Edited by G. Goos and J. Hartmanis

K.R. Dittrich (Ed)

Advances in Object-Oriented
Database Systems

2nd International Workshop on Object-Oriented
Database Systems

Bad Munster am Stein-Ebernburg, FRG
September 1988

Proceedings

Frank, A. U. "Multiple Inheritance and Genericity for the Integration of a
Database Management System in an Object-Oriented Approach." Paper presented
at the 2nd International Workshop on Object-Oriented Database Systems, Bad

Minster am Stein-Ebernburg, FRG, September 1988 1988.



gruber
Textfeld
Frank, A. U. "Multiple Inheritance and Genericity for the Integration of a Database Management System in an Object-Oriented Approach." Paper presented at the 2nd International Workshop on Object-Oriented Database Systems, Bad Münster am Stein-Ebernburg, FRG, September 1988 1988.


Multiple Inheritance and Genericity for the Integration of a Database
Management System in an Object-Oriented Approach

Andrew U. Frank

Computer Science & Surveying Engineering
Universily of Maine

Orono, ME 04469

FRANK@MECANI .bitnet

Abstract

Experience in designing and writing application programs using an objact-oriented method
reveals problems in connecting application programs o Database Management System
(DBMBS) services. This is due to ihe difference between the declarative description of data
assumead in a DBMS and the behavioral, encapsulated format in an object-oriented language.
To overcome this problem, the.integration of DBMS services with an object-oriented language
must be improved. A method is proposed to achieve seamless integration of DBMS functionality
with application cede using inheritance. The language must provide 1) muHiple inheritance,
allowing the objects to be stored in the database to inherit the necessary mathods, and 2)
genericity, in order to document what operations each object to be stored in the DBMS must
export for use by the DBMS (eg. access operations). Most current object-oriented languages do
not pravide hoth features and thus make it difficult to add a DBMS package.

Using multiple inheritance and generic classes, a DBMS package can be written in the same
language as the application program, and can be added ta an object-oriented programming
system. The method is also suitable for integrating other packages than DBMS {geometric data
handting, graphics, user interface ate.) in an object-criented environment.

1. Introduction

Woe are working on designing and programming Spatial information Systems (also known as
Geographic information Systems} using an object-oriented software engineering method. The
software engineering problems are very similar to the ones encouniered in the design of
CAD/CAM systems, VLS|, etc. In general, the object-oriented methods of software engineering
are beneficial for this class of applications, but the connection of cbject-oriented application
code with the database management system causes a break in the point of view. Since the
Pingree Park Conference [SIGMOD 81], aftention to the logical integration of DBMS funclionality
with programming languages and Al has been stidied. On a broader base, constructing an
object-oriented DBMS requires to bridge the twe different concepts of 'global database schema
declaration' and the object-oriented modularization.

Object-oriented application code encapsulates module internals (especially the dala structure)
and makes visible only a behavioral {procedural} interface. The DBMS on the other hand
expects a declarative description of the data. The use of layers of modules transforming between
the DBMS and object-oriented application rmodules has been proposed [Harder 1988]. It is in
our experience a viable, but not siraight forward solution ta bridge the conceptual gap. The code
in these layers is difficult to write, because it requires understanding of both the DBMS and the
application world. At the same time, it is quite schematic. Using such apgplication layers restricts
changes in the remainder of the application code.

We propose to use inheritance for the integration of DBMS functionality with the application
modules. Using this single language feature, typical for object-oriented programming,
overcomss the mismatch between DBMS and object-oriented application programs: We will
describe first, how inheritance is used to provide the DBMS operations to the object. Then we
will discuss implementation concepts, showing the need for genericity. Objects, which are 1o be



269

stored in the database (subsequently callad DB-cbjects), inherit the DBMS operations from a
superclass 'generic DB-object’. Additionally, each DB-object class must export seme operations
for the use of the ‘generic DB-object' {e.g. operations to access components of the ohjects). We
will then point out, that a language which provides multiple inheritance and supporis generic
classes, allows writing a DBMS in the same language as the application and adding it as a set of
madules to the application. We will conclude with stating that the same concepts and language
ieatures can be used to integrate other generic support packages (eg. graphics and user
interface support).

The integration of a DBMS as application code is not a trivial problem. Solutions reported use
object-based, but not object-oriented languages [Wegner 1987] and a relational data model
with & global schema on the level of the application. This contradicts the object-criented view of
data encapsulated in modules. Qur own efforts to integrate a DBMS in an object-oriented
programming method (based on a Pascal extension) was stifled by problems of understanding
how to combine separate object definitions with generic database functions. In this paper, we
will argue that these problems can be overcome by using a language that provides multiple
inheritance and genericity (eg. EIFEL [Meyer 1986]). The methods reporied here are a refined
view of the current implementation of the DBMS 'PANDA".

In order to avoid confusion, the proposal in this paper Is not based on a specific data model. The
method can be applied with any data model that is compatible with object-oriented
programming. If the DBMS code itself is written in an object-oriented language using the
proposed mechanism, it will help us to understand the architecture, semantic, design and
implementation issues of DBMS in general. This will lead to the DBMS kernel and toolbox
[Harder 1985}, where specific implementations for DBMS subsystems can be selected to suit the
application demand best.

2. Providing DBMS Services to the Application Programmer

An object-oriented language demands the specification of each object type with all partinent
operations in a single module. The only way of accessing data is to use operations defined on
the objects. Thus, every class of DB-objects must provide the necessary database operations.
The foilowing example out of a geometry application based on a node-edge-face-structure
shows, how the class provides also database operations :

module node

create (name, x, y) relumn id

lind {id} return node
findByname (name) retum node

getName {node) retumn name
getX (node) retum coordinate

distance (node, node) retum real

Three differences appear in comparing the proposed with the classical approach:

- The data description is encapsulated in a module and not centralized in a DBMS schema.

- Access from the DBMS 1o the data is through defined interfaces and not directly from the
DBMS code to the storage representation.

- Database operations are defined for each object separately and not generally for all
DB-objects (and become therefore often simpler, because complex rules for parameter



270

types and value encading are not necessary).

In object-oriented languages, the definition of object types can be arranged in a generalization
hierarchy, such that praperiies (eg. operations) of the super classas apply also to all the sub

classes’. Ilis thus sufficient to define a ‘generic DB-object’ with all necessary DBMS
operations and have all the classes that should be included in the DBMS inherit its operations.

The module 'generic DB-object’ must offer operations to create/store a new object, delete an
object and depending on the data model used, find objects based on values using indices,
aggregating objects to complex objects, etc. Otner DBMS functionality must be provided, for
example it must be possible to group changes in transactions, etc.

If 'generic DB-object is declared with all the DBMS aperation, a specification of the form “type
node subtype of generic-DB-object” can provide the objects of type node with the required
behavior. Application programmers may want to encapsulate this node object in an additional
layer and not export the ‘raw’ database operations. This way even very complex consistency
checks can be defined and enforced {without need for an additional formalism beyond the
programming language).

To be generally useful, objects like ‘node’ must be able to inherit the behavior from other super
classes than 'generic DB-object' and therefore, multiple inheritance is necessary (in our
application, 'node’ is also subtype of 'geometric objects’, etc). In a language supporting only
single inheritance {i.e. in most languages easily available, eg. C++, inheritance is probably used
for other aspects of the design and not available to integrate DBMS functions (nor for the same
matter, display managers or other packages). Thus multiple inheritance is crucial for this method

of integration.

3. Implementation Strategy

Can database operations simply be inherited? In this section we lay out a strategy and list the
necessary features of an object-oriented language necessary for its support. The following
cutline is based on the current structure of "'PANDA’, an object-oriented DBMS that we use to
build geographic information systems. It does not describe the current structure, which is
obscured by, among other things, limitations in the programming language [Egenhoier 1988],
but reflects the understanding we gained from building it.

in order to write the code for the 'generalized DB-object’, from which DBMS behavior is
inherited, we found a need for genericity combined with infieritance. In the next subsection we
explain what we understand by genericity {for a more extensive discussion see [Meyer 1986] or
[Cithoff 1986], [Cardelli 1885] ). The second subsection shows its use for the definition of the
‘generic DB-object’.

3.1 Genericity

Generic constructs are very similar to inheritance, but not exactly equivalent. They are, in our
opinion, a slightly different formulation of the same concept in twa different ‘traditions'
(specification languages and object-oriented languages). Inheritance in object-oriented
languages should be extended to include genericity.

Genericity is theoretically based on the notion of algebraic systems or abstract algebras [Zilles
1984]. For example, a semi group is defined as a structure <8, *>, consisting of the elements in

1 It has bean pointed out [Schallert 1986], that a type hierarchy can ba an implamantation hierarchy
{eg. Smalltatk-80) or a hierarchy of visible behavior (a spacification hierarchy, ag. Trallis/Owl
[Schaifert 1986]) - wa assume hare a spacification hisrarchy.



271

the sel S with the associative operation ™. From this definition, difierent semi groups can be
constructed, for example the semi group of positive integers with addition. It is only necessary
that 1he set of objects bound to S has an associative operation which can be bound to ™. The
following example out of [Sutor 1887] shows such a definition of a semi group:

semiGroup () : calegory == set with
(58] >3
associative (™)

Similarly, we can construct sorted lists as algebraic structures over elements which must include
an order relation {with the properiies reflexive, asymmetric and transitive). Specification
languages have modelled this concept by including generic type construciors, allowing the
description of abstract types, which are instantiated by bounding the formal type and gperation
variables to actual types and operations (CLU], ADA , ScralchPad [Sutor 1987], elc). This
documents that a new type can anly be constructed if the necessary operations are provided. It
would be desirable that the language could also test, that the operations have the necessary
propertias. This is still a topic of ongoing research in programming and specification languages.

Inheritance is very similar to genericity: similarly to the subclasses inheriting all operations from
their super class, the instantiations in genericity provide the same operations as their generic
type. Inherilance in most object-oriented languages does ot allow for type variables, nor formal
operation variables required in the subtype, but the same effect is often achieved by using of
method selection in the superciass based on ‘self, and using the same operation names in all
subclasses: however, this latter possibility is more difficult to understand and the class interface
does not docurnent the need for operations in the subclasses.

3.2 DBMS Functionality provided as a Generic Class

Providing DBMS functionality by defining the class 'generic DB-object’ depends on a number of
operations defined for each subclass because a number of DBMS operations need access {0
certain object components or depend otherwise on values of the objects.

As a simplified example, consider the following definition of a sorted list:

"sortedList of element {with lessOrEqual (a,b: element):boolean)”

operations "initialize”, "insert", "find”, "getNext” ...
where element is a type variable and the ‘with' clause documents, that the implementation
depends on an operation "essOrEqual’ defined for elements. It is possible to write generic code
ihat implements the operations without specific knowledge about the elements of the list, except
that a ‘lessOrEqual’ operation is provided by the element. The following example shows a
possible instantiation of the generic soried list above:

"soredList of Name (with lessOrEqual mapped to name.before)”
where name.before is an operation that compares two names. Note that this respects
encapsulation by using the module interface of 'names’ instead of directly accessing the data in
‘names’ '

We have used the described method extensively for PANDA (without using a language that
supports the above shown syntax) to write the functions of 'generic DB-object’ for a data model
similar to entity relationship [Chen1976] or the molecule cancept [Batory 1984] [Harder 1987].
The following operations are typically necessary for each object class:

- comparison of two objects of the same type {lessOrEqual’ and "equal’)

- intersect object-geometry with a given rectangle to maintain a spatial access stmcturé
(Field Tree [Frank 1983], similar to Grid Fite [Nievergelt 1984} or EXHASH [Tamminen 19682])



272

- computation of an integer for values used for a hashing based index
- conversion 1o a string for each field {used for a basic output function)

Every DB-object has 1o provide the necessary operations which are mapped {o the formal
operations used in the generic definitions of the DBMS operations. We have found that most of
these provided operations are very simple to write. Indeed, the code is very regular and can be
produced automatically from a higher level description of the abjects. In some cases, the
programmer needs to write special code, different from the ons automatically produced. For
example this is the case, when the operation uses a value which is not a component of the
object, but must be derived from the components.

4. Integration of DBMS with Object-Oriented Programming System
Following the proposal made, an object-oriented DBMS can be written as an application level
package. This is an atiractive alternative to the systems that inciude DBMS functionality within an
object-oriented language [Penney 1987]. Most software engineering arguments speak for the .
former solution:
- The language is not burdened by DBMS functionality, and if DBMS support is not
necessary for an application, it need not be included.
- The DBMS is integrated using standard language features. No new constructs need
10 be iearned by the application programmer, and a mismatch belween language
and DBMS concepts can be avoided.
- The DBMS package can be selected and tailored specifically for an application class
without requiring changes in the language.
The latter argument is important for the non-standard applications we work on {engineering
databases, spatial information systems, cad/cam, etc.). They pose specific requirements fora
DBMS: Depending on the application area, a DBMS must provide special functionality (eg.
access based on spatial location), and its implementation must be adapted to yield the
performance necessary.

5. Conclusions

We have shown how integration between an object-oriented DBMS and an application program

can be achieved using inheritance. A language with multiple inheritance and genericity aliows 10

define the data to be stored as modules which inherit DBMS functionality:

- Multiple inheritance is necessary, in order to allow objects to inherit the DBMS
operations as part of their behavior (and still inherit other traits).

- Generc class descriptions with formal operation parameters to document the operations
each subclass of the generic DBMS object must provide in order for the DB operations to
work.

Data to be stored is defined as subclasses of the ‘generic DB-object’ that inherit DBMS

functions. These subclasses must export a set of operations to be used by the DBMS.

The major advantage of the proposed method is that the interface between the DBMS code and

the objects is clearly documented: The DBMS code shows which operations each DB-object

must provide. These operations are the anly interfaces between DBMS and object internals, thus
respecting object-oriented philosophy. No DBMS specific features are necessary in the
language and the DBMS can be written as an application level program, without dependency -
between object-oriented language and DBMS.

We believe, that multiple inheritance and genericity will be generally useful for building large

sofiware systems, especially information systems. Similar to DBMS, other functions can also be

factored out and one would like to use other pre fabricated packages for preseniation graphics

and window management, for geometric data processing etc. [Smith 1986] [Sandberg 1986].



273

References

{Batory 1984] D.S. Batory and A.P. Buchmann. Molecular Objects, Abstract Data Types, and Data Models: A
Framework. In: 1Mh VLDB conlerence, Singapore, 1984.

[Cardelli 1585} L. Cardelii and P. Wegener. On Undarstanding Types, Dala Abstraction, and Polymomhism. ACM
Computing Surveys, 17(4), April 1985. '

[Egenhofer 1988] M. Egenhofer and A, Frank. A Precompiler for Modular, Transportable Pascal. SIGPLAN Notices,
23(3), March 1988.

[Frank 1983] A. Frank. Problems of Realizing LIS: Storage Methods for Space Related Data: The Field Tree.
Technical Report 71, Swiss Federal Institute of Technology, Zarich (Switzerland}, 1983.

[Harder 1985] T. Harder and A. Reuler. Architecture of Database Systems for Non-Standard Applications (in German).
In: A. Blaser and P. Pistor, editors, Database Sysiems in Office, Engineering, and Scientilic Environment, Springer
Verlag, New York (NY}, 1985,

[Harder 1987] T. Harder, K. Meyer-Wegener, B. Mitschang, A. Sikeler. PRIMA - a DBMS FPrololype Supporting
Engineering Applications. In: 13th VLDB conference, Brighton (England), 1987.

[Harder 1988] T. Harder, B. Mitschang, H. Schéining. Query Processing for Complex Objects. submiited for
publication, 1488.

[Meyer 1986] B. Meyer. Genericity versus Inheritance. In: OOPSLA ‘86, Portland (Oregon), 1986.

[Nievergeit 1984] J. Nievergeit et al. The GRID FILE: An Adaptable, Symmetric Multi-Key File Stnucture. ACM
Transactions on Databases, 9(1), 1984.

[Olthoff 1886] W.G. Olthot. Augmentation of Object-Oriented Prograriming by Concepts of Absiract Data Type
Theory: The ModPascal Experience. [n: OQPSLA '86, Porlland {Oregon), 1986.

[Penney 1987] D.J. Penney and J. Stein. Class Modification in the GemStone Object-Oriented DBMS. In: OOPSLA
‘87, OCriande {Florida), 1987.

[Sandberg 1986] D. Sandberg. An AHlemnative to Subclassing. fn: OOPSLA '86, Portland {Oregon), 1986,

[Schaftert 1986] C. Schafiert, T. Cooper, B. Bullis, M. Kilian and C. Wilpalt. An Intorduction to Trellis/Owl. In:
OOPSLA ‘856, Porland (Oregon), 1986.

[SiGMOD B1] Proceedings of the Workshop on Data Abstraction, Databases and Conceptual Modelling. Pingree Park
(Colorado, June 1980), SIGMOD Record, 11(2), February 1981,

[Smith 1886] R.G. Smith, R. Dinitz and P. Barth. Impulse-86: A Substrate for Object-Oriented Inlerface Design. In:
OOPSLA ‘86, Portland (Oregon), 1986,

[Sutor 1987] R.S5. Sutar and R.D. Jenks. The Type Inference and Coercion Faciltties in the Seratchpad 1l Interpreter.
In: SIGPLAN 87 Symposium on interpreters and Interpretive Techniques, St. Paul (Minnesota), 1987.

Tamminen 1982] M. Tamminen. Efficient Spatial Access to a Dala Base. In: ACM-SIGMOD, Odando (FL), 1982.

fWegner 1987} P. Wegner. Dimensions of Ob}ed-Elased Language Design. In: OQOPSLA 87, Orlando {Florida),
1987.

[Zillas 1984] S.N. Zilles. Types, Algebras and Modelling. In: M.L. Brodie et al., editors, On conceptual Modelling,
Springer Verlag, New York {NY), 1984,





