, Py)) (6)
DEFINITION 2: a rule for qualitative reasoning on distances is called Euclidean
exact (or short exact), if dist (P, P.) 1s 2 homomeorphism.

dist (P,, Pa) +,dist (P,, P3) =dist (Py, P2) +, (P2, Ps)) 7)

2.5. Tolerance Geometry

Any qualitarive spatial reasoning must map values that are slightly different to a single
value. For example, the distance from a point to several other points will be judged
‘close’, even if the distances themselves are different and not exactly zero. But other
dir
<P\ P> ———— ry,cz
<P Py>

Vi+v Vo e —
dir ‘R

Figure 3. Homomorphism for directions
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points, ‘close’ to these, will be considered “far’ from the first point (i.e. ‘close to A’
does not form an equivalence class).

dist(P,, P2)=0 AND dist (P, P;) = 0#> dist (P, P3) =0 ®)

A rolerance space [39,40] is defined as a set (in this case the points P) and a
tolerance relation, in this case dist (P, P»)=0. The tolerance relation relates abjects
which are so close, one can or need not differentiate between them. A tolerance
relation is similar to an eguality, except that it admits small differences. It is reflexive
and symmetric, but not transitive (as an equality would be).

3. An Algebra of Paths

This discussion treats only the relative positions of points with respect to a fixed
directional reference frame. This is primarily the metric information, i.e. relations
that are not invariant under topological (homeomorph) transformations and includes
the distance and direction relations [41]. One could form other reasoning rules—
especially if one considers a more flexible description in first order predicates—for
example, if A to B is parallel to C to D and to E to F one can deduce that C to D is
parallel to E to F, or if A to B is at right angles of B to C and the directon from A to
B is given, one can deduce the direction B to C. One could also make statements like
point P is in the middle of A to B, etc. [42].

Rules for reasoning with distances and cardinal directions in large-scale space
specifically the two operations studies here, follow from the properties of the ‘path’
imaging schema [43]. A directed path from a start point P, to an ending point P, is
here called shortly a path, written as (P,, P;) =s,. This section develops an algebra
for paths and gives axioms for the two operations inverse and compose.

3.1. Reversing Direction of a Path

The inverse of a path from P, and P, gives the path from P, wo P, (Figure 4). The
symbol —, is used for this operation. Inverse has the property that the inverse of the
inverse of the path is the original path, which also states that there are only two
different directions to traverse a path, i.e. forward and back.

_p<P11P1>=(PZJPI) &)

—p(=ps)=s (10)

P2
@
<P P>
-p <Py P>
®

P

Figure 4. Inverse s, =—, (s)
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A

Figure 5. Compasition 5, =35, *,

Py

2

3.2. Composition

Composition merges two contiguous paths, from P, to P, and P, to P;, into a single
path from P, te P; (Figure 5). The two paths are joined ar the middle point and
composition is not commutative [Equatlon (13)], indeed in the general case only one of
51 %, 2 OF 53%, 5, is a meaningful expressmn Composmon is thus different from vector
addition (+, ) Vector addition is commutative [Equation (2})], as one assumes that
vectors can be translated, but this is not assumed for paths. Combinations of more
than two paths are independent of the order in which they are combined [associative
law, Equation (14)] and parentheses are not needed [follows from Figure 6 or the
definition of composition [Equation (11}].

(Pl:Pz)"‘p (P, P3) = (P, Ps) (11)
(Phpz)*p(PLP:):(P::P4)=”p(P4:P3>=(P1:P3> (12)
51,52 552451 (13)

a#, (b#,c)y=(aw,b)s,c=ar, br,c (14)

Concatenation of a path and the composition of paths must be differentiated. If
paths are concatenated, all intermediate points are retained and the resulting aggregate
path is a zig-zag line. The result of the composition of paths is a single path, from the
start to the end point, and the intermediate points are dropped [Equation (12)].

3.3. Identity

The special path from a point to itself is called the identity path and denoted by the
symbol 0,. Tt is an identify for composition: combining the identity path to any other
path results in the same path [Equation (16)]; this follows from the definition of
composition [Equation (11)]. The identty path is a concept which has no specific
symbol in natural language, but for formal reasoning an explicit symbol 1s needed.

°P1

Figure 6. Associativity
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Therefore:

52 p52)

Figure 7. 5, =53%, —, (51)

(PIJP2)=DP

p=| O_D *pp P

0,=0

Tnbp ¢

3.4, Inverse to Composition

(15)
(16)
(17)

The inverse to a binary operation is defined such that a value, combined with its
inverse, results in the 1dent1ty value [Equaton (18)]. Because cornposmon is not
commutative, two different inverses are possnble, but if they both exist, they must be
the same [44, p. 270] The inverse operation defined prevmusly [Equation (10)] has the
requlred properties (Figure 7). Finally, a composition can be inverted by piece-wise
inversion [Equation (10)]:

P*, (_pp) = Op and ("pP) P = Op
dir {P,, P,) .dir {Ps, P,) =dir (P,, P,)
for any a, b: path exist x: path

x*,a=b and a#,x=b

—pla b)=—,b.—,a

Table 2. Algebra for path.

Sort:

Operations:

Constant:

Axioms:

path

inverse (—, )z path— path

compose (#,):  path X path— path

identity: 0,

=p{—ps)=s

a%,(bx,c)=(ax,b)r,c=a%,bx,c associative law

a*,0,=2,0, *,, a =a idenriry element
(a ®, by= plecewise inversion

for any a, b: path exist x: path

x#¥,a=b and a*,,x—b

(18)
(19)

(20)
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4. Properties for Distances

In this section desirable properties for a qualitative distance function are examined,
starting with the standard distance functions used in Euclidean geometry. Functions
and properties that follow from the path algebra are introduced.

4.1. Standard Distance Functions in Geometry

The standard properties for the mathematical definition of distance capture the
meaning of distance well. Distance is defined as a function which maps from a pair of
points to the positive real numbers with the properties [Equations (21)-(23)]. These
rules are compatible with the rules for compesition of path, examining the axioms of
the path algebra. (The symbols 4+ and = here stand for the regular addition and
comparison of real numbers.)

dist (P,, P} =0 (21)
dist (P, P») = dist (P, P,) (22)
dist (Py, P,) + dist {P,, P;) = dist (P, Py) (23)

4.2, Qualitative Distance Function

A qualitative distance function maps from two points in the plane onto a qualitative
distance value, From the definition of path [Equation (9)] it follows that the distance
function also maps a path to a distance value. The symbols are in the simplest case
D,={C, F} for ‘close’ and “far’, or D, ={CC, C, M, F, FF} for *very close’ to ‘very
far’ or another finite set of distance symbols. In order to fulfill the distance properties
[Equations (21)—(23)] an addition (+,) and comparison (=;} operation must be
defined on these qualitative distance symbols. The values must be tatally ordered by
=4, and the set must have a smallest element, written as 0,, which is the distance of
the identity path (C in D, and CC in D,). From the finiteness of the set of values and
the total order it follows that there exists a2 maximal element. From addition of reals
we inherit commutativity of the distance addition [Equation (24)] and monotonic
increase [{Equaton (25)].

d: +dd2"""d1+d dy (24}
drzydys>d +ady=,d, +,d; (25}

Distance values are summed along a concatenated path. Adding a distance to
another increases the value or leaves it the same, but does not decrease it [Equation

(7).

dist: pointx point— D or dist: path— D

dist (OP) =0, (26)

dl +dd:’.2ddl and d'l +dd22dd2

d,+ydy =, max (d,, dy) or short: (27)
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4.3. The Protype Finite Distance Values

Despite the fact that many different sets of symbolic distance values can be thought
ol—every natural language has its own—providing they have the properties defined
above they can all be mapped to a prototypical set, constructed from a subset of the
integers. Different distance systems can have any desired number of intermediate steps
as a subset of the integers from 0 to » — 1. The ‘meaningful’ symbels are then mapped
onto the numbers (by tolnt and its inverse toSymbol). These mappings must be order
preserving. For example, the set {C, F} is mapped to {0,1}, or {CC, C, M, F, FF} is
mapped to {0, 1, 2, 3, 4}.

tolnt: d—int
toSymbeol: int—d
toSymbol tolnt (s)) =+
tolnt (C)=0 respective in I, wolne (CC)=1Q.

4.4, Rules Following from the Path Algebra

The path algebra imposes some restrictions on how distance functions can work. The
goal is to find a (nearly) homomorphic mapping, induced by dist, which maps
composition of paths #, onto addition of distances +,.

e byt 2a) = 1ot () st (7o 28)
The smallest distance value (0,) must be the identity element for addition [Equation
(29)] and the distance of the inverse of a path is the same as the distance of the path
[Equation (30)}—there is no need for an inverse of distance addition [follows from
Equation (22)]. From the associative law for path composition it follows that distance
addition must be associative as well.

dl +d0d=dl and O‘;‘Fdd]“—“d’ (29)
dist (—, p) =dist (p) (30)
(di+ady)Fads=d +y(ds+ad)=d, +,d;+,d,s 31

Proof for Equaton (29): From Equation (16) dist(p,*,0,)=dist(p,), therefore
dist () +. dist (0,) =dist (p1} + 0, = dist (p,).
From path composition and the triangular inequality, it follows that the distance of
a composite path is less or equal to the sum of the distance of the components—and
not strictly equal, as the homomorph1sm [Equation (28)] would require. The difficulty
is seen drastically in the composition of a path with its own inverse [Equation (32)].
dist (py *, p2) = dist (p,) +. dist (p)
dist (1 *, —, (p1)) = dist (0,) = 04
dist (p, %, =5 (p1)) = dist (p,) + (dist (p1) =404 (32)

Table 3. Desirable properties of distances.

dist{0,) =0,

dlst(—-pp)-dlst(p)

d, +d0d—0‘g+dd_d

d, +dd12max(dh dz)

dy+yl{dy+ads)=(d, +yd)+ods=d, +,yd.+,d;
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5. Properties of Cardinal Directions

In this section the properties of a direction system are discussed, starting with an
analysis of the standard mathematical system. The properties which follow from the
path algebra are deduced and extended with other desirable properties. Unfortunately,
this set of properties contains contradictions and cannot be simulatenously fulfilied.

5.1. Standard Mathematical Definition of Directions

Usually the direction of a path is defined as its angle with a given fixed direction in
the frame of reference, typically geographic north or the positive x or y axis. The
direction is expressed as an angle, measured as a real number from 0 to 2. Values are
cyclically ordered such that an increment operation starting from 0 generates all values
and returns to 0. Conventional mappings to combinations of cardinal directions and
degrees as often seen as ‘bearings’ (e.g. N 15° 12" E), are (isomorphic) variants of the
same system.

5.2. Qualitative Directions

Qualitative direction is a function between two points in the plane that maps onto a
symbolic direction or its equivalent, from a path onto a symbolic direction. The »
different symbols available for describing the directions are given as a set C,,; they
depend on the specific system of directions used, e.g. Cy={N,E, S, W} or more
extensively Cy={N, NE, E, SE, 5, SW, W, NW}. The number of different qualitative
direction symbols is finite and are cyclically ordered and equidistant. They can be
mapped to the integers modulo (7 —1), for example C§={0,1,2,3,4,5,6,7}. A
cyclical positive {anti-clockwise) turn of 27/n, where » is the number of direction
symbols, is useful and can be defined by a rtable, for example, turn(N)=E,
turn (E) =S, turn (§)= W, wrn (W) =N, or a full turnaround is turn ™" the identity
operation.

dit:pxp—C or dir:path-»C (32)

It is often assumed that the two points between which the direction is determined
must not be the same. To overcome this limitation, the identity element (the ‘identity
direction’ 0.) is introduced. The sets of direction symbols become then Cj=
{N,E,S,W,0} or more extensively Cy={N,NE,E,SE,S,SW, W, NW,0}. Two
operations, inverse (—.) and composition (%.) are applied to these symbols, with the
rules that follow in the remainder of this section.

5.3. Rules Following from the Path Algebra

The path algebra imposes some restrictions on how direction functions can work. The

goal is to find a (nearly) homomorphic mapping, induced by dir, which maps *, onto
*.and —, onta .

dir {—, p)=—.dir (p) (33)

dir (pi#p p2) = dir (1) . dir (p2) (4)

Cardinal directions depend on the order of travel. If a direction is given for a line
segment between points P, and P,, the direction from P, to P, must be deducible.

n
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Already Freeman [45] and Peuquet [46] have stressed the importance of this
operation: ‘Each direction is coupled with a semantic inverse’ [46]. From path algebra
Equation (10) immediately follows Equation (35), which is only possible if the
number of definite symbols (i.e. #0,) is even. Then the inverse is equal to half of a full
turnaround (5.5) and groups the direction symbols in pairs.

— (= (e)=¢c (35)

(€)= trn® 172 () (36)

The identity path must map to the identity directions [Equation (37)] and the identity
direction must be the identity element for composition of directions [Equation (39)].

From the associative law for path composition it follows that direction composition
must be associative as well.

dir (0,) =0, (37)

—.0.=0, (38)

O.#.c=c and c#*.0.=c (39)

(o) ®, ) €5 =Cy ¥, (Ca% €3) == € . Ca% Cy (40)

Cancelation—A path and its inverse cancel and compose to 0, [Equation (18)], which
translates for directions to:

dir () *, dir (=, (a}) = dir (a}*.—. (dir (2)) = ¢, *. —. (¢;) = Q.. (41)

This introduces a problem in case only the two direcdons are given (¢; and
¢;==_.{(c,)), but their lengths are different (Figure 8). The result is not Euclidean
exact and the degree of error depends on the definition of 0, used and the difference in
the size of the line segments—if they are the same the inference rule is exact. This
represents a type of reasoning like Baltimore is east of San Francisco, San Francisco is
west of Washington D.C,, thus the distance from Baltimore to Washington is too
close to determine a directon.

5.4, Transitivity for Cardinal Directions

For cardinal directions an additional transitivity rule holds. The composition of two
line segments with the same direction maintains the same direction.

dir (P, P3) =dir (P,, PyYy =c>dir (P, P,) (42)

or short: c#_c =, for any c.

Figure B. v~ _{d}
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Table 4. Desirable properties of directions.

dir (P, P))=dir {9,)=0.

—(—lh=c _

dir (P, Pa) = —, (dir (P, P,)) or —, (dir (#)) = dir (. (p))
¢k Q0. =0.% . c=c

[ *r: (Cl *l‘ C:‘) = (cl *c CJ) *r Cy

cx . C=¢C

c#.— . c=0,

The desired properties lead, unfortunately, to a contradiction and no algebraic
system can fulfill all of them at once. The problem results from the demand for
associativity and cancelation [Equarion (40) and (41)]. Struss [47] discusses extensively
‘problems of interval-based qualitative reasoning’ and found that for somewhat
different assumptions that ‘there is no qualitative reasoning method with a finite
number of values preserving associativity of arithmetic operators, except for the
quantity space {—, 0, =}".

ck ek, — (c)}=c*.0=c but (43)
(et ). — {c)=c*x.— (c)=0. (44)

Formalizing concepts from natural language, one should not be surprised to find
formal inconsistencies [48]. The problem remaining to be solved is to find a method to
cope with these differences berween formal and natural language reasoning. This

difficulty could be resolved by defining combination to result in a set of values and
specificially ¢#,—, ¢ = {c, O, —. ¢}, but this is not the path followed here,

6. Distance Systems

The previously defined properties of a distance can be fulfilled by different sets of
symbols and specific rules for operations, similar to various distance functions that
fulfill the requirements of the distance definition used in geometry. In this section we
define a number of distance systems and assess their power. Given that we deal only
with finite numbers of symbols, we can define operations, etc., usually by
enumeration.

6.1. Two-step Distance

The first and most obvious concept of distance is a set of two symbols for far and
close [49], where not far is close and not close is far. The symbols are D, = {C, F}
and map to integers {0, 1}, with C mapped to 0 and F to 1. The rules for addition
[Equation (24)—(27) determine Equation (45):

C+,C=C,F+,C=C+,F=F F+,F=F. (45)

6.2, Three-step Distance

It is a valid criticism of the above system that ‘not far’ is not necessarily ‘close’, it is
just ‘intermediate’ or ‘normal’ compared to other distances in the same space. This
leads to a system with three symbols: close, medium, far; D, ={C, M, F}. Cis the

identity element and the order is C <M, M <F. '
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For the definition of addition, starting with Equation (45), all but M +, M are
already determined by the rules for addition [Equation (24)—(27)] through (4.7):
M+, C=M, M+,F=F. Only M+,M=M or M+, M= F remains to be selected.
The following table shows the two vanants.

Table 5. Additions for three-step distance

symbols,
g c M F
C C M F
M M MorF F
F F F F

6.3. Multi-step Distance

The above concepts can be generalized to create any finite sequence of symbols of
increasing distance symbols from C to F, with the previously defined mapping to a
sequence of integers D, ={0,1,2---n—1}. Rules (25) and (27) define all the
‘border’ cases of composition. The case forn =4, C,={C,¢,f, F} or {0, 1,2, 3} will
reveal the general situation.

Table 6. Additions for multi-step distance.

+ d C C f F
C C c f F

c € * * F
/ f F
F F F F F

The four compositions marked with # are not determined yet. The result of ¢+, f
and f+,c can be selected to be either f or F. One also observes that ¢+, =F and
f+af =/ is inconsistent with Equation {23). Therefore, only three different distance
systems are passible: Equation (50) using Equation (46} and Equation (48); Equation
(51) using Equation (46) and Equation (49); and Equation (52) using Equation (47)
and Equation (49).

choice A c+,f =, frac=f (46)
or ¢+, f=F, ftac=F (#7)
choice B c+yc=c,f 4+ f=f (48)
or c+gc=f, ftuf=F (#9)
Distance system 1: x4+, = max (x, ¥) (50)
ct+gyc=c
ctuf =f+ac=f

fraf=f
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Distance system 2: x+,y = if x =7 then succ (x) else max (x, y) {51)
ctyc=f
ctaf =f+ac=f
fraf=F

Distance system 3:  x +,% = succ {max {x, })) (52)
c+q e=f
ctaf=f+ac=F
fraf=F

6.4. Geometric Interpretation

The analysis of these cases of distance systems by considering distance addition along
a straight line yields some insight into the geometric meaning of these formulae. A
number of assumptions are necessary for this interpretation:

= A system of distance symbols is described by # intervals. The set [0, 1), [1, 2),
[2,3) and [3, =) is arbitrarily chosen as a first example.

« All Euclidean distance values that fall in each interval are mapped to the
corresponding symbol.

« The intervals form a partition of the positive real numbers.

+ Distance addition is mapped to interval addition and the middle point of the
result determines the resulting symbol.

Applying interval arithmetic as usual C, +, Cy=[a,, e,) +;[a2, €2) =[a, + a2, ¢, +
e1), etc., yields the following table for addition, which represents distance system 3
(6.8).

Table 7. Additions in four-step distance system 3.

+, [0,1)=C [L2}—=c [2.3)=f [d=)—F

o,1)—=C [0,2)—C [1,3)—c 2,4)—=f [B,=)—F
[1,2)—c¢ [1,3)—c [2,4)—f [3,5)—=F [4,=)—>F
[2,3)—=f [R49—f [35—=F [+6)—=F [5x)—>F
[3,0)—F [3,m}y—F [4,=)=F [5,m)—=F [6,=)>F

What other selection of intervals would produce the other two cases [Equation (50)
or (51)]?

1. If the intervals for the distances are selected not to overlap and not to leave any
gaps, then the first distance system [Equation (50)] is not possible, because ¢+, ¢
must be more than c.

Proof: Using the abbreviations ¢ =[a,, e,), etc. From c+,c=c [Equation {(50)]
follows ¢ +,¢=[a,, ;) +;[a,, €,) = [2a,, 2¢,). The middle point is &, + ¢,, which is
greater than a2, whenever a, = ¢, (assumption thar intervals do not overlap).

2, Similar reasoning leads to a st of intervals to achieve distance system 2 [Equation
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(51)]. The critical condition is:
ctaf =[ai, e) +[a2, €23) =[a1 +az. €, +e32),

with the middle point {a, +a,+ ¢, + €,)/2, which must be less than e,. With d, for
the width of the interval n (d, =¢, —a, and d.=¢, — a;), one finds 2a, + d, < d,.
For example, see Table 8.

Table 8. Addirions in four-step distance system 2.

+. [0,1)=C [1,})=c [3,8)—f [8,0—F

0,1)—=C [6,2—=C [L4—>c [319—f [§=)—F
[LN~c  [L—=c  [26=f [H11)=f [5,@)—=F
(3,8)=f [L9—f [4il)=f [616)—=F [11,®)—F
[B,=)—=F [8,@)—=F [9,m)—=F [Il,=)—F [16,=]—F

Assuming that the assignment of values to intervals 1s not based on a partition and
using, for example, a fuzzy rule to assign qualitative distances to real distances, other
solutions are possible {including distance system 1 [Equation (50)] above}.

6.5. Assessment

The rules developed so far are sufficient to resolve the distance information from our
example and to deduce, for example, the distance from Chicago to New Orleans:

dist (Chicago, St Lonis)=F and
dist (New Orleans, St Lowuis) = c=> dist (St Lownis, New Orleans) = c.
Thus:

dist (Chicago, New Orleans) = dist (( Chicago, St Louis) *, (St Lonis, New
Orleans\\=F+,c=F.

Reasoning with qualitative distances is necessarily Euclidean approximate. Con-
sidering only the case of distances along a straight line, the results are, however, quite
good. For the four distance symbol systems described above and some plausible but
simplifying assumptions, the rules for distance system 3 [Equation (52)] yield correct
results in more than 80% of the cases. For the distance system 2 [Equation (51)), the
approximation is even better, and the results are correct in 85% of the cases. Cases
that produce incorrect results can be easily found in Table 8.

7. Direction Systems
7.1. Cardinal Directions as Cones

The most often used prototypical concept of cardinal directions is related to the
angular direction between the observer’s position and a destination point. This
direction is rounded to the next established cardinal direction. The compass is usually
divided into four cardinal directions, often with subdivisions for a total of eight or
more directions. This results in cone-shaped areas for which a symbolic direction is
applicable. The investigation here is limited to the case of four and eight directions.
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Figure 9. Cone-shaped directions

This mode] of cardinal directions has the property that ‘the area of acceptance for any
given direction increases with distance’ [46, p. 66, with additional references] and is
sometimes called ‘trianpular’.

7.1.1. Traditional Definitions with Four Directional Symbols and no Identity

Four cardinal directions are defined as cones (Figure 9), such that for every line
segment, exactly one direction from the set of north, east, south or west applies
(C,={N, S, E, W}). This system allows inferences only for cases like W+ W = W.

7.1.2. Four Directions with Identity

Introducing an identity element G, removes the restriction in the input values for the
direction function:

for all P, P; exist c: dir (P, P.}=¢, withcin C{={N, §, E, W, 0_}. {53)

A quarter wurn is defined as g(N)=E, g(E)}=S, q(§)=W, g(W)=N, and ¢(0,)=0,
and the inverse —_ is defined by two quarter turns —, (c1) = g*(c,).

A result cannot be deduced for all combinations of input values of the direction

system based on the set C} or its subset C,. From the total of 25 different

combinations, one can only infer 13 cases exact and four approximate; summarized
in Table 9 (lower case letters indicate approximate reasoning):

Table 9. Composition for four cone-shaped directions.

N E S W v
N N o N
E E ) E
A o h) S
W o W W
0 N E A} W s}

7.1.3. Directions with Eight Directional Symbols and Identity

The set of eight cardinal directions and an identity symbol Cg={N, NE, E, SE, §,
SW, W, NW, 0.}. A wrn of an eighth is defined as e¢(N)=NE, e(NE=E,
e(E)=SE,...,e(NW)=N, e(0.)=o,. The inverse is equal to four eighth turns
—(d)=¢'(d). '
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Figure 10. Two averaging rules

In addition to the rules from Table 4, two averaging rules [Equation (54) and (56)]
are introduced (Figure 10), which allow compesition of two directions that are each one
eighth off. For example, SW combined with SE should result in 5, or N combined
with E should result in NE. Also, two directions are combined that are just one
eighth turn apart, selecting one of the two (5 combined with SE results in 5, N
combined with NW results in NW).

e(d)* .~ (d)=d (54)
with —, (d) =€’ (d), (one eight turn in the other direction) {55)
e(d)*.d=d and d+.e{d)=d {56)

In this system, for all the B1 pairs of values (64 for the subset without 0,),
combinations can be inferred, but most of them only approximately. Only 24 cases
{eight for the subset) can be inferred exactly, 25 result in a value of 0 and another 32
give approximate results. This is shown in Table 10, where lower case denotes
Euclidean approximate inference.

Table 10. Composition for eight cone-shaped directions with averaging rules.

N NE E SE S SwW w NW 0
N N 7] ne o o 0 nw nw N
NE n NE ne e o o o n NE
E ne ne E e se o o o E
SE o € e SE se 5 o o SE
S ) o se 5e S 5 sw a s
SW 0 0 o 5 5 SwW st o Sw
w nw 0 o o s sw W w W
NW nw n o o ) w2 w NW NW
0 N NE E SE S Sw w NW 0

7.2. Cardinal Directions Defined by Projections
7.2.1. Directions in Fonr Half-planes

Four directions can be defined, such that they are pair-wise opposites and each pair
divides the plane into two half-planes (Figure 11). The direction operation assigns for
each pair of points a composition of two directions, e.g. south and east, for a total of
four different directions (Figure 12). This is an alternative semantic for the cardinal
direction, which can be related to Jackendoff’s principles of centrality, necessity and
typicality [50, p. 121]. Peuquet pointed out that directions defined by half-planes are
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North

West East
South

Figure 11. Two sets of half-planes

related to the necessary conditions, whereas the cone-shaped directions give the
typical condition [17, p. 24].

Another justification for this type of reasoning is found in the structure geographic
longitude and latitude imposes on the globe. Cone-shaped directions better represent
the direction of ‘going towards’, whereas the ‘half-planes’ (or equivalent parts of the
globe) better represents the relative position of points on the earth. However, the two
coincide most of the time.

In this system, the two projections can be dealt with individually. They are labeled
by the directions included, not the direction of the projection. Each of them has the
exact same structure and the next subsection presents one case separately and then
the combination is shown.

One projection and two directions
The N-S§ case, considered the prototype for the two cases E-W and N-S has the
following axioms:

for all P, Po(P, # P,): dirs,, (P, P2)=d,, withd,, in {N, §} (57)
- N=§,—-5=W (58)
foralldin {N,8}:d*.d=d, whichis N+.N=N, §*.§=5) (59)

and for E-W:
for all P\, Po(P, % P,): dir,,, (P, P2)=d,,, with d.., in {E, W} (60)
—E=W,-.W=E (61)

foralld in {E, W}:d*.d=d, whichis Ex_.E=E, W+ W =W), (62)

Combinations to four directions

The two projections in N—S and E-W form a single system, and for each path one of
four combinations of directions from D,={NE, NW, SE, SW} is assigned. Two
projections operations and their inverse combination operation lead to the definition

Figure 12. Directions defined by half-planes
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of inverse and composition as the inverse or the composition of the components.

projections: p,,:dy—d,,  d,in{N,S} (63)
Prwids—dyy,  dp,in{E, W}
combination: c:d,, xd,..—d, (64)
(Pus(d), pen(d)) =d
inverse:  —(d) = c(— (Pus(d))s —c (Pew(d))) (65)
composition: d,*.d,= c(d,,(d,}*. d.(d2) d.y(d ) *. d..{d5)) (66)

In this system, composition yields only a result in four cases and combinations, like
NE #. NW which should approximately result in N, cannot be computed. This system
is not very powerful, as only four of the 16 combinations can be inferred.

NE# NE=NE NW# NW=NW
SE« SE =SE SW_ SW =SW

7.2.2. Directions with Neutral Zone

Here cardinal directions are defined such that points which are near to due north (or
west, east, south) are not assigned a second direction, i.e. no decision is made if such a
point is more east or west. This results in a division of the plane into nine regions, a
central neutral area, four regions where only one direction letter applies and four
regions where two are used. For the N-§ projection the three values for direction are
d,.={N, P, §} and for the E-W direction they are d,,, = {E, Q, W}.

It is important to note that the width of the ‘neural zone’ is not determined
explicitly. Its size is effectively fixed when the directional values are assigned and a
decision is made that P, is north (not north-west or north-east) of P, assuming that
these decisions are made consistently, (Similar arguments apply to the neural zone of
cone-shaped directions.)

For each projection, a symbol is assigned. The inverse operations [Equations (61)
and (62)] are extended by Equation (67), which follows from Equation (38).
Projection and combination is defined analog to Equation (63) and (64) except for the

NW i N | NE

W |Oc| E

SW | S| SE

Figure 13. Directions with neurral zone
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presence of an identity element.

for all P, Py: dir o, (Py, Pa) = d,, with d,, in {N, P, S} (66)
for all Pl: Pg: dir,_.w (P], Pg) =dc.w With d,_.w n {E, Q, W}
—(N)=5, = (5)=N, = (P)=P (67)

e (E)=W, = (W)=£,-.(Q)=Q

Composition and inverse are defined exactly as in Equations (65) and (66) as the
combination of the composition (resp. the inverse) of the projections.

The composition of the two projections is such that for each path a pair of direction
letters is assigned, with the abbreviations N for NQ, E for PE, 0. for PQ, etc.
Cy=d, Xd={N,P,S} x {E,Q,W}={NE,NQ,NW, PE, PW, PQ, SE, 5Q, SW}

Cy={NE,N,NW,E, W,0,_, SE, S, SW}

With these symbols, the inverse and the composition operations are given as tables

{again, lower case indicates approximate reasoning):

d= NE N NW E W 0 SE S SW
—d= SW S SE W E 0 NW N NE

Table 11. Inverse and composition for projection-based directions.

*, N NE E SE s Sw w NW 0
N N N NE e o e, NW NW N
NE NE NE NE e e o 7 n NE
E NE NE E SE SE 5 ) n E
SE e e SE SE SE s 5 o SE
S 0 e SE SE S Sw Sw w S
SwW w o 5 s SW Sw SW w SwW
W NW n 0 s SW Sw w NW W
NW NW n n o w w NW NW NW
0 N NE E SE § SW W NW 0

In the projection-based system of directions with a neutral zone, we can deduce a
value for all input values for composition (81 total), 56 cases are exact reasoning,
resulting in a definite direction symbol, nine cases yield a value of 0. and another 16
cases are approximate.

This systemn, however, is not associative, as discussed in subsection 5.3.

(N+.NY+.S=N+.85=0, but N+, (N+.5)=N+,0,=N (68)

7.3. Assessment

The powers of the four direction cone-shaped and the four half-plane directional
systems are both very limited and are, as such, of not much interest. The eight
direction cone-shaped and the four projection-based directional systems are com-
parable. Each system uses nine directional symbols, eight cone directions plus identity
or the Cartesian product of three values (two directional symbols and one identity
symbol) for each projection. There are less reasoning rules in the projection-based
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system, as each projection is handled separately with only two rules. The cone-shaped
system uses two additional approximate rules which are then combined with the other
ones.

For both the cone-shaped and the projection-based directions the subset without
the identity element is very limited. The addition of an identity element increases the
deductive power of the system significantly. Both systems with an identity element
allow composition for any pair of input values (81 different pairs) at least
approximately.

In comparison we find that the projection-based directions result in more cases of
exact deductions than the cone-shaped (32 vs. 16) and that it less often yields the value
0. (9 ws. 25). Considering the definite values (other than 0,) deduced, we see small
differences for eight pairs, depending on the definition of the approximate reasoning
rules [Equation (54) and (56)]. These are cases in which the cone shaped system uses
the approximate rule d #_e(d) =d and the projection-based deduces each projection
separately and arrives at an exact result. Not counting this insignificant difference, we
observe that both systems produce the same deductions if they both result in a
definite value.

Both systems violate some of the desired properties, specifically associativity (as
discussed in subsection 5.3), but this seems only to affect extreme cases (see deduction
4 from the example data at the end of this section).

An implementation of these rules and a comparison of the computed compositions
with the exact values was done and confirms the theoretical results. Comparing all
possible 10° combinations in a grid of 10 by 10 points (with a neutral zone of size 3
for the projection-based directions) shows that the results for the projection-based
directions are correct in 50% of the cases and for cone-shaped directions in only 25%.
The result O, is the outcome of 18% of all cases for the projection-based, but 61% for
the cone-shaped directions. The direction-based system with an extended neutral zone
produces in 2% of all cases a result that is a quarter turn off, otherwise the deviation
from the correct result is never more than one-eighth of a turn, namely in 13% of all
cases for cone-shaped and 26% for projection-based direction systems. In summary,
the projection-based system of directions produces in 80% of all cases a result that is
within 45° of the correct value.

With these definitions, the following deductions follow from the information in the
introductory example:

1. north (Chicago, St Louis)* south (New Orleans, St Louis)= north (Chicago,

New Orleans) because
north = —_(sonth} = north +_north = north.

2. north (Chicago, St Louis)#_east (St Louis, San Francisco)=> north-cast (Chicago,
San Francisco).

3. east (St Lonis, San Francisco)# south (Los Angles, San Francisco)= east (St
Louis, San Francisco) #.north (San Francisco, Los Angeles)=> north-east (St Louis,
Los Angles).

4. north-east (Chicago, San Francisco)*,_ south (Los Angeles, San Francisco)=>
north-east (Chicago, San Francisco)*, north (San Francisco, Los Angeles,) =
north-east (Chicago, Los Angeles)
or:
north (Chicago, St Lowis)*_north-east (St Lowis, Los Angeles)= north-east
(Chicago, Los Angeles).
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8. Combinations of Distance and Directions

Reasoning about distances and directions between points can be considered, using the
above described systems individually, or a set of rules is developed that takes into
account the interactions between distance and direction reasoning. In this section
these two alternatives are briefly sketched.

8.1. Separate Combination of Components

The distance and the direction components from a spatial relation can be handled
separately, using the formulae previously developed. Any combination from the
distance or direction systems previously described can be selected. For example,
combining cone-shaped directions with four directions with two-step distances
produces the symbols My={N,E, S5, W,»n,e,s5, w}, where capitals stand for far
south, far north, etc., and lower cases for close north, clase east, eic.

For deduction, the direction and the distance value is first separated by two
‘projection’ operations, which yield the directions {N, E, §, W} and the distances
{C, F}. Then the composition for both distance and direction is calculated and the
result combined into a single value, using the combination operation (which is the
inverse of the projections).

projus (m) = ¢, with cin {N, E, 5, W}
projai (m)=d, with d in {C, F}.
combine {c, d)=m
such that the combine (proy; (m), projg,, (m))=m. (69)

If we compose the three-step distance with the projection-based directions with
identity, we have a system with a total of 27 differentiated spatial relations [Equation
(70)] and 729 different combinations. All combinations of inputs yield results for
inversion and composition using appropriate projections and the inference tables in
subsections 6.2 and 7.2.2.

Mi,=CyxSy={N, NE, E, SE, S, SW, W, NW, 0,} x {C, M, F}. (70)

8.2. Interaction Between Distance and Direction Reasoning

The reasoning about distances and directions does interact. Not all the combinations
that the previous example constructs are meaningful:

1. The path 0, has the direction 0, [Equation (37)] and the distance 0, [Equation
(16)], and there are no other combinations. This reduces the number of
differentiared (legal) distance/direction combinations in the last example to 17; 16
definite distances plus 0,/0,. There are, therefore, only 289 combinations to infer.

2. Inferences, which result in a direction of Q. but a definite distance (i.e. those
different from 0) are not acceptable. This is typically the result of using the rule
Equation (41)] a%.—~.a =0,}. No such problem exists with distance reasoning,
because no compositon except 044, 0, yields 0,.

In general, combinations where the distance values are the same are resolved quite
well, whereas cases where the distance values are different may result in values that are
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not Euclidean exact. Roughly, three quarters of all combinations are resolved
acceptably, whereas one quarter of the combinations may be quite wrong.

8.3. Further Integration

The integration of distance and direction inferences can be increased and precision of
the results increased. Separating distance and direction information by ‘projection’
from the input values, applying independent rules for the inference of distance and
direction and combining the results at the end, ignores the potential influence berween
distance and direction inference. It reveals the shortcomings of both distance and
direction reasoning as outlined before: distance reasoning does (strictly) only deal
with the case where the two paths are parallel; direction reasoning does only work
(strictly) when the two paths have the same length.

It is clearly possible to construct tables for the addition of qualitative distance
symbols under the assumption that the two paths are anti-parallel (i.e. parallel, but in
the inverse direction). Such an operation could be seen as a ‘subtraction’ of distances
(but would not necessarily be an inverse of the addiuon +,). Other tables can be
constructed if the two paths form a right angle, or 1 or 3 quarter turns. Distance
reasoning then takes into account the angle between the two paths, computed as the
(symbolic) difference between the qualitative directions of the path and the distance
addition table selected accordingly. The same concept can be applied to the direction
reasoning. Tables are modified to take into account the difference in length of the
paths (computed from the qualitative distance information available).

9, Conclusions

This paper introduced a system for inference rules for completcly symbolic,
qualitative spatial reasoning with cardinal directions and distances. We have first
stressed the need for symbolic, qualitative reasoning for spatial problems that does not
translate the problem to analytical geometry. The systems investigated are capable of
resolving any composition of directional inference using a few rules. Based on the
example in the introduction, we cannot only assert that Chicago is north and far from
New Orleans, but also that Chicago is north-east from San Francisco and St Loxis
north-east from Los Angeles, etc.

Geometric intuition based on the image-schema ‘path’ lead to the definition of an
algebra of paths (Table 2), which contains most of the relevant properues one expects
from distance and cardinal directions between point-like objects. Specifically, two
operations, namely inwverse and composition, were defined. The algebraic approach
suggested the introduction of a zero path, i.e. the path from a point to itself, which
acts as the identity element for composition. Starting with this common core of rules,
distance and direction reasoning was examined and additional desirable rules found.
The identity path leads to the definition of a zero distance and a zero direction. The
set of rules are summarized in the Tables 3 and 4.

Several systems for distance and direction reasoning can be constructed on this base
and a few consistent systems were explored and compared with coordinate-based,
analytical computations. Because the rules are defined to yield a single value, not a set
of possible values, the result is sometimes only approximate. The notion of ‘Euclidean
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exact’ and ‘Euclidean approximate’ as properties of a qualitative spatial reasoning
system are defined, such that a deduction rule is called “Euclidean exact’ if it produces
always the same results as Euclidean geometry operations would.

Systems for reasoning with distances with any number of steps were investigated
and it was found thar for each number of steps exactly three consistent variants exist.
Tables for composition for the systems with three steps (close, medium, far) and four
steps {very close, close, far, very far) are enclosed. All distance reasoning is
Euclidean-approximate. ‘

For cardinal directions, two different approaches were investigated. One is based on
cone-shaped (or triangular) directions, the other deals with directions in two
orthogonal projections. Both systems, if dealing with four cardinal directions are very
limited and most combinations of values cannot be composed. The systems with eight
direction symbols (no zero direction) are more powerful, but only the systems with
an identity element (zero direction) can resolve all cases.

The most important result from the comparison of the two direction systems is that
they do not differ substantially in their power or their inferences. There are a few
cases the projection-based system can deal with and deduce Euclidean exact results,
but the cone-based system produces only Euclidean approximate results. There are a
few cases of approximate reasoning, where the cone based system deduces the
direction 0, whereas the projection-based system deduces a definite cardinal direction.
Overall, the projection-based system with neutral zone is more powerful, produces
better results and is also slightly simpler to define.

Combining distance and direction reasoning, one becomes aware of the limitations
of separating distance and direction reasoning in individual chains of inference. We
pointed out a method to improve the precision of the reasoning, without having to
deal with the composition of all possible inputs (as suggested by Munkerjee [51]).
Taking advantage of the invarience of composition of paths under rotation, the
distance composition tables are additionally indexed for the difference of the
directions (and vice versa). In lieu of a table for the results of all input values, only a
small set of smaller tables are necessary.

9.1. Future work

There is little previous work on qualitative spatial reasoning about distances and
directions in geographic space and several different directions for work remain open.

* Hierarchical systems for gqualitative reasoning—a system for reasoning with
distances differentiating only two or three steps of farness is quite limited.
Depending on the circamstances a distance appears far or near compared to
others. One could thus construct a system of hierarchically nested neighbor-
hoods, wherein all points are abour equally spaced. Such a2 system can be
formalized and may quite adequately explain some forms of human spatial
reasoning.

s Directions of extended objects—the discussion in this paper dealt exclusively with
point-like objects. This is a severe limitation and avoided the difficult problem of
explaining directions between extended objects. Peuquet [46] tried to find an
algorithm that gives the same result as ‘visual inspection’; however, visual
inspection does not yield consistent results. It might be useful to see if sound
rules, like the above developed ones, may be used to resolve some of the
ambiguities.
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o What system of gqualitative reasoning do humans use~We can also ask which
one of the systems proposed humans use? For this, one has to see in which cases
different systems produce different results and then test human subjects to see
which one they employ. This may be difficult for the cone and projection-based
direction system, as their deduction results are very similar. Care must be applied
to control for the area of application, as we suspect that different types of
problems suggest different types of spatial reasoning.
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