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Workshop Overview:

» Session 1: Background

— |ntroduction

— Current and upcoming GIS technology
— Conventional DBMS for GIS

» Session 2: Object-oriented data models and
programming
— Data models
— Abstraction mechanisms
— Software engineering concerns

— Multi-sorted algebras and abstract data
types

— Object-oriented programming languages
e Session 3: Object-oriented DBMS

— DBMS functionalities

— Conceptual Schema Design

— Data Definition Language

— Complex Objects and Value Types

— Object-oriented programmer’s interfaces

— Complex consistency constraints
» Session 4: Architecture and query languages

— Layered architecture

— Object-oriented query languages
— Existing object-oriented DBMS
— Education

— Conclusion



Session 1: Background
e Introduction

e Current and upcoming GIS technology

\ » Conventional DBMS for GIS

Geographic Information Systems a.k.a. w

e Land Information Systems (LIS)

o Multi-purpose cadastre

We prefer in this context the generic term “spatial

information systems” .

N /
- N

GIS are complex software systems to manage spa-

tially related data.

Spatially related data has two components:

» a description of the location and extension of

the objects,

e attribute data describing non-geometric prop-

erties of objects.

\_ J
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Spatial concepts -

Humans use multiple concepts concurrently.
Need for formalization in order to program.

Fundamental concepts used in current GIS:
e raster

e vector

N y
- D

Topology-based vector systems:

e graphs (points and lines)
» cells (points, lines, and areas)

¢ subdivisions {points, lines, areas, and (partial}

\ ordering) /

4 R

A GIS consists of
» Organization
e Software

¢ Hardware

- /




~ N\

Hardware development will continue to be fast.

Hardware is no impediment.

Software moves slower.
The object-oriented paradigm for software engineer-

ing 1s the major new concept.

Changing organizations is extremely slow and diffi-

cult.

kAdapt technical system to organization.

/

GIS builds a model of some aspects of reality. The
ease of designing such a model is crucial to con-

structing GIS.

- w )

There are four trends in cc;rnputer science investi-
gating object-orientation:

+ Modeling,

» Programing languages,

¢ Database management systems,

e Artificial inteliigence.

Future GIS need all four components.

o J
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The GIS software consists of:

s A component to manage storage and retrieval

of data.

Application programs that use the data.

Computer graphics to produce map output.

A human interface system to interact with the

USErS.

o /
4 )

GIS and other areas, like Computer Aided Design
(CAD) and Computer Aided Engineering (CAE) have

had similar problems:

e Inadequate traditional programming methods

for managing geometric data.
s Complexity of spatial relationships.

o Algorithmic difficulties (computational geom-

etry).

- /
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Current GIS technology:
» Organization of data in map sheets.

e Use of dedicated file structures for geometric

data.

» Separation of attribute data (in files or con-
nected DBMS).

Goal:

¢ A seamless database.

K e Asingle DBMS for spatial and non-spatial data/

- D

A GIS can be used to support
» planning and policy setting
e administration

GIS for planning and policy setting can tolerate
(limited) inaccurracies. They are often built for
small areas and for a specific project; data is not

maintained and updated.

Effective graphical presentations are very impor-

tant.
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GIS for administrative purposes must
s be precise,
s caompletely cover an area,

e be updated.

\_ /
4 ™

GIS are often used as 'map maintenance systems'.

The system stores an image of the map and is used

for editing. The users are provided with updated

N J

The tendency is towards interactive usage (dialog).

Concepts:

e Paperless office

» Maps on demand

. /
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GIS data are recognized as valuable ‘integrated re-

source’ for a community.
s long term usability

— updates

~ consistency
e integration of mutiple users

— complex data models

— concurrent users and access control

\ — distributed databases

/

Database management systems (DBMS) are nec-

essary components of the next generation of GIS.
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Database Concept

A central repository for data accessible for many
application programs through a standardized inter-

face.

Benefits
Independence of the resource from the application
program.

One program can be changed without affecting the

kdatabase or other programs. /

- a

Conventional DBMS

Designed to manage commercial data with weakly

J
™

Existing DBMS provide a limited number of funda-

structured data.

mental data types

(integer, real, string of character)-

They are not sufficient for most applications.

/
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Extensions for commercial programs (date, money)

are available,

More complex data types (points, lines, complex

numbers) for GIS and other scientific applications

are not available.

N /
p

The relational data model is built on the simple

concept of a table with a few relational operators:

» selection

projection

Cartesian product

set union

set difference

This data model is not adequate to model complex

Kreal situations. (distance user concepts - tools) /




Relational algebra is table-oriented.

number | name | location | budget

3 Jones { Orono | 100,000
6 Smith { Bangor 80,000
9 Miller | Bangor | 135,000

Current programming languages are record oriented.
Use of relational databases from regular program

code is difficult and sometimes cumbersome.

Data structures

Relational DBMS force separation of data in small-
est parts (normalization rules).

The re-building of complex objects from such parts

reduces performance.

- /
™

Performance

The typical user interaction with a GIS results in
a map sketched on a terminal. This requires that
the database retrieves 2000 ... 5000 objects to be
drawn.

In a relational implementation of a database this

results in several thousands of accesses (each 30

millisec.).

J
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Consistency constraints

Geometric data must obey special consistency con-
straints e.g., two parcels must not overlap.

Relational DBMS do not address the complex con-

sistency constraints for geometric data.

J
4 R

Transactions

Changes in a GIS may require a large number of
user interactions and a long time for completion.

Current databases use a single 'transaction’ con-

cept that serves multiple purposes.

- J
s

Transaction concept (ACID)

o Atomicity
s Conststency

e [solation

e Durability
N y
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G1S need
e versions and
» long transactions.

Long transactions can be implemented on top of

\regu!ar (short) transactions. /

- R

Summary Session 1:

DBMS are needed for GIS to manage
@ consistency
¢ multi-user access
e transactions

Relational DBMS provide insufficient

e data structures

K » performance /
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Session 2: Object-oriented data models and pro-

gramming
» Data models

Abstraction mechanisms

Software engineering concerns

Multi-sorted algebras and abstract data types

Object-oriented programming languages

\_ J
4 N

A major shortcoming of current DBMS is their lack
of integration into programming languages and soft-

ware engineering methods.

e Separation of data description and application

program.

» Data manipulation with commands which are

not fully integrated into the language (pre-

\ compiler, embedded SQL and QUEL) /
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The object-oriented paradigm is an encompassing

concept, including
a software engineering
® programming languages, and
s databases

A discussion of an object-oriented database must

kinclude a discussion of object-oriented programming)

~ R

An information system is a model of some aspects
of reality.

The data model provides the means to describe the

data in an information system.

y
4 : I

The fundamental abstraction mechanisms are:

¢ Classification
o Generalization

s Aggregation

N /
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Classification is the abstraction from individuals with

common properties to a class (instance_of-relation).

Example: from ‘P. Miller’, 'J. Doe’, etc. to the

class 'person’.

‘P. Miller’ is an instance of the class ‘person’.

\. /

\

Generalization is the combination of several classes

to a more general superclass (is_a-relation).

Example: from the classes ‘dog’, ‘cow’, “fox’, etc.
to the superclass ‘animal’.

Every dog is an animal. Every dog has all properties

of an animal (inheritance).

N J

\

Aggregation groups multiple individuals to a new

(complex) object (part_of-relation).

Example: ‘J. Doe’ and ‘N. Allan’ are working on
the "Project X'.
Some authors differentiate between aggregation and

association.

. /
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more complex programs).

All these abstraction methods are necessary to ad-
equately model complex systems.

Missing methods can be replaced (at the cost of

The relational data model does not provide gener-

Kalization.

~

/

//’

Graphical Methods for Representation

CLASS

SUPERCLASS

SUBCLASS

CLASS 1 CLASS 2

N

Classification

Generalizalion

Aggregation

‘\\

_/
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Exercise 1

Design a model with the following knowledge: Rome,
Australia, Mexico City, Germany, Europe, Boston,
Los Angeles, Sydney, New York, USA, Paris, Amer-
ica, Mexico, London, Australia, ltaly, England, France,

Berlin, Hamburg

o Group similar objects to classes.

\ e How are these classes related? /




Solution Exercise 1

- p

Classes:
¢ Continents: Australia, Europe, America

o Nations: Germany, USA, Mexcio, Australia,
ltaly, England, France

» Cities: Rome, Mexico City, Boston, Los Ange-
les, Sydney, New York, Pans, London, Berlin,
Hamburg

s (apitals: Rome, Mexico City, Paris, London
Relations:
o Aggregate: Continent-Nation

» Association: Nation-City

\ ¢ Generalization: City-Capital

-~ —

Graphical model:

. i City
Continent — Nation

Capital
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Software engineering discusses methods for
» design
s implementation
» maintenance

* management

of software systems.

. " J
a I

Complexity of coding:

¢ Assembler vs. high-level programming lan-

guage:
Programming productivity 5 : 1

» High-level programming language vs. object-

oriented language:

\ Programming productivity 5 : 1 /

4 N

Current programming methods (structured program-
ming etc.) deal with problems of 'programming in
the small.’

‘Programming in the large’ deals with the construc-

tion of large programs.

\ /
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Tools for programming in the large:
¢ Encapsulation (information hiding).
e Modularization.

o Independent compilation with type checking

across modules.

\ e Intelligent finker and builder.

/

Programming in the large encourages reusability:

e avoid redundancy

reduce size of software systems

well-defined interfaces

spectfications

faster implementatioris

e better maintenance

Reusabilty requires code management systems for

information about existing modules.

/
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GIS are very large software systems and need these
tools.

Object-orientation specifically addresses
o the design of modules,

s the interfaces between modules.

\ s the type structure. /

- B

The object-oriented concept

Encapsulate a data object with the pertinent op-
erations in a single unit.

This data object may represent a ‘real world object’
and the operations applicable to it.

Other programs can access the data object only

through the defined operations.

N | Y,

s p

Object-oriented example:

e object: "building’

k e operations: 'add a story’, 'sell building’, etc.
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Why 1s object-orientation advantageous?
® reuse
¢ decoupling

® cambining type and operations

N y
- B

Multi-sorted algebras

An algebra (e.g. complex numbers) is a mathe-

matical structure, consisting of
» a collection of things (the sort of carrier)
» operations on these things

» axioms which explain the effects of the oper-

\ ations. /
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Example for a multi-sorted algebra: complex num-

bers

Constants 0, 1
QOperations
_+ .: complex x complex = complex

_ % _: complex x complex = complex

etc.

Axioms
a+b=b+a
l1*a=a

\a—i—Ozaetc. /

/

Another example: stack of items

Constant empty-stack
Operations

create: = stack

push: stack x item = stack
pop: stack = stack

top: stack =- item

isEmpty: stack == Boolean
Axioms

isEmpty (create) = true

top (push (s, 1))
pop (push (s, i)) = s

\pop (create) = error /




Axiomatic definitions are difficult to specify and of-
ten not helpful for implementations.

Abstract data types are definitions of types together
with operations.

The operations can then be implemented in a reg-
ular program.

An object-oriented language is based on the defini-

Ktions of modules that describe ADTs.

/

/

Example: rational numbers in MOOSE

ADT Tat -- rational numbers
USE int
TYPE RECORD num, denom: int

OPS make (il,i2: int): rat ==

result.num := il

result.dei_nom = 12
num (r: rat): int == r.num
denom (r: rat): int == r.denom

mult (rl, r2: rat): rat ==
make (mult (num (a), num (b)),
mult (denom (a), denom (b)))

N /
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An ADT can depend on other ADTs:

* Quotient algebras: limiting the ranges of val-

ues.
o Extensions: adding new operations.

» Denvations: explaining a new ADT in terms

of previously defined ones (abstract implemen-

& tation).

J

s ™

Example for abstract implementation:

The algebra for radians restricts the algebra of num-

bers to values between 0 ...27.

radians.add (rl, r2) == int.add (r1, r2)

if result > A

elseif result< 0 then

Q]

5 Tr)

Kadd (result,

then sub (result, 2r)

3

J
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Another example for abstract implementation:

The four axioms of a distance function are:

e The distance from a point to itself is zero:

dp.p) =0

s The distance between two points is greater

than zero if the two points are not identical:
d{plop2) > 00f pl # p2
» The distance is symmetric:
dipl.p2) = d{p2. pl)

o The sum of the lengths of two legs of a triangle
is greater than or equal to the length of the
third leg (triangle inequation):

dipl.p3) < dipl. p2) 4 d(p2, p3)

. /

4 I

Exercise 2:

s Find some (> 2) implementations for a dis-

tance function.

o Show that your functions obey the four axioms

of a distance function.

- /




Solution for Exercise 2

-

Boolean Distance

dipl.p2) == if p1l = p2 then () else 1

axiom 1: d(pl.pl) =10

axiom 2: d(pl.p2)=1

axiom 3: J{pl.p2) = d{p2.pl)y =1
\axiom de diplop2y+d{p2.p3) =141 =2

/

-

Euclidian distance

dipl.p2) = \/( ap = b )+ (a, — b, )?
axiom 1: d(pl.pl) = \/(() —0)2 4 (0—0)?

axiom 3: apply commutative law.

\axiom 4:

axiom 2: square root is defined as positive number.

\

J
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City block distance

dipl.p2) = Jev)- — 0| + |”!r - h.ul

axiom 1: d{pl.pi) = |0 +[0] =0
axiom 2: || is always > 0.

axiom 3: |a,. — b | = {h, —u,]

/

\axiom 4:

Why is the following function not a distance func-

tion?

dipl.p2) = ROUND( \/((:J. — bR+ {a, — b))

axiom 2: d(pl.p2)~ > (0

ke.g., p1 (0, 0.4), p2 (0, 0)

s p

/
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Generalization and Inheritance

If a class is a specialization (or subclass) of an-
other class, then all objects of the subclass have all
properties of the superclass.

This ts the semantic of this abstraction mechanism:

all dogs are animals.

klnheritance describes behavior, not implementation.

- ™

A programming example for inheritance:
Numbers have operations like +, - and axioms like

a+ 0 =a.
s A rational number is a number.

s Rational numbers inherit the operations of num-

bers.

N /

- ™

The behavior of + is valid for all numbers.
For example: commutative law: a + b=b 4 a

Thus the addition of rational numbers must obey

the commutative law too.

/
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The implementation for 4+, however, is different for

rational numbers and for complex numbers.

s Addition of complex numbers (e, 4 b;):

oAb ==(u.+ b, +0)

e Addition of rational numbers -‘ﬁ

\ == (0, b+ b, 50y 0, 8h;)

/

/

Exercise 3:

Prove that the commutative law (a+b = b+a)
holds true for both additions.
a+h==1{a, +b.u;+ ) (complex numbers)

a+b == (a, I+t agh) (rational numbers)

.




Solution for Exercise 3

4 N

Complex Numbers

Ger, b, 0y =l +a, b ;)
apply commutative law:

(e, + b b)) =, -+ b.o; b))

Rational Numbers

(e, wlog D, ey g s hyy = (b, wag o, e by byseay)

apply comutative law:

K( g by by g g thyy = (u, by +b, 0y by%ay )/

s R

Polymorphism

A program may contain variables a, b: number
which can be, in turn, a complex or a rational num-
ber.

Every time a-+b is executed, it must be determined
which operation to use.

isRational (a) & isRational (b) — rat.add (a, b)
isComplex (a) & isComplex (b} — complex.add (a,
b)

N Y




Example for Polymorphism

draw (object)

applies to all spatial objects. The implementation

of the draw-operation differs for the type of object,
e.g.,

e isBuilding (object) — drawBuilding (object)
s isRailroad (object) — drawRailroad (object)

In Smalltalk this is called 'message passing’, but it

is semantically not different from a procedure call.

Syntax: object message parameters.

~ \

J

~ N

Multiple Inheritance

A class may be a subclass of several distinct su-
perclasses.
For example, a toy-truck is_a truck and is_a toy.

The toy-truck inherits properties from both classes

\toy and truck.

/
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Toy

-

AN

Graphical representation of multiple inheritance:

Truck

7

Toy-Truck

™

/

-

Propagation derives values in aggregations.

\

Door

Building

A d

Wall

N

Window
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Two types of propagation:

s bottom-up

» top-down

_ J
a - I

bottom-up propagation:

s from the smaller to the larger parts.

» using aggregate functions, e.g., SUM, AVE,
COUNT, MIN, MAX.

For example, the area of a city is the SUM of all

parcel areas which belong to the city.

\formal: propagates (parcel, area, city, area, SUM) /

4 )

top-down propagation:
e from the largest part to all smaller parts.
e immediate propagation of value.

For example, the currency of a state is the currency

in the county, too.

formal: propagates {state, currency, county, cur-

&rency). /
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Generic modules for parametric types

The behavior of a type is often not dependent on
the types to which 1t is applied.
Far example, a stack of integer behaves similar to

ka stack of real or a stack of complex.

)

s ~

A generic 'sorted list’ can be written as follows:

TYPE comparable
OP before

TYPE rng
AXIOM a+b=b+a

TYPE sortedlist of comparable

— before operation available
OP insert (I, 1) ==

— needs ‘before op' to decide where to insert

TYPE ratNumber ts a comparable
is a ring
OP before ==

— implemented here

TYPE sortedlist of ratNumber

— permitted because ratNumber is comparable

N y
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A complete object-oriented language must contain

e multiple inheritance

¢ generic modules

)

s R

Object-oriented programming languages:

o SIMULA: the father’ of object-oriented lan-
guages:
— stngle inheritance

— concurrency

» Smalltalk-80: the object-oriented ‘prototype’:
~ uses message-passing to explain polymor-
phism
~— single inheritance

— inheritance of implementation

dynamic binding (execution penalty)

s A number of LISP dialects {OOPS, Scheme,

etc.).




s ™

C precompilers:
o Objective C

- single inheritance

— multiple inheritance

— generic modules

o

/

Summary Session 2:

s The three abstraction mechanisms clessifica-
tiom, gqeneralizeiion, and aggregation are an

essential part of object-oriented modeling.

s Object-oriented software systems must sup-

port object-oriented abstractions,

» Multi-sorted algebras are helpful, because they

separate specification and implementation.

o Only a few current programming languages

support object-orientation sufficiently.
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Session 3: Object-oriented DBMS

s DBWMS functionalities

Conceptual Sehema Design

Data Definition Language

Complex Objects and Value Types

Object-oriented programmer's interfaces

Complex consistency constraints /

N

-~ ™

DBMS functions
e Storage and retrieval of data.
¢ Multiple concurrent users.

e Protection of data against loss and misuse.

K e Maintenance of consistent data collections.

)

4 )

Object-oriented languages have been extended with
the concept of ‘persistent objects’:

Data values that are stored and available in later

runs of a program.

/
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In this simple form, 'persistent objects’ cannot re-
place a DBMS.

Problems with persistent objects:
» Single user.
e Data security and protection.

e Effective buffer management and storage clus-

tering.

KObject—oriented DBMS are needed. /

- ™

Problems with merging DBMS with the object-oriented
design:

» DBMS defines data types with implied DB op-
erations. All other operations are defined in

programs.

o Object-orientation defines a data type and all
operations in a single module. No other pro-

gram can access the data except through de-

k fined operations. /
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Conceptual schema

In an object-oriented design multiple views of the

data are necessary:

s Conceptual schema for overview.

o Detailed module definitions for specifics.

Future CASE systems will help to allow for multi-

code.

-

N

ple views and varying resolution based on the same

\

/

Graphical Tools (like Entity-Relationship diagrams)

are very helpful for the schema design, because they

show the model in a very concise form.

NODE STREET PERSON
nr name name
coordinates address
P ' l
HOUSE
SHARE
EDGE nr Sart
?
ARC
— PARCEL
Y identifier
EE_FORM
= —»] EDGE-IN-NET |« use

Simple Conceptual Database

Schema

/
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Exercise 4:

Draw a graphical schema modeling the following

situation:

s Residences have the properties number of bed-

rooms, color, and area.

o Offices have the properties area, number of

workers, and office hours.

¢ A residence has one or more owners, and one

person can own more than one house.

s Residences and offices are located on streets,
and have addresses (e.g., 30 Grove Street).

Each building belongs to exactly one street,

\ and its address is unique. /




Solution for Exercise 4

-

BUILDING

OWNER

QUOTAS™

name

RESIDENCE

STREET

name

#ofBedrooms

color

_OFFICE

officeHours

HofWorkers

area

#




The conceptual schema must be translated into a
form which is understood by the database (Data
Definition Language). An object-oriented DDL de-

scribes:

¢ names of object types (classification),

s relations among object types (aggregation, gen-

eralization),

¢ implementation of object types (properties).

)
~

/A description of a DDL:

BUILDING (buildingId, streetId, number)
STREET (streetld, name)

PERSON (socSec, name, firstName, birthDate)
TENANT (secSec, buildingNo)

OWNER (socSec, building, ownershipQuota)

/

/
N

Format in an extended relational form:

relation BUILDING
key buildingId: positive integer;
field theStreet: street; {the reference
will be replaced by the key of street,
implies an existing constraint}

field number: integer;

N /
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In CODASYL style:

01 building.
05 buildingld pic 98999.
05 streetlo pic 999.
set building-street.

owner is street.

member is building optionai automatic.

\\h sorted by streetNo of building. 4,/

I

Object-oriented database management systems must

be extensible:

» Objects can be arbitrarily complex.

o A predefined set of data types is insufficient

for complex objects.

» It is necessary that the user can define her/his

k own ADTs using other ADTs,

J
\

An object-oriented DBMS sees data as typed, un-

interpreted bit strings.

Access operations are needed.

The modules defining the objects must provide spe-
cific operations for the database to access parts of

the data necessary for the DBMS.

N /
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Required object operations:

Compare two abjects for equality.

o Compare two objects for order (less than op-

eration).

Access a spatial object by its minimal bound-

ing rectangle.

Compute a hash value.

o /
~

Example

In order to keep all buildings along a street in a

sorted list, the operations 'buildingBefore’ and

k'buildingEqual' must be defined.

J

We abserved that many object types have similar -
components. We call ADTs, which are the building
blocks for object types, nalune types.

Fundamental value types:
e integer with intEqual, intBefore, intHash
» string with strEqual, strBefore, strHash

s etc.

N /




Example for a user-defined value type:

ADT ivl -- one-dimensional interval
USE int
TYPE RECORD low, high: int

Such value types can be used for further definitions

of more complex value types:

ADT iv? -- two—-dimensienal interval
USE ivl —-- from two 1-d intervals

TYPE RECORD low, high: ivi

y
- N

The decomposition of object Types into value types

is a technical issue. It releases the database admin-

istrator from considerable .overhead when defining

/

the necessary object operations.




Example

The component ‘buildingNr' is of valueType
‘integer’.

The object operation 'buildingBefore’ can be im-

plemented in terms of the value type:

buildingBefore (bl, b2) ==
intBefore (bl.building#, b2.building#)

N Yy
- ™

The object-oriented programmer's interface is a col-

lection of general 'object' operations.

Three categories:
e property operations
» unary object operations

o binary object operations

N /
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‘DBobjectlass’.

each subclass.

DBobjectClass

X

r

Y

r

BUILDING

N

\

All object operations are defined for a generalized

The DBobjectClass inherits all DB operations to

Similarly, other concepts, like spatial properties and

graphics, can be inherited from a generalized object

type (multiple inheritance).




The DB object operations are:
e put a property into an object
e get a property from an object
e store object
e modify object
o delete object
e access object by key
s aggregate two objects

» dissolve two aggregated object

K e get next component

-

Level 1: get and put operations:

For each property there is a ‘get’ and a “put’ op-
eration to asstgn and access values of objects, re-

spectively.

» putProperty (object, property)

\ s getProperty (object): property




For instance, the class ‘person’ with the property

'name’ has the following operations:

o putPersonName (personObject, “Jack’)

K ¢ name := getPersonName (personObject) /

s R

Level 2: Unary object operations:

For each object class. the three fundamental DB

operations store, maedify, and delete are implemented.
» store {object, classType)

s modify (object)

s delete (object)

/

For instance, the class ‘person’ in an ‘objectType'
and inherits the operations

s storePerson (personObject)

¢ modifyPerson (personObject)

K o deletePerson (personObject) /




-

\-

Direct Access

An instance of the object class can be accessed

with the knowledge of a key value.

~

For example, access to a 'person’ through the prop-

erty ‘name’:

o getPersonByName (personObject)

J

a N

Level 3: Binary object operations for aggregatedclasss

in

For instance, the operations for aggregate 'streetNo’

between 'street’ and ‘building’ are:

o streetBuildingAggregate (streetObject, buildin-
gO0bject)

» streetBuildingDissolve; (streetObject, buildin-
gObject)

o streetGetNextBuilding (buildingObject)




/

Exercise 5:

Write the set of object operations for this schema:

BUILDING
OWNER
name QUOTA RESIDENCE
HofBedrooms
color
OFFICE
officeHours
STREET #ofWorkers
name area

-

N\




Solution for Exercise §

Level 1

ownerl ownerPutName ownerGetName

streetl streetPutName streetGetName

buildingl | buildingPut# buildingGet#
buildingPutArea buildingGetArea

officel officePutOfficeHours officeGetOfficeHours
officePut#ofWorkers officeGet#ofWorkers
officePutArea officeGetArea
officePut# officeGet#

residencel | residencePut#ofBedrooms | residenceGet#ofBedrooms

residencePutColor
residencePutArea

residencePut#

residenceGet Color
residenceGetArea

residenceGet#




Level 2

owner2 ownerStore
ownerModify

ownerDelete

street? streetStore
streetModify

streetDelete

office? officeStore
officeModify

officeDelete

residence? | residenceStore
residenceModify

residenceDelete

building? | buildingStore
buildingModify
buildingDelete

quota2 quotaStore
quotaModify

quotaDelete




Level 3

owner3 ownerQQuotaAggregate
ownerQuotaDissolve
ownerGetNextQuota
building3 | buildingQuotaAggregate
buildingQuotaDissolve
buildingGetNextQuota
street3 streetBuildingAggregate
streetBuildingDissolve
streetGetNextBuilding
building3 | buildingGetStreet
quota3 quotaGetOwner

quotaGetBuilding




s ~

Consistency constraints:
e with respect to the object
e among objects

Coded in the module in the regular programming

language. Provides operations on complex objects.




s R

Consistency constraints with respect to a single ob-

ject:

* No two objects may exist with the same value.

Applies for storing and modifying an object.

s Values derived from others (functional depen-

K dent) /

~ B

Consistency constraints with respect to related ob-

Jects:

» An object cannot exist without another ob-
ject. Applies for storing, modifying, and delet-

ing {existence constraint).

s Anobject cannot exist if another object exists.

k s Derived values. /




/

Example for complex consistency constraints

two parts.

Operation addNode:

N

Situation: An edge connects always exactly two
nodes. If a node, which is not start or end node,

lies on an edge, then the edge must be split into

\

_/

—

e Node is the start or end of an edge.

o Node does not lie on an edge.

\ « Node lies on an edge.

X




4 R

Example for very complex consistency constraints

Situation: A completely triangulated area.

Constraints:
s Only triangular areas are permitted.
o No two triangles must overlap.
¢ An edge connects exactly two nodes.

Operation addNode:

\ J

4 , N

o Node is identical to an exisiting node.

» Node lies on a edge (but not start or end).

» Node lies within a triangle.

N /




4 I

Consistency constraints for removing objects are
even mare complex.

Simple consistency constraints must be often vio-
lated during long transactions in order to make to

required changes.

Include the consistency to the object operations.

/

First object layer: put operations
e include checking of valid ranges.

e.g. coordinates must be tn the range between 0
and 10,000:

putXCoordinate (object, xValue) ==

-~ check whether xValue lies within

-—- allowed range.

N . /
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Abstract

Conventional database management systems have proven to be insufficient to model and
perform non-standard applications such as spatial information systems, CAD/CAM, etc. The
object-oriented approach overcomes some crucial deficiencies with refined methods for data
abstraction and suitable tools to structure data allowing the usage of complex object types.
For the implementation of an object-oriented database management system appropriate
tools in programming languages are needed. A Geographic Information System (GIS) which
treats spatial data asks for additional abject-oriented extensions such as storage clusters to
provide fast access on spatial objects, concurrent management of spatial and non-spatial
data, and treatment of properties of spatial objects in query languages.

1 Introduction

Geographic information systems (GIS) contain substantial amounts of data which must be
stored in computer readable and accessible form. Computer scientists have studied database
management systems (DBMS) for several years and database management systems for com-
mercial usage are currently available; however, several studies have shown that these systems
are not suitable for non-standard applications, such as GIS, Land Information Systems (LIS)
[Frank 1981] [Frank 1984b), and CAD/CAM [Eastman 1980] [Stonebraker 1982]. Several
experimental database management systems have been tried, but a complete system is not
yet available commercially and additional research is needed.

"Work on these concepts was partially funded by a grant from NSF under No. IST-8609123



During the last years, research in software engineering has promoted an object-oriented
design method by which real warld objects and their relevant operations are modelled in a
program. This approach is most useful for application areas like GIS, because it naturally
supports treatment of complex, in this case geometric, objects [Kjerne 1986]. Unlike conven-
tional data models, an object-oriented design is more flexible to describe the complex data
structures, primarily by refined techniques for conceptual modeling, such as generalization
and inheritance.

Spatial information systems will benefit from the use of object-oriented databases in
various forms:

s The system architecture will become clearer and easier to maintain so that software
systems will have a longer life cycle.

s Programmers need not worry about aspects of the physical location where to store
data; instead, a unified set of commands provides the functionality to stare and retrieve
data.

» By using a database, data is treated by its properties; by using an object-oriented
database, these properties are logically combined to objects which can be often very
complex.

The paper starts with a review on existing database systems and their deficiencies in
serving as a suitable tool for modeling space related applications. In particular, the theory
for data structuring techniques is compared to the tools in programming languages available
to implement them. Following this chapter, an object-oriented data model is introduced
which is built upon the three major abstraction methods of classification, generalization, and
aggregation. The important concepts of hierarchical and multiple inheritance are explained.
Software engineering aspects are investigated in chapter 4. Tools, such as programming
languages and programming environments, are seen as especially crucial to implement object-
oriented designs. In chapter 5, properties and requirements of object-oriented database
management systems suitable for GIS are discussed. The implications of object-oriented
structures to query languages are sketched. The paper closes with a summarization of the
GIS requirements for a database management system.

2 Databases for Non-Standard Applications

Databases have become an accepted too! for storing data in readable and accessible form,
and systems for CAD/CAM or spatial information (Geographic or Land Information Systems)
integrate a database system into a larger software system [Frank 1983a].

Unlike conventional systems, spatial information systems deal with data describing the
real world, and they combine several domains which have not been studied sufficiently. Think
of a Geographic Information System in which a large variety of diverse tasks, such as



» sophisticated treatment of real-world geometry

» measurements of different resolution and accuracy

s uncertain measurements and attribute classifications
e legal aspects

e management of time series of veriable attributes

. representatiqn of data in different generalization levels

are combined in a single system. This combination of difficult areas may be a reason why
spatial information systems have been so slow to come and only similar, but more restricted
applications are used successfully [Tripp 1987} [Beckstedt 1987].

Spatial information systems can benefit from using database management systems be-
cause these provide a unique form of storing and accessing structured data. The problems of
low-level data management are removed from the programmer's and end user's responsibility,
and data can be descibed by their properties, not their physical structure.

Unfortunately, existing commercial database systems are not sufficient for applications
to engineering tasks, often called non-standard applicatioris, such as CAD/CAM for VLSI
design or cartographic and geographic information systems. Each of these areas struggle with
the same kind of problem: they contain substantial amounts of ‘real world’ data including
geometric aspects which must be managed by a computer. Their composition is too complex
to be managed in conventional database systems efficiently. Interactive systems require a
certain degree of performance, independent of the size of the data sets—a demand which
cannot be fulfilled by existing systems.

2.1 Deficiencies of Conventional Database Systems

Members of the CAD/CA M-community have complained that there are currently no database
systems which are appropriate for their demands [Buchmann 1985] [Sidle 1980] [Udagawa 1984].
They state that standard database systems do not fulfill requirements which are crucial for
engineering applications:

s Performance is unacceptable when a database is populated with large amounts of data
[Wilkins 1984] [Harder 1985] [Maier 1986]. Dealing with spatial data, this deficiency
is particularly visible during interactive graphic sessions.

» The treatment of complex objects [Lorie 1983], such as molecules in chemistry [Batory 1984],
spatial objects in GIS/LIS [Frank 1984b], or circuits in VLSI is not supported. Spatial
objects, for example, should not be forced to be artificially decomposed in smaller
parts.



¢ Appropriate mechanisms for data structuring [lohnson 1983], especially for structuring
real-world data, are missing.

Most conventional database management systems are built on the relational model {Codd 1982].
In the relational mode!, data are organized in tables or refations. Columns of the tables are
called attributes and all values in an attribute are elements of a common domain; rows are
records, tuples, or relation elements.

While this cancept is svitable for modeling cormmercial data, such as bank accounting,
it is too simplistic for modeling data describing the real world. Geographic data cannot
be modelied as strings, reals, and integers in table format—the necessary data types are
more complex. One property of complex object types is that an object type can be part
of another (more) complex object type. Data types for two-dimensional coordinates, for
example, consist of an x- and y-value. A more complex object type includes some error
value stating the accuracy of the coordinates. Such 'error-affected’ coordinate types may
be part of a point type which combines the coordinates with a number and a theme.

Moreover, the relational mode! {acks the powerful concept of recursion which is crucial
for modeling complex situations such as spatial data and their subdivisions: areas can
be decomposed into several sub-parts which themselves can be continuously decomposed
further. For example, the area of a town is composed of several other areas, such as the
house lots, streets, etc.

Only recently, the design of databases for spatial information system has become a
research topic [Lipeck 1986] [Schek 1986] and only a few experimental database systems
exist which pursue new concepts [Frank 1982b] [Dayal 1986] [Batory 1986].

In existing GIS software systems, a trend towards sophisticated software engineering
methods [Aronson 1983] and architecture [Smith 1986] can be observed, stressing object-
oriented concepts for geometric data handling [Herring 1987]; hawever, database manage-
ment systems, and especially object-oriented ones, have not yet been incorporated into
commercial GIS systems.

What are the technical reasons that database systems have failed to support complex
non-standard situations? First, database requirements are not a hardware problem. [t is
commonly known that hardware currently develops much faster than software; however,
faster and less expensive CPUs, larger hard disks, and more memory do not overcome
certain problems in database technology for engineering. Solutions which can be achieved
by exploiting additional and faster hardware are not the problems which will be addressed
in this paper. For example, new technologies for hard disks provide more storage capacity
at less expensive costs, but the disk access has not become faster. This is important for
database management systems which struggle with growing data collections which get too
complex to be managed efficiently.

Rather than hardware, software engineering is an impediment for better-suited engineer-
ing databases. We claim that theoretical and conceptual problems are the subject of major



improvements. For example, even with much faster access to storage devices, internal data
structures organizing spatial data will be needed in order to provide adequate performance
for range queries.

2.2 Deficiencies of Software Engineering Tools

Programming is still seen as an art in which the programmer can accomplish a goal by
whatever means he believes to be suitable. The contrary is true: each program is a very
formal piece of code following strict rules; programs must not only be compatible between
hardware, but also ‘compatible’ among programmers, i.e., different programmers must be
able to read and understand each others' code. By following strict rules and restrictions,
these goals can be achieved. Programming languages tend towards offering a large variety
of tools, while the opposite is needed, namely restrictions, such that several programmers
come up with very similar solutions.

The other deficiency observed is that concepts in software engineering do not match
with database models or are not suitable for them. Theory in software engineering pro-
vided some suitable techniques, such as the concept of abstract data types [Guttag 1977]
[Parnas 1978] [Zilles 1984], in which each madule encapsulates an object type with all its
pertinent operations. Standard database systems, based on networks [CODASYL 1971] or
the relational [Codd 1970] data model do not fit easily into this concept.

2.3 Deficiencies of Implementing Data Structures

A number of methods to capture more semantics in the data model have been proposed in
the literature (for an overview and critique see [Brodie 1984a] which contains an extensive
list of references), but most of these methods have not been implemented, and none of them
is readily available. Complex tasks require complex structuring tools. ‘Complex’, however,
need not mean ‘complicated’: the support of data structuring must be powerful without
sacrificing the ease of use, and it must be extensive without becoming excessive.

In the past, considerable efforts were made to enrich existing data models with facilities
to treat complex objects. ‘QUEL as a Datatype’ [Stonebraker 1983b] and ADT-INGRES
[Stonebraker 1983a] extend the relational model with features to define more complex types;
DAPLEX [Shipman 1981] is a functional fanguage which includes hierarchical relationships
and transitive closure; the NF? model [Schek 1985] supports composite attribute types
being tuples or relations performing a hybrid of relational and hierarchical data model.
Recently, it was investigated, how geometry could be madelled by using these extended
data models [Kemper 1987], and it was shown that only partial remedies are provided with
these extensions.



3  An Object-Oriented Data Model

This chapter introduces the notation of objects and the abstraction tools. An entity of
whatever complexity and structure can be represented by exactly one object in the database
[Dittrich 1986], meaning that no artificial decomposition into simpler parts should be nec-
essary due to some technical restrictions. Complex data types for large objects, such as an
entire city (with its details about streets, houses, and their details such as owners, neighbors,
etc.), do not overcome the problem of data structuring.

The object-oriented data mode! is built on the three basic concepts of abstraction
[Brodie 1984b]: classification, generalization, and aggregation. Furthermore, inheritance
describes how the properties of a class are derived from properties of related classes. o

3.1 Classification

Classification can be expressed as the mapping of several objects (instances) to a common
class. The word olijert is used for a single occurrence (instantiation) of data describing
something that has some individuality and some observable behavior. The terms abject 1ype,
sorl, type, abstract dala {ype, or module refer to types of objects, depending on the context.
In the object-oriented approach, every object is an instance of a class. A type characterizes
the behaviour of its instances by describing the operators that can manipulate those objects
{O’Brien 1986). These operations are the only means to manipulate objects. All objects that
belong to the same class are described by the same properties and have the same operations.
For example, the model for a lown may include the classes residence, commercial build-
ing, streel, park, etc. A single instance, such as the house with the address ‘30 Grove Street’,
is an object of the corresponding object type, i.e. the particular object is an instance of the
class residence. Operations and properties are assigned to object types, so for instance the
class residenee may have the property number of bedrooms which is specific for all resi-
dences. Similarly, the class sfrec! may have an aperation to determine all adjacent parks.
In the implementation, classes translate to abstract data types or modules.

3.2 Generalization

Generalization is a well-known term in cartography for varying representations of objects
according to the level of detail needed in a given scale. Similarly, generalization as an
abstraction mechanism provides views in different levels of detatl.

Several classes of objects which have some operations in common are grouped together
into a more general superclass [Dahl 1968] [Goldberg 1983]. The converse relation of super-
class, the suberlass, describes a specialization of the superclass. Ancestor and descendant
are often used as equivalent terms for superclass and subclass. Subclass and superclass are



related by an is_« relation. For example, the object type residenec is a building; residenec
is a subclass of building, while building is its superclass.

3.2.1 Inheritance

The properties and methods of the subclasses depend upon the structure and properties

of the superclass(es). Inheritance defines a class in terms of one or more other classes.

Properties which are common for superclass and subclasses are defined only once {with the

superclass), and inherited by all objects of the subclass, but subclasses can have additional,

specific properties and operations which are not shared from the superclass. Inheritance is

transitive propagating the properties from one superclass to all related subclasses, to their
subclasses, etc. This concept is very powerful, because it reduces information redundancy

[Woelk 1987]. For example, building shares properties and operations with residener, such

as having an area and being neighbor of some other building. The class residener inher-

its all operations from its superclass building without the need to redefine them explicitly.

Additional properties, such as the number af budroams, are specific for the residenec. Spe-

cializations of rrsidenees, such as ruml residences and ity residences inherit the specific

properties of the residences, i.e. munber of bedroomns, and by transitivity the properties of
the super-superclass building, i.e., arca and neighbor.

Operations of the superclass are compatible between objects of the superclass and sub-
class. Every operation on an object of a superclass can be carried out on the subclass as well;
however, operations specifically defined for the subclass are not compatible with superclass
objects. For example, ncighbor is an operation of the superclass building, and it is thus
compatible with objects of the type residcnce. On the other hand, the operation nuwmber
of bedrooms is specific fo the subtype residence and thus not applicable for objects of the
superclass building.

Hierarchies: Inheritance can be strictly hierarchical as in the example of huilding, resi-
denees, ete (Figure 1). Hierarchical inheritance implies that each subclass belongs only to
a single group of hierarchies; one class cannot be part of several distinct hierarchies, i.e., in
hierarchical generalization, a class can have only one direct superclass.

Multiple Inheritance: The structure of a strict hierarchy is an idealized model and fails most
often when applied to real world data. Most ‘hierarchies’ have a few non-hierarchical excep-
tions in which one subclass has more than a single, direct superclass. Thus, pure hierarchies
are not always the adequate structure for inheritance; instead, class lattices [Woelk 1987]
with acyclic directed graphs are more suitable. This concept, allowing a multitude of distinct
superclasses for a single class, is called multiple inheritance [Nguyen 1986].

For example, highways and channels are artificial transportation ways, while rivers
are nafural {ransporfation sysfems; however, channecls and rivers both belong to another



hierarchy, the walcr systcim as well. So, channeland river participate in both waler systos

and fransporiation ways, twa distinet hierarchies which cannot be compared with each other
(Figure 2).

3.3 Aggregation

Several objects can be combined to form a semantically higher-level object where each part
has its own functionality. This is different from the way generalization is defined: operations
of aggregates are not compatible with operations on parts.

Agpregation establishes a relation which is often called a 'part-of'-relation since aggre-
gaied classes are 'parts of' the aggregate. For example, the class ¢uniy is an aggregate of
all related sc /e nts, furests, lakes, stnels, ete,

3.3.1 Dependencies Among Values of Different Ohject Types

Complex objects often do not own independent data, but properties which rely upon values of
other abjects. In GIS and LIS, for example, a large amount of attribute values is propagated
from one level of abstraction to another. When combining local and regional data, this
concept must be used to pursue the dependencies among data of different levels of resolution
[Egenhofer 1986]. The population of a county, for example, is the sum of the population of
all related settlements; therefore, the property pupulation of the aggregate connlty is derived
by adding all values of the property populuition owned by the class sc Hicuenl,

While inheritance is the propagation of operations, functional dependencies describe
how rulie s of one class are derived from values of another class. Often, a value is directly
propagated from the property of one class to another property of a different class. in the
object-oriented model, objects may have properties with values which rely on values of other
objects. Dependent values must be derived.

[f more than a single value contributes to the derived value, the combination of the
values must be described by a function. Common operations are minimum, maximum, sum,
average, and weighted average.

3.4 Tools for Modeling

Even for relatively small models of a mini-world, the structure can become too confusing to
be presented with pure alphanumeric means. Graphical methods have proven to be suitable
tools for a better and clearer understanding of data structures; representations such as entity-
relationship diagrams [Chen 1976] are essential tools in an object-oriented design. By using
the power of graphical representation, modeling becomes more clear and understandable
compared to pure alphanumerical descriptions.



The concept of multiple inheritance must be incorporated into the entity-relation- ship
model by using some simple graphical means.

4 Software Engineering Aspects

A database is only one part in the large effort to produce a CAD/CAM system, a fand
information system, or any of the other non-standard applications. |t is thus necessary
that database methods and techniques fit well within a software engineering environment.
Theoretically founded methods have proven to be well-suited for modularization based on
abstract data types.

41 Abstract Data Types

The software engineering method for abstraction and data structuring is based on the work
on formal specifications using abstract data types. An abstract data type (ADT) or a multi-
sorted algebra is a mathematical structure which fully defines the behaviour of objects, i.e.,
the semantics of the object-type and its operations, Abstract data types are specified as an
algebra describing what sorts of abjects (types) are dealt with and what kinds of operations
they are subject to. A set of axioms determines the effects of the operations. It is up to
the designer to assure that the sorts and their operations form a reasonable and meantngful
object.

Abstract data types can be combined in layers, where higher-level abstract data types
are first described independently (specifications) and it is then shown how this behaviour
can be achieved using other, hierarchically lower abstract data types (called an ‘abstract im-
plementation’ [Olthoff 1985] [Frank 1986]). Such abstract implementations can be formally
checked for correctness, by proving that the axiomatically specified behaviour of the upper
abstract data type follows from the abstract implementation and the axiomatically specified
behaviour of the lower abstract data type..

Abstract data types are very useful in the design of large systems. They allow a much
more comprehensive and complete way of specifying routines together with their axioms
than an extensive programming language does.

4.2  Object-Ornented Programming

The programming language must support the abstraction methods. The development of
object-oriented databases has had problems, mostly because suitable software tools are
missing or old and inappropriate tools have been used. Certain programming tools must be
available to implement object-oriented databases and data structures.

¢ In order to implement complex objects, language tools, such as RECORD structures in
Pascal {Jensen 1978}, Ada [Ada 1983, etc., are needed to create user-defined object
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types. For example, in a spatial information system a large amount of the data
are points with coordinates, either 2-dimensional or 3-dimensional. By combining
the coordinates to a RECORD, a complex data type, such as a pointType, can be
created.

TYPE pointType = RECORD
%, vy, 2: coordType;
END;

In object-oriented programming, objects consist of a type definition and a collection
of operations. Objects can be only accessed or manipulated by using these operations.
For example, the object type pointType, as introduced above, has a specific aperation
to shift a point in x-, y-, or z-direction (translation); the user can access a point only
via the interface of the pointType.

Object-oriented programming needs (1) tools to tie types and their aperations closely
together (modularisation), and (2) methods to hide internal parts of the routines
from unauthorized external usage (encapsulation). Modula-2 [Wirth 1982], Smalltatk-
80 [Goldberg 1983], and C++ [Stroustrup 1986] are examples for languages which
support modularization and encapsulation. Encapsulation provides implementation-
independent code outside of a module.

Genericity [Cardelli 1985] has proven to be a suitable and powerful methed to reduce
redundant definitions of ADTs. A generic type or object is a definition which is a
backbone for a series of detailed and specified definitions. A pair, for instance, is a
generic object type which combines two objects: pair can be applied to two integers
forming a puir of inlegers. Qperations which are common for all puirs, such as
cyualily, are defined only once, while their implementation might vary from type to
type.

Programming code is considerably reduced by using generic types, because operations
which apply to all instances are coded only once.

Only recently, inheritance has been recognized as a crucial issue in object-oriented
approaches. Two categories of inheritance are identified, hierarchical {or straight) and
multiple inheritance.

Hierarchical inheritance deals with a strict structure in which for each child only a
single direct ancestor exists. Some programming languages, such as Smalltalk-80 and
C4-+, support straight inheritance, other languages with variant RECORD structures,
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such as Pascal or Ada, can at least simulate hierarchical inheritance of types, but not
of operations. For example, two-dimensional and three-dimensional coordinates are
both representations for points. From this superclass, they both inherit operations
such as calculating the distance between two points. The implementation of these
operations may be different, however, from outside they look the same. With a variant
RECORD structure, the inheritance can be implemented as follows:

TYPE pointType = RECORD
CASE dimension: dimensionType of
tweD: (x, y: coordType);
_ threeD: (x, y, z: coordType);
END;

Multiple inheritance allows one object to be part of several distinct hierarchies. Only
a few languages. such as some LISP dialects (CommonObjects [Snyder 1986], Zeta
Lisp [Weinreb 1981]), ObjectLOGO [Davidson 1987], and Trellis/Owl [Q'Brien 1986]
allow the definition of multiple tnheritance. . '

These concepts for object-oriented programming do not include a message-passing paradigm
[Goldberg 1983]; message-passing is based on passive objects which can receive messages
directing what actions can be executed on an object. Message-passing is often cited as
necessary for an object-oriented design; in our opinion it is not an essential feature, but
certainly a desirable and helpful paradigm. [t was outlined that message-passing is rather a
pedagogical than a semantical difference to conventional routine calls, and any procedure
call in an Algol-like language could be seen as message-passing {Storm 1986].

Object-oriented programming of object-oriented applications depends on the choice of
the programming language; only a few languages support object-orientation sufficiently. We
claim that object-oriented applications cannot be achieved without object-oriented tools and
cancepts.

4.3 Support System

Database systems are large software systems which must be embedded in some environment
supporting development and maintainance. Especially the latter is crucial for the life cycle
of a system. Such an environment must be tailored to the object-oriented approach by
automatically propagating object definitions to other objects, controlling which object uses
which other objects, and which objects are used elsewhere.

In software engineering, abstract data types may be represented by modules which en-
capsulate a type and its operations. Facilities such as packages and use clauses in Ada
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or modules and import commands in Modula-2 allow the programmer to easily translate
ahstract data types into executable code. For other languages with capabilities for sepa-
rate compilation of modules, these concepts can be applied by using a precomptler which
propagates the ADT-definitions to the modules where they are used.

5 Database Management Systems Tailored to GIS

This chapter investigates how the object-orientation reflects in the architecture of a database
management system for GIS. |deally, an object-oriented database consists of subsystems
which can be added or exchanged to support specific tasks [Batory 1986]. Before investi-
gating the GlS-specific parts of a tailored object-oriented database, subsystems of standard
database systems are compiled which can be adopted from an abject-oriented database.

5.1 Applicable Subsystems of a Conventional Database
5.1.1 Disk Storage Subsystem

A database must provide persistent storage for objects modelled in the information system.
Due to the large size of the data sets, use of magnetic-or optical disk systems for permanent
storage is required.

A storage subsystem must provide operations to store and retrieve data. The storage
subsystem does not know anything about other operations owned by the objects or their tn-
ternal structure. Disk access is expensive and improvements in performance can be achieved
by reducing the number of disk accesses by buffering the storage elements.

5.1.2 Multi-User Facilities

In multi-purpose information systems, a database is shared by a large variety of users who
often want to access the same data in parallel. The known straight forward techniques are
sufficient as long as concurrent users only access the data without changing them. This is,
however, usually not appropriate to accomodate users and their needs. Most organizations
cannot restrict update operations to a single user without severe distortion of their flow of
work.

A database management system must provide control mechanisms in order to guarantee
concurrent access for multiple users to all data and to prevent users from accessing data
during inconsistent states, i.e., the database management system guarantees that no user
sees the preparative stages of a change until the change is completed and made visible to all
other users. This is done by a dedicated subsystem, the so-called transaction manager. A
transaction is a sequence of operations by one user which transforms the database from one
consistent state into another one, such that outside of a transaction a consistent image of the



mini-world exists at all times. A transaction can either be committed, i.e., all modifications
will be made visible, or aborted, i.e., none of the modifications started during the transaction
will become effective. Modified data are isolated during the transaction preventing other
users from uncontrolled access. The transaction subsystem can fulfill with essentially the
same mechanisms other goals as well. It is usually assumed that a transaction system will
maintain all the consistency of the database across hardware or software malfunctionings,
and prevents loss of data. A transaction has the following four classical properties {ACID)
[Harder 1985}]:

+ Atomicity states that in a transaction either all modifications become effective, or no
change at all are made in the data set. e e

» Consistency is guaranteed before and after the. transaction.
s lsolation preventes from unauthorized access during a transaction.

o Durability keeps comitted transactions permanently.

5.1.3 Distributed Systems

Central databases are important resources and access to them must be available for many
operations in parallel and at the same time. For organizational reasons, large databases
are often not centralized, but distributed aver several computer systems. This may improve
their availability during local hardware failures, reduce data transfer cost, etc. In our opinion,
support for distribution should be built into this layer of the subsystem.

5.2 Specific GIS requirements

In this chapter it is proposed which additional concepts must be integrated into an object-
oriented database management system, such that it would fulfill the high expectations and
requirements on a persistent management system for very large spatial data sets.

5.2.1 Performance Enhancements for Spatial Data

Large spatial data collections should be managed without artificially subdividing them into
several user-visible map sheets. ldeally, the user should have a single database covering the
entire area of his or her application; however, the performance penalties are serious when
very large amounts of spatial data should be managed. [nteractive graphic representations
of spatial data with map output require especially adequate performance.

Generally, database performance depends upon the number of disk accesses needed to
retrieve the data. Conventional systems do not pay attention to the distribution of spatial
data and store them ‘as they are collected’. This treatment is not appropriate for spatial
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data collections, because the access on a set of data to be drawn as a map will take a long
time due to too many disk accesses. The larger the data collection grows, the slower the
system will perform.

Access on spatial data must be enhanced by integrating spatial storage clusters [Frank 1983b].
Such techniques take advantage of the spatial distribution of data and store them such that
spatial neighbors are neighbors on the storage device. It is assumed that (1) data used on
one drawing are likely to be re-used soon for further display or interactive modification, and
(2) not only a single object, but several adjacent objects will be used on a drawing. Spatial
access is organized such that not a single instance, but a set of adjacent data is read at
a time from a storage device and afterwards kept in main memory for future access. This
buffering scheme needs to be organized according to some rules, e.g., a least-frequently-used
strategy. In combination with spatial access methods, fast response time can be guaranteed
essentially independent from the size of the data collection.

It is worthwile to study how storage structures for heterogeneously distributed spatial
data can be improved such that access on less frequent objects performs well [Egenhofer 1987b].

5.2.2 Complex Geographical Objects

The complexity of geographical abjects, primarily spatial objects, requires methods to define
and use appropriate data types and operations. The object-oriented model is tailored to
this task. Data structures for recursive object definitions, such as areas being subdivided in
other areas, and transitive closure operations are necessary.

Geometric apd non-spatial data should not be forced to be physically separated from
each other or managed in different types of databases. Instead, both categories must be
integrated in one single system. This requires that

s user-defined, complex types can be stored in the database.

*» a buffering schema is incorporated to reduce physical disk access; the geometric neigh-
borhood should be exploited for a systerm with primarily graphical output.

Since objects can be more complex, their transactions will last longer and may be nested.
A transaction concept is necessary which goes beyond the classical properties atomicity,
consistency, isolation, and durability [Harder 1985].

5.3 Object-Orientation in Query Languages

Query languages have been disregarded for a long time, while they are one of the most crucial
issues of an object-oriented database. Query languages are expected to benefit from the
object-oriented approach by providing object operations at the user interface. Standard query
languages for conventional database mangement systems, such as SQL [Chamberlin 1976],
QUEL [Stonebraker 1976], or Query-By-Example [Zloof 1977], are not suited to deal with
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spatial data. because they do not include the specific properties of spatial objects. Non-
standard database management systems must be furnished with query languages which
support the treatment of complex objects including their specific properties. Proposals have
been made to develop completely new query languages which are tailored to their specific
application [Frank 1982a]. A database system for GIS which is able to manage spatial
pbjects efficiently is incomplete if it does not support spatial data and their properties in the
query language.

We do not believe that natural language interfaces overcome the problems in query lan- )
guages for non-standard applications and rather promote structured, object-oriented query
languages. :

5.3.1 Support of Spatial Relations

In order to treat spatial objects in query languages, properties must be included which are
specific for spatial data. Typical properties among spatial objects are topological and metrical
relations describing neighborhoed, inclusion, distance, and direction. Object-oriented spaiial
relations must be dimension-independent, t.e., such that they can be applied to any spatial
object. ‘Disjoint’, for example, is a relation which can hold for any two spatial objects (two
points, two lines, two areas, two volumes, but also a point.and a line, a point and an area,
etc.).

Currently, we are investigating how the syntax of a standard query language must be
extended such that it includes an adequate treatment of spatial objects [Egenhofer 1987a).

5.3.2 High-Level Object-Oriented Operators

Conventional query languages address subparts of objects explicitly and compare them with
standardized operations. This is the reason for the ‘artificial’ style of queries such as

RETRIEVE all roads
WITH road.width > 12

In natural language, humans wauld combine the operation j with the type of the object-
subpart to some meaningfull term such as browder than. The object-oriented approach
pursues this concept since the structure of the object and its operations are closely combined.
Consequently, query languages must apply this concept, too, and express relations between
objects such as

RETRIEVE all roads



WHICH ARE broader than 12

By combining object parts with operators and mapping them onto high-level operators, an
object-oriented view of operators can be presented.

5.3.3 Graphical Display

Conventional query languages deal only with alphanumerical data, consequently, the graph-
ical display for spatial objects cannot be specified. The specification is more complex for
graphical output than for alphanumerical output where the sequence of columns in a table
is described. Methods are needed to specify colors, patterns, and symbols.

Furthermore, interactive sessions with graphical output need mechanisms for user feed-
back, such as input via mouse on a drawing. The concept of direct manipulation on objects
is more advanced and object-oriented than conventional input methods, because it does not
reference a specific value, but screen coordinates which correspond to some object.

The output system directed by a query language has some other interesting problems,
such as the selection of context [Frank 1982a] which is dispalyed to make the graphical
output understandable. Other proposals investigate, how methods from artificial intelligence
like LOBSTER [Frank 1984a] can be incorporated into an intelligent interface for query
languages. '

6 Conclusion

It has been investigated how object-oriented database management systems can serve as suit-
able tools for spatial information systems. It was outlined that current database technology
is not sufficient for the specific tasks when dealing with large amounts of spatial data. Re-
cently, research in nog-standard database environments promoted an object-oriented model
which looks promissing to overcome some problems that make conventional database man-
agement systems unsuitable, such as the lack of modeling power to adequatly describe
complex objects and the unacceptably slow performance of current implementations. This
paper presented an object-ariented data model based on the abstraction concepts of clas-
sification, generalization, and aggregation. Hierarchical and multiple inheritance are crucial
for modeling complex object types. The implementation of object-oriented data structures
was investigated from the software engineering aspects (object-oriented programming lan-
guages).

With respect to geographic applications, several components of an object-oriented database
system were identified which are mandatory for treating very large collections of spatial and
non-spatial data. In particular, data structures for complex spatial data types, internal
storage clusters for fast access on spatial data, and concurrent treatment of spatial and
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non-spatial objects must be incorporated in the database management system. Finally, the
impact of the object-oriented design on query languages was investigated. Query languages
for spatial information systems need high-level relations and operators for spatial objects,
methods for specifying graphical display, and language tools for direct manipulation.
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Session 4: Architecture and query languages
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Object-oriented query languages
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An object-oriented database can be

s a database with an cbject-oriented interface

integrated in an object-oriented language.

» a database implementation using an object-

oriented concept.

The implementation of a database with an objct-
oriented interface need not be substantially differ-
ent from a relational or network database. Differ-

ent optimizations are possible, especially to support

\complex objects. /
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/ Storage Access Layer: \
« Interface to the operating system

- Physical clustering

\- Buffer management /

/ Interface to the Operating System: \

+ Standardized access 1o files

« Guaranteed physical writes

* Possible inference with operating system
optimization

» Physical structure of files

(Caveat: UNIX file system is not well suited for

\dbms operations) j
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/ Physical Clustering:

Access to data is by reading 'disk pages' from
disk (average 30 msec per read).

Store more data than necessary on 'the same
page (cluster).

Prediction of what data will be used at the

Qame time. /




/For Spatial Information Systems: \

Datain a neighborhood is fikely to be used at

the same time.

\Storage should preserve neighborhood. /
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/ Buffering: \
Access to data in main memory is much faster
than access to data on disk (100 nano sec
(10'7) compared to 30 msec (1073)).

Keep data once read in a bufferin main

Kmemory, expecting it will be used again. /

/ Access Methods: \

» Access by unique key

= Access using logical data structures:
- Aggregates

- Access in determined order (sorted)

v Access by spatial location j




/ Access by spatial location is typical for spatial

DBMS like AM/EM.

Typical Query:
Retrieve all <object-type> within <area>

e.g. Retrieve all water-mains within

\Brooklyne-north.

-

Can be simplified to

\ Query Window
/- | _

Provided the minimal bounding rectangle is

stored with every spatial object in the DBMS.

Object With Box
\ (Minimal Bounding Rectangle)
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SQL and other relational query languages
s access records and fields

s provide only standard operations on the stan-

dard data types

N J
\

This leads to complicated expressions, e.g.:

SELECT name, width
FROM road
WHERE width > 12

should be:

LIST name, width OF

roads broaderThan 12 feet.

N y
- \

An object-oriented query language must include user

defined operations on the abjects:
e How to combine with standard syntax?

o How to prompt the user about available oper-

ations?

Would a “functional style’ be more appropriate?

- /
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An SQL interface to an object-oriented database

could be constructed.

s All value returning functions which access a

single object could be considered fields.

o Aggregates can be replaced by key-fields, suit-

able for joins. -

This gives up most advantages of object-orientation,

including performance.

N J
- N

Existing object-oriented DBMS

Two commercially available systems:

o GEMSTONE: an extension of Smalltalk with
persistent objects and most DBMS function-

alities.

¢ Vbase: based on a C precompiler (COP). Most
DBMS functionalities including transaction pro-

cessing and SQL.

N y
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A number of research systems:

o Postgres: extends the relational data model

with ADTs (Stonebraker).

» PROBE: A DBMS based on a functional model,
deals with complex objects (Dayal).

"+ DASDBMS: NF (non-first normal form) ex-
tension of relational DBMS, an extension of

relational algebra to include complex objects

(Schek).

s PRIMA: A non-standard DBMS for complex
objects (e.g., solid modeling, molecules in
chemestry), incl. SQL-type query language
(Haerder).

o PANDA: Pascal based, evolves to a new [an-
guage/software engineering system called

MOOSE. Contains special support for storage

of spatial objects and access based on loca-

\ tion. ' /

s ™

1st Workshop on Object-Oriented Database Man-
agement Systems in Monterey (CA}), 1986
Proceedings (ACM - currently out of print).

2nd workshop in Germany, October 1988

/




s ™

Education

Object-oriented design and programing: Courses
are available from programming languge vendors

e.g., Stepstone {Objective C}, Ontologic (Vbase)

KShort courses with instructors from research groups.

g 2

Object-oriented design is a new topic in university
computer science curricula:

Courses at universities: Most advanced COS de-
partments offer regular courses dealing with object-

oriented design. North Eastern University and other

Ksimi!ar institutions offer evening graduate courses.

/

-~

Conclusicns

» GIS must be built using DBMS technology

with multi-user and transaction support.

» Spatial data are too complex to be managed

within the relational data rmodel.

o Object-oriented DBMS are needed for the treat-

K ment of complex ebjects in GIS. /
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An object-oriented DBMS cannot be considered
isolated from the object-oriented design and object-
oriented programming.

An object-oriented software environment is required.
Such an environment will include also graphic sup-

port, human interface manager, etc.
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Abstract

Non-standard database management systems are expected to overcome some of the prob-
lems that conventional relational systems cannot solve. PANDA is a.databases management
system that was designed for non-standard applications which deal with spatial data and has
been used in research and university teaching for several years. PANDA supports an object-
oriented program design with modularization, encapsulation, and reusability, and can be
easily embedded into complex applications, such as spatial information systems, CAD/CAM
systems, or cartographic expert systems. [t is presented how complex objects and their
operations are defined such that they can be easily incorporated into an object-oriented
application. A layered structure on top of the programmer’s interface provides object oper-
ations which can include complex consistency constraints.

1 Introduction

Databases have become an accepted tool for storing data in readable and accessible form.
Like other engineering applications, such as CAD/CAM or VLS| design, spatial information
systems integrate a database system into a larger software system [Frank 1983a] providing
the fundamental facilities for sharing data in a multi-user environment, such as persistency,

*This work was partially funded by a grant from NSF under No. [ST-8609123 and equipment grants from
Digital Equipment Corporation.



concurrency, and transaction management. Existing commercial database systems are not
sufficient for these tasks: Performance is unacceptable when a database is populated with
large amounts of data [Wilkins 1984] [Harder 1985) [Maier 1986]; the treatment of com-
plex objects [Lorie 1983], such as molecules in chemistry [Batory 1984], spatial objects in
GIS /LIS [Frank 1984], or circuits in VLS. is not supported; appropriate mechanisms for data
structuring [Johnson 1983], especially for structuring real-world data, are missing. Object-
oriented database management systems [Dittrich 1986] may overcome some of the problems
that relational systems cannot solve.

The interface of a non-standard DBMS must fit well into the methods used for the
implementation of the applications; therefore, software engineering considerations are of
particular importance for non-standard database management systems. Interfaces, like Em-
bedded SQL, have demonstrated to be cumbersome [Christensen 1987]. Theory in soft-
ware engineering provided some suitable techniques, such as the concept of abstract data
types [Guttag 1977] [Parnas 1978] [Zilles 1984] and abstract object types [Sernades 1987],
in which each module encapsulates an object type with all its pertinent operations.
Standard database systems, based on networks [CODASYL 1971] or the relational data
model [Codd 1970], do not fit easily into this concept. A number of methods to capture
more semantics in the data model have been proposed in the literature [Brodie 1984a], but
most of these methods have not been implemented, and none of them is readily available.

This paper describes the software engineering techniques used in PAN DA [Frank 1982],
an object-oriented database tailored for applications with spatial data. PAN DA is an acronym
for Pascal Network Database Management System. The system was originally designed as
2 network DBMS with object-oriented concepts and enhancements for storage and access
of spatial data and evolved over the years to an object-oriented design. PANDA is a large
software system consisting of about 40,000 lines of program code, written consistently in
precompiled Pascal [Egenhofer 1988b]. PANDA uses commonly available software engineer-
ing techniques which made it easy to transport PANDA from one system to another. lts
development started at the Swiss Federal Institute for Technology, Zurich, and has been
continued at the University of Maine. Code was transferred between such vastly different
hardware and operating systems as DEC-10 (under TOPS-10), IBM 370 (under VM/CMS5),
and VAX/MicroVAX (under VMS), profitting from the flexible structure of precompiled
Pascal. The PANDA database system has been running for several years, primarily used for
research and teaching in undergraduate and graduate courses. K

PANDA's data model is based on the basic concepts of abstraction: classification, gener-
alization, and aggregation [Brodie 1984b]. Frequently used terms in this paper are olyji o, for
a single occurrence (instantiation) of data; fupr, abijort type, elass, or abstract dala fype,
refering to sorts of objects; supi reluss, describing the grouping of several classes in an js-a
relation [Dahl 1968] [Goldberg 1983]; and suleluss, being the specialization of a superclass.
Inlie ritanee defines a superclass in terms of one or more other classes, propagating the prop-
erties of the superclass to all subclasses transitively. Hierarchical or strict inheritance implies



that each subclass belongs only to a single group of hierarchies, while multiple inheritance
models class lattices with acylcic directed graphs [Cardelli 1984] [Woelk 1987].

Throughout this paper, the examples will refer to the following user model: A norde
describes a zero-dimensional spatial object with a coordinate-tuple describing its location;
an dye is a one-dimensional spatial object; and. a fure is a two-dimensional object. For
the sake of simplicity, the latter two objects will not have lower structured parts. Newli s,
cilye s, and fures are specializations of spafinl objocis. Spatial objects of dimension n are
delimited by a number of spatial objects of dimension n-1. Each spatial object has a minimal
bounding rectangle (MBR) approximating its spatial location,

The paper starts with a discussion of object-oriented software engineering. PANDA's
software enviranment and architecture are introduced. Chapter 3 focusses on PANDA's
object model. The four phases during the definition of complex object types are presented.
In chapter 4 the implementation is of object operations is described. The design of a layered
structure on top of the generic programmer’s interface is presented. The paper concludes
that better object-oriented programming languages can help to implement object-oriented
databases closer to the designed models.

2 Software Engineering Aspects

It is important that database methods and techniques fit well within a software engineering
environment. Theoretically founded methods have proven to be well-suited for modular-
ization based on abstract data types. The deficiency observed is that concepts in software
engineering do not match with database models, or are not suitable for them,

An abstract data type {ADT) is a mathematical structure which fully defines the behavior
(semantics and operations) of objects, Abstract data types are specified as an algebra
describing what sorts of objects {types) are dealt with, and what kinds of operations they
are subject to. A set of axioms determines the effects of the operations. Abstract data
types can be combined in layers, where higher-level abstract data types are first described
independently (specifications), and it is then shown how this behavior can be achieved
using other, hierarchically lower abstract data types (abstract implementation [Olthoff 1985]
[Frank 1986]). The implementation of abstract data types leads immediately to modular
packages with type definitions and implementations of the operations. This is of particular
importance for object-oriented programming where objects consist of a type definition and
a collection of operations through which objects can be accessed or manipulated exclusively.

QObject-oriented programming of object-oriented applications depends upon the choice of
the programming language. We claim that ohject-oriented applications cannot be achieved
without object-oriented tools and concepts. These concepts do not necessarily include a
message-passing paradigm [Goldberg 1983] that is often cited as necessary for an object-
ortented design. It was outlined that message-passing is a pedagogical rather than a seman-



tical difference to conventional routine calls, and any procedure call in an Algol-like language
could be seen as message-passing [Storm 1986]. Currently, only a few languages support
object-orientation, but none of them has all the features desired [Edelson 1987].

21 PANDA's Software Environment

The software engineering environment of PANDA supports wadularization, « neapsulation,
and rusehility, giving rise to simulate inheritance and late binding. Programmers are
motivated to write object-oriented code in a standardized way such that other program-
mers can easily read and correct it. Modularization is achieved by using a Pascal precom-
piler [Egenhofer 1988b). Types and routines are provided from one module to another,
with type checking across modules. Unlike other object-oriented implementations in Pas-
cal which suppress type checking by using pointers as parameters [Jacky 1987], PANDA is
written in a strongly typed Pascal that incorporates object-oriented programming style. The
implementation of operatians is encapsulated into the module and thus not visible from the
outside. A highly modular programming style requires that the modules are managed in a
controlled library system providing the user information about existing ADTs, their oper-
ations, and their specifications. The precompiler is embedded into a library management
system with hierarchical directory structure where several versions of modules can be kept
in parallel [Egenhofer 1987). Compatibility of code among different Pascal compilers and
various hardware is guaranteed by the precompiler, because only the precompiler itself, not
the particular code, must be adapted to fit specific compiler features.

The full benefits of this layered, object-oriented design are noticed during software main-
tenance: changes to the data definition require only recompilation of the corresponding
modules and relinking of their (shareable) images. The lifetime of PANDA has been in-
fluenced by the modular programming paradigm when subparts could be recoded without
influencing the other parts.

2.2 PANDA's Architecture

PANDA consists of an implementation-independent database kernel and application-specific
object layers on top of the kernel {Figure 1).
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Figure 1: The architecture of PANDA.

PANDA's DB kernel manages storage and retrieval of data from persistent storage devices,
buffers pages and records to improve performance, provides facilities for transaction man-
agement, incorporates structures for logical access (hashing, B*-trees, Field Tree for spatial
access [Frank 1983b]), and provides generic structures for aggregation and generalization.
The kernel is built in a layered and modular structure so that it can be easily extended
by additional parts, e.g., a multi-user facility. The application specific object definition is
plugged into the kernel. This extensible part of PANDA is based on the definition of value
types which can be arbitrarily complex acyclic abstract data types.

The programmer’s interface of the kernel is a collection of object-oriented manipulation
and retrieval operations which can be called from the application programs. These operations
are defined for a generalized object class, the superclass of all user-defined object types, and
are compatible with any object type. On top of the programmers's interface is a layered
structure of model-specific object operations.

An object-oriented data model gives rise to the formation of arbitrarily complex object
types. The majority of object types is composed of a (limited) number of lower structured
subparts which occur repeatedly as part of various ohject types. Instead of redefining these
parts for a multitude of objects, PANDA allows the database administrator to define object
components which are used to compose the object types. Though this may resemble a
traditional entity-attribute type of concept, it is only the object-oriented implementation of
several object types with the same components which are defined only once and reused in

finky |



every class they are part of. This mode! exploits the similarities of object types and liberates
the database administrator from the task of defining each object type from scratch,

3 Object Definition

The abject definition in PANDA is based upon the declaration of a set of names and the
definition of how the names are combined to form objects. (lass nowmes are identifiers to
distinguish between different classes; componcnt names are identifiers for the components
of classes; ralne nann s refer to the ADT modules of which object types are composed;
Jink mumes are the identifiers that describe aggregations of several object types; and, puth
e s identify various logical ways to access objects. The database administrator combines
them as follows: (1) a ralue name is assigned to each component nuine (establishing a
1:m-relation), (2) componcnl names are assigned to the corresponding efiss nasires (1:m),
(3) the immediate superclass is associated with each subclass (1:m)', (4) rlassesand link
e s are combined performing aggregates (m:n), and (5) logical ncecss paths are assigned
to elusse s (m:1). With these definitions, the schema can be completely described. Transitive
closure is applied to propagate properties of superclasses to subclasses, where components,
links, and logical access paths are considered as properties.,

Graphical tools, similiar to the entity-relationship diagrams [Chen 1976}, are useful in
the description of the schema. The following conventions are made [Egenhofer 1988a]: A
class is represented by a box drawn around the class name; the names of object components
are placed in the class box under the class name; generalization is drawn as box around a
box, such that the superclass contains the subclass(es); aggregations are indicated as arrows
running from one box to another; and, various logical access paths are depicted by specific
symbols®, The geometric example, described in chapter 1, could be designed graphically as
shown in figure 2.

(5)— SPATIAL_OBJECT
NODE EDGE FACE
coBoundary
coordinate boundary | BOUNDS
mbr

PANDA's object definition adopts the modular concept and fits well into the layered
architecture. An application model is defined in standardized operations that are easily
integrated into the kernel. The operations, called ini-roniines, are implemented as short

L This model supports only single inheritance: it is a temporary restriction in PANDA,
For instance, a S in a circle describes spatial access.

{s



Pascal routines which are executed during PANDA’s startup. For each object type a separate
ini-madule is defined. This approach releases the database administrator from recompiling
the entire DBMS code; instead, only the ini-modules and an interface module are compiled,
and (shareable) images are linked. A systematic implementation with strict naming con-
ventions allows the generatation of code for the ini-modules. Currently, code is generated
partially from definitions in a text file; a more user friendly generation immediately from the
graphical schema design is being investigated.

Four phases are distinguished during object definition: (1) declaring the terms of the
user's model, (2) implementing value types as Pascal modules, (3) mapping value types
on components and composing classes of components and/or other subclasses, and (4)
generalizing all classes to a common object class. Each step relies upon the completion of
the previous definitions.

3.1 Phase 1: Declaration of User Terms

The kernel was originally initiated with templates for class names, component names, link
names, and path names, and these templates must be replaced with the particular names
used. The graphical diagram can be systematically translated into the required text form.
Fach name in the head of a box is a +lussNauic; the remaining names tn boxes are compo-
nents which must be tagged with the corresponding className to form compont il Nannes,
names related with arrows are linkNunics. The following name declaration was derived from
the grahical schema example in figure 2.

classTypes: mnode, edge, face, bounds, spatialObject;
componentTypes: mnodeCoordinate, spatialObjectMbr;
linkTypes: boundary, coBoundary;

3.2 Phase 2: Definition of Value Types

A value type is the Pascal implementation of an abstract data type in a single programming
unit: therefore, the module for a value type consists of a type definition and the set of
pertinent operations. Value types are the implementation of class components and are
managed in a library system such that previously defined components are reusable for the
design of other databases. Existing implementations can be extended or modified, and new
definitions added.

The type definition can be any simple data type, such as integer, string, real, etc., or any
structured type, such as array or record, except types for dynamically allocated variables,
such as pointers’. For example, a one-dimensional interval (ivl) can be expressed as a value

'This limitation is with respect to the intended persistency of objects.



type composed of two integers.

TYPE iviType = RECORD
low, high: integer;
END;

Value types can be built upon other value types by using their definitions and methods.
Due to restrictions of current compilers, only acyclic combinations of value types are per-
mitted. The following example shows a two-dimensional interval (iv2) that is composed of
two one-dimensional intervals:

IMPORT ivl FROM meterv';
TYPE iv2Type = RECORD
Xiv, Yiv: iviType;
END;

Indexing and hashing structures support the efficiency ‘of database management. Spe-
cific object-operations are needed for each object type that is supported by such a struc-
ture [Rowe 1987]. For example, hashing requires a function that calculates a hash value,
and an operation that compares two values for equality. The implementation of these oper-
ations depends upon the structure and the sermnantics of the object type. Unlike traditional
databases that support only a limited, hardcoded set of types, PAN DA is extensible. This
implies that the operations for the supporting structures are not predefined and must be pro-
vided by the application designer. For example, if the data model defines a direct access path
for an object Type upon a one-dimensional interval (iv1), then the following two operations—
calculating a hash value for an interval and checking two intervals for equalitiy—must be
provided for the valueType iviType:

FUNCTION iviHash (i: iviType): hashType;
TINTENT to calculate a hash value for a one-dimensional interval;
BEGIN
jviHash := hashAdd (intHash (i.low), intHash {i.high));
END;

FUNCTION iviEqual (i1, i2: iv2Type): boolean;
INTENT to check whether two 1-d intervals are equal;

1The hmport stalement provides the types of the module ivl from the library meterv to satisfy the
compilation of the medule with the w2Type.



BEGIN
iviEqual := intEqual (il.low, i2.low) and intEqual (ii.high, i2.high};
END;

The decomposition of objects into components releases the application designer from
redundant definitions of specific object operations for the structures. Considerable overhead
is removed by defining the operations for the value types and applying them for the class

types.

3.3 Phase 3: Composition of Class Types

A fundamental class is composed of zero to many components. Details about the implemen-
tation of a class are hidden, such that modules outside of the class definition are not aware
of the decompasition into object components. For example, the class type e consists
of the coordinates which are implemented as the value type pi Typ. The data type for the
node class is written as follows:

TYPE nodeType = RECORD
coordinate: ptType";
END;

A generalized class is composed of zero to many components that are inherited to all
subclasses. While some programming languages, such as Smalltalk-80 [Goldberg 1983] or
C++ [Stroustrup 1986], support strict inheritance directly, Pascal does not. With the help
of variant records, hierarchical inheritance of types can be simulated. For example, the class
sputialOhji et being the superclass of the classes node, cdge, and fuee, with the component
mbr is implemented as follows:

TYPE spatialObjectType = RECORD

mbr: iva2Type;

CASE classTypes' of
node: (nodeF: nodeType);
edge: {edgeF: edgeType);
face: (faceF: faceType);

END;

END;

Unfortunately, these type definitions are not yet sufficient for the object definition. Today's
programming languages of the FORTRAN/Algol type show a major limitation. Compilation

“ptType is a value lype which was defined previously.
“class Types is an enumerated type over all class names used.



and execution of code are separated into two phases which provide different levels of infor-
mation. During compilation, variables and types are named, and types may be composed
from other types. During executing, the names and the relation between a variable and its
type is not accessible by hte user code. Likewise, it is not possible to find out whether a
type is part of another structured type.

In PANDA, the database administrator has to write a separate routine for each class
type that defines the class, its components, and its immediate superclass. These routines
will be executed by the kernel during startup, initializing the user's model. For example, the
class norde is defined in the following ini-routine.

PROCEDURE nodelni;

INTENT to define the class node;

BEGIN
classPut’ (node);
classPutComponent‘q {nede, nodeCoordinate, 'ptType');
classPut:S1.1pez:t:1ass"l {node, spatialObject);

END;

Besides the particular composition of the class, possible aggregations and logical access
paths are defined the same way. For example, a spulialQljict can be accessed spatially, and
it can be part of the two aggregates houndury and colloundary.

PROCEDURE spatialObjectIni;

INTENT to define the class spatialObject;

BEGIN
classPut (spatialDbject);
classPutSpatialAccess“](spatialDbject);
classPutComponent (spatialObject, mbr, ‘iv2Type’);
classPutLink'' (coBoundary, spatialObject, bounds);
classPutLink (boundary, spatialObject, bounds);

ERD;

For each class type, the composition of the type and the corresponding ini-routine are
combined in a separate module.

"elassPut defines a class type.

“classPutComponent assigns a component implemented as value type Lo 3 class.
"elassPutSuperclass defines a generalization between the subclass and the superclass.
"“classPutSpatialiccess defines spatial access for a class.

' c1assPutLink defines an aggregate.

1



3.4 Phase 4: Definition of Database Objects

Conceptually, all classes are specializations of the superclass whjoe! Tupn from which all
pertinent DB-operations are inherited. The objectType is implemented as a Pascal record
with varying parts for each specific classType. The generalized objectType combines all the
specific classTypes into a single, compatible type, and common (system) component, such as
tuple identifiers and pointers, are added. The following example shows the implementation
of the vhjoet Ty with the immediate subclass spatial(Ohjeel.

TYPE objectType = RECDRD'Y
recnr: ‘felpTypem:
links: objectFointerType”:
CASE'S class: classTypes OF

spatialObject: (spatialObjectF: spatialObjectType);

END;
END;

All database operations, such as sforr, deleic, and updalc are inherited to the classes.
The following chapter presents these operations and their implementation as object opera-
tions.

4 A Layered Structure of Object Operations

The object-oriented approach requires the definition of complex objects and their pertinent
operations. While the knowledge about the composition of complex object types is essential
to the database kernel, the object operations are the application programmers’ tools to
manipulate objects. This is the location to implement consistency checks. In PANDA, these
operations are built on top of the kernel. A layered structure of object operations has been
developed which is generally applicable for any object-oriented application. Based upon the
fundamental object operations to storr, delele, modify, and relricee an individual object,
more complex operations can be defined. By restricting the operations to a single task, the
code for the routines stays small and correctness can be verified more easily.

The steucture of these operations is the same for every application: First, the operations
are defined to make a specific object, and to assign values to and access them from an
object. Then, unary object operations for storing, modifying, deleting, and accessing indi-
vidual objects are defined based upon the generic DB-operations offered in the programmer’s

12 The first two fields of the object Type are common to all object types.

"*falp stands for file element pointer and is the unique tuple identifier of an object.
"'Pointers are used to establish aggregate structures.

""Here begin the individual object Type definitions.



interface. Another layer treats all binary operations manipulating aggregates. These oper-
ations are exploited in the next layer to form complex object operations, including complex
consistency constraints.

Conventional database management systems try to integrate consistency constraints into
the DBMS kernel. PANDA embeds them in this layered structure, a more desired treatment,
because many constraints for complex objects are too complicated to be managed internally.
Subsequently, the different layers, or le e s, are introduced.

4.1 Level 1: Make, Get, and Put Operations

The first layer is a collection of modules with the basic operations to manipulate the indi-
vidual description of a single object: creating an instance (nrke ), assigning values to (pu/),
and extracting values from an instance (grf). These operations hide the implementation of
the object types from the user, preventing uncontrolled access. For example, the get and
put operations for the component caardinafc hide the internal structure of the coordinate.
The same operation could be used if the coordinates represented a triple of x, y, and z values
for a three-dimensional spatial model.

Since the properties of a superclass are propagated to all subclasses, g/ and putf oper-
ations are compatible with the subclasses as well. For example, the object type node has
get and put operations for the mbr, a property inherited from the spafinlQhjeel class. The
following example shows the put operation for the component cunrdinate of the class wode.

PROCEDURE nodePutCoordinate (VAR o: objectType; c: ptType};
INTENT to assign coordinates to a node;
BEGIN
o.nodef.coordinate := c;
END;

For each object type a separate module contains these operations. Their implementation is
trivial, and the code can be generated with the knowledge of the object description. Simple
consistency constraints, such as checking whether a value lies within a range, can be added
to the put operations.

4.2 Level 2: Unary Object Operations

The second layer covers all database operations to store, update, delete, and access a single
object. These operations are inherited from the common superclass ofjeet fype. Their
implementation is straight forward because the generic object-operations are part of the
programmer’s interface and can be immediately applied to each object class. Depending on
the definition of the class, different access methods are supported, such as access with a
key value and spatial access.



For each class, a separate module with the specific object operations is implemented.
The medule for the class node, for instance, contains the operations nudeStore, nodeUpdafc,
podeDelete, and nodeAecessSpatially. The implementation of nodeStare is shown in the
following example.

FUNCTION nodeStore (VAR o: objectType; VAR err: errorType): boolean'®;
INTENT to store a node;
BEGIN
nodeStore := pNew"— (o, node!®, err);
END;

4.3 Level 3: Binary Object Operations

The third layer comprises aggregate operations that always envolve two objects. Standard
operations are adding a part to an aggregate, removing a part from an aggregate, can-
celing an entire aggregate, and accessing parts of an aggregate. The operations which
estabilsh links among objects require that the corresponding objects have been loaded into
the database before. Reversely, remove and cancel dissolve the links without deleting the
previously linked objects from the database. For each aggregation, a separate module with
the aggregate operations is implemented. The following example shows the implementation
of the aggregation boundary.

FUNCTION boundaryLink (VAR spatial0, boundsO: objectType;
VAR err: errorType): boclean;
INTENT to link a spatial object and a boundary;
BEGIN
boundaryLink := pLink!? (spatial0, boundsd, boundary?’, err);
END; i

Three types of access operations for aggregates are distinguished: (1) iterating over all
aggregate components, similar to a FOR EACH loop in CLU [Liskov 1881], (2) getting a
specific aggregate component with a certain value, and (3) getting the composite object
part of an aggregate. The second access method is only efficiently supported if a sorted
access path was defined.

“The database operations are Boolean functions with side effects, being true if the operation was suc-
cessfully completed, otherwise being false with an error identifying the failure.

""pNew is the generic object operation in the PANDA programmmer’s interface to store an cbject.

""node is the class name.

'"bLink is the generic object operation in the PANDA programmmer's interface which makes an aggregate.

Mhoundary is the type of aggregate.



44 Level 4%: Complex Object Operations

The fourth and later layers combine operations of the lower levels to form more complex
operations. For example, connecting an edge to a node involves fulfillment of several op-
erations: (1) a bounds object must be stored, (2) the edge must be linked to the bounds
as boundary, and {3) the node must be linked to the bounds as coboundary. The three ob-
ject operations houndStorc, toundarylink, and collownduryl ink which were defined in the
lower object layers, are used to implement this complex operation. The following example
shows the code for the operation rdyt Noddc Link:

FUNCTION edgeNodeLink (VAR edgeO, nodeD: objectType;
VAR exr: errorType): boolean;
INTENT to link an edge with its start or end node,
both objects must have been stored before;
VAR bound0O: objectType;
BEGIN
edgeNodeLink := false;
IF boundStore {buond0d, err) THEN
IF boundaryLink (edgeO, boundO, err) THEN
edgeNodeLink := coBoundaryLink {nodeO, bound0, exrr);
END; :

Note that this operation assurmnes that node and edge are already stored. A higher-level
operation can be implemented on top of this level performing more complex consistency
constraints.

The level structure is open and can be extended according to the complexity of the
application. Entire applications have been written in this highly structured form. The
advantage of the object layers is that very complex operations can be implemented by
combining other object operations. Following the rule that no object operation may use
other operations of a higher level, a well-structured application package can be designed.

5 Conclusion

The close relation between the implementation of object-oriented databases and object-
oriented software techniques has been explained. For an object-oriented database it is of
vital interest to tie into the software environment of the application. This paper described
the implementation of the data model of the PANDA database. PANDA consists of a
DBMS kernel with an object-oriented programmer's interface. The object model is based on
classification, generalization, and aggregation. Inheritance is used to model the compasition
of complex object types.

Object types are defined as Pascal routines which are integrated into the kernel and
executed at PANDA's startup, An example demonstrated the object definition. Value types,
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the implementation of abstract data types (ADT), are the basic building blocks from which
class types are composed. Value types can be any structured, acyclic (Pascal-) data type.
This technique liberates the database administrator from redundant definitions of similar
object parts. Classes can be used as the components of more complex classes. Aggregates
of classes allow the implementation of part_of relations.

All classes are generalized to an ehjoe! Type from which each class inherits the database
operations. 'The last chapter presented how object operations are defined on top of the
DBMS kernel. This fayered structure is an open architecture and can be extended with the
complexity of the application. The four basic layers were introduced: Level 1 contains the
operations to assign and access data from objects. Level 2 is the implementation of the
unary database operations for each class. Level 3 deals with aggregates and provides all
binary object operations. Levels 4% combines these object operations to more complex ones
integrating additional consistency constraints.

Canventional programming languages do not easily support the implementation of object-
oriented databases and often, methods must be simulated to match the model. Using a
language that supports multiple inheritance, clearer designs and more condensed implemen-
tations become possible.
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