sy

FIG XVIII. INTERNATIONAL CONGRESS

TORONTO, CANADA, 1986

LOBSTER

Combining Database Management and Artificial Intelligence
Techniques to Manage Land Information

Eine Verbindung von Datenbank-Verwaltung-System und Methoden
der kuenstlichen Intelligenz zur Verwaltung von Land
Information

L’integration des methodes d’intelligence artificielle avec
les systemes de banque des donnees pour l’administration des
donnees a reference spatiale

Andrew U. Frank

Abstract

The overall design of Land Information Systems touches upoen
many different problems of organizational, cognitive and
technical nature. We understand these three categories
broadly and will shortly describe how we differentiate
between them. The paper then concentrates on cognitive
problems as encountered during our efforts to design the
MAPQUERY language to retrieve geometric and alphanumeric data
from a Land Information System. It is argued ‘that the
deductive power of logic inference systems, which are typical
for Artificial Intelligence techniques, are necessary. Such
methods are of considerable help to integrate data from
different sources into a unified system. At the end we report
on the implementation of LOBSTER, a system to integrate a
Prolog like language with a network database.

Zusammenfassung

Der Entwurf von Landinformations~Systemen beruehrt manche
organisatorische, kognitive und technische Probleme. Der
Beitrag konzentriert sich auf die kognitiven Aspekte, die bei
der Gestaltung der MAPQUERY Abfragesprache angetroffen
wurden. MAPQUERY erlaubt dem Benuetzer geometrische und
alphanumerische baten aus einem LIS abzufragen und graphisch
oder in Tabellenform darstellen zu lassen. Wir schliessen,
dass eine Abfragesprache fuer ein LIS auf Methoden der
kuenstlichen Intelligenz, insbesondere der automatischen
Schlussmethoden und der deklarativen Programmierung aufbauen
sollte., Diese Methoden sind besonders hilfreich, um

34

Frank, A. U.

Toronto, Canada 1986.

"Lobster." Paper presented at the 18th International Congress,

gruber
Textfeld
Frank, A. U. "Lobster." Paper presented at the 18th International Congress, Toronto, Canada 1986.

semantische Differenzen zwischen Daten aus verschiedenen
Quellen zu ueberbruecken und diese in ein einheitliches
System zu integrieren. Zum Schluss berichten wir ueber die
Implementierung von LOBSTER, ein System, das eine
Prolog-artige Sprache in einer raeumlichen Datenbank
integriert.

Resumee

La construction des systemes d’information du territoire peut
etre considere sous aspect d'organisation, des problems
cognitives ou techniques. Les contributions des sciences
cognitives et les methodes de 1’intelligence artificielle
pour ‘la realisation des SIT sont mis en relief. Ces methodes
sont extremement valables pour la transformation des donnees
codees differament dans un code uniform permettant leur
integration. Dans nos efforts pour la realisation d’une
language pour acceder des donnees stockees dans un SIT et
leur representation graphigue (MAPQUERY), nous avons trouve
necessaire l’expressivite des languages basees sur logique et
la possibilite des deductions logiques. Nous avons realise un
system interactive utilisant une language de type Prolog,
integree avec une banque des donnees spatiales.

Keywords

Artificial Intelligence, database query language, Prolog.

1l INTRODUCTION S

In order to understand the overall design of Land Information
Systems a theoretical framework is crucial. We need to
understand which problems are related and which are not. Such
a theoretical framework is important for the proper
understanding of the user’s needs, their categorization and
for placing them into context. The same theoretical framework
is also necessary for finding appropriate answers. The
framework helps us to avoid building 'good’ systems which
just miss the user’s demands (for example, if a customer
complains about his car being not large enough do not waste
your effort to sell him a faster one),

The theoretical framework for Land Information Systems is
slow to come. Many have contributed from different aspects
[Chevallier 1981] [Frank 1982a] [Frank 1983a] [Epstein 1984].
The task is larger than expected and requires contributions
from different areas of science. It isg clearly related to the
area of information systems in general and to computer aided
design and computer aided manufacturing (CAD/CAM)
particularly. In this paper, methods from Artificial
Intelligence research [Barr 1982] [Hayes 1983] and cognitive
science are introduced to the LIS discussion [Peuquet 1983].
It will be shown how an LIS framework could be built on a
three tier model of organizational, cognitive and technical
aspects. Then we will discuss how typical expert system
methods can be applied to LIS and how a flexible,
‘intelligent’ query language provides at least a better user
interface, but also allows to address a number of other
problems. Finally we will report how the LOBSTER system was
built, integrating a Prolog like language [Clocksin 1981]
with a network database [Frank 1982c] [Frank 1984a] [Frank
1984c].

2 A THREE TIER FRAMEWORK

Past discussion regarding a framework for an LIS often
concentrated on very specific aspects, especially the
technical design of the necessary computer systems [Frank
1981] [Frank 1982a]. Others have introduced a system oriented
point of view [Chevallier 1981], with concentration on
organizational aspects [Frank 1985a]}. Indeed it has been
argued that the LIS framework would consist of an
organizational and a technical part [Chevallier 1980].

It seems, however, that it would be reasonable to separate a
cognitive component and to differentiate it from the
organizational and technical components. Without attempting a
final definition, cognitive sciences deal generally with
information and specifically with the meaning of words and
concepts and how these affect formal treatment.

Computer systems are essentially formal systems for treatment
of symbols; computers do not understand - in the sense of
human beings’ understanding - what the symbols mean, but
rather manipulate them according to rules laid down in a
program. The behavior of computer systems can be described by
formal theories based on mathematical logic. The apparent
processing of information in a computer system is nothing
more than a simulation of the behaviour of human beings using
formal rules. Writing programs is to formalize the rules and
methods a human being uses in a formal language (eg.
calculating the number of days between two dates).

In the concept of a Land Information System this means that
we separate the following three aspects:

2.1 Organizational Aspects

Information, and especially information about land, can lend
power to those who have access to it. Society has built
checks and balances to achieve equitable solutions and rules
of ’fair process’ to decide about issues of distribution of
power between organizations. These primarily legal rules
contain methods for their extension to new situations, but
the legal system in most countries has not yet found final
solutions for the problems introduced by the new information
technology. The design of Land Information Systems needs
equitable distribution of the gains of such systems and rules
to safequard against unilateral exploitation.

In many cases, Land Information Systems are used by only one
organization, eg. a utility company or the public
administration. Then conflicts of interest between groups
(organizational units) within the parent organization, which
are similar to conflicts between different organizations, can
appear and need solutions, without the benefit of a legal
framework. Studies of organizations and how they react to
information systems have been done {especially in the
management information system area), but their results are
not very conclusive.

Further, the information system and reality interact in many
ways. Studies of such interactions and descriptions of their
rules are best done in the organizational context, using
system theory approaches [Chevallier 1981].

2.2 Technical Aspects

Most obvious, but not most important, the technical aspects
of Land Information Systems deal with the selection of
hardware (computer system) for the processing of the data.

For LIS which do not use electronic data processing
equipment, technical concerns are the selection of
cartographic materials and procedures, etc. Often technical
discussions concentrate on surveying methods and scale of
base maps for LIS and their dependency on the purpose of the
LIS, the need for permanent monuments on the ground etc.

We have argued in the past that the preduction and the design
of the programs used for a LIS are equally important
technical problems, and stressed advanced software
engineering methods [Guttag 1977] [Parnas 1972]. The
implementation of the LOBSTER system applied these methods in
the overall concept as well as in the details of the
programming. It demonstrates that the multi layer model is
appropriate as a (software design) framework for the design
of a LIS. LOBSTER can be seen as a query language and a human
interface to the LIS, and it did easily fit within the
existing software.

2.3 Cognitive Aspects

The occupation with logic based programming [Kowalski 1979)
and Artificial Intelligence methods in general has shed some
new light on certain typical and widely discussed LIS
problems. The technical realization of an LIS using a
computer system uses a formal description of its data
processing methods in programs. Independent of the specifics
of these programs (eg. the programming language used, the
software engineering methods, the hardware etec.), the
automatic ’'information’ processing can be seen as a formal
system (a mathematical theory), which might be described in
eg. a first order logic. On this level we have abstracted
from all material problems, such as amount of storage used,
performance or price of the system, and concentrated on the
logic of the symbol manipulation process - or, as seen from a
users point of view, on the information transformation.

If the information system is to work properly, the formal
theory must reflect the understanding human beings have about
the meaning of the symbols and how they are related to each
other. This happens at different levels, eg. at a relatively
simple level based on "naive" mathematics in order to
calculate the surface area of a given parcel, or at
relatively complex level of legal reasoning about the order
of precedence and the amount of mortgages on a property.

Chevallier reported the typical problem of different meanings
of a term, eg. ‘road width’ for the surveyor (width of the
right of way), for the traffic engineer {width of the
circulation channel) or for the contracter (width of the hard
covered surface). Similar differences can be found in most
instances where data from different sources need to be

integrated. The conceptual level is most appropriate for
dealing with this type of a problem. We argue that these are
not organizational problems which can be overcome by
enforcing uniform standards for encoding across different
departments, because we assume that the specialists have
reasons for their use of terms. Pressure to force them to use
standardized terminology will more likely cause resistance
against the use of the system. However, if the terms for each
speciality can be properly defined, formal methods to
translate between them should be available.

Guttenberg has drawn our attention to the differences in
names used for things depending on the interest of the
observer and found that classification of use of land or
buildings is difficult. Not only limits between different
uses often are difficult to draw (when does the use of a
building switch from multi family dwelling to an office? 50 3%
of the apartments or 50 % of the surface ?), but other,
seemingly trivial classifications may cause problems:
consider a typical church building, but used now as a public
library - should it be classified as a church or as an office
building?[Guttenberg 1979] [Guttenberg 1981].

If the stored data are used to deduce other gquantities from
them, differences in their original meaning must be
considered. If for example a classification schema is only
very loosely defined, the aggregated data may not be used to
deduce changes over time - the observed changes may as well
be changes in the way the classification is applied.

iIn most general terms, cognitive aspects of LIS include all
gquestions of how we describe reality and how this original
information is transformed in system responses to user
gqueries. This includes the operators we provide to users to
formulate their queries as well as the conceptual tools used
to describe the information transformation within the system.

Cognitive problems are more important for LIS than for other
information systems, because LIS are designed for multiple
uses by different organizations. Integration of information
from different sources is difficult. The major problems are
the differences in meaning and concepts used by the different
crganizations which originally collected the data. We
critically need tools to describe differences in the
semantics or aspects of data quality in data collections in
order to be able to predict the interaction of data from
different sources.

Mathematical logic can form the fundament for such methods
and 'programming in logic’ [Kowalski 1979] seems to be a
useful tool. The following description of logic-based
programming and its use for LIS should give the reader a more
practical grasp what can be achieved today. We describe
programs which currently work, but the techniques are still

quite experimental and need further research work before they
can be introduced in the practical surveyor’s office,

3 THE PROLOG LANGUAGE

The Prolog language is based on mathematical logic {precisely
first order logic) and, unlike other programming languages,
does expect statements about what is true (not what to do}).
Thus a program written in Prolog reads like a collection of
true statements, each of them is easy to verify. The Prolog
interpreter then automatically makes the connections between
the statements and establishes the truth of other statements.
This is called 'declarative programming’ (you declare what is
correct) and contrasts with the traditional fprocedural
programming’ style, where the programmer commands which steps
to do in what order.

Such automatic deduction of conclusions from basic facts can
only work efficiently if we accept certain limitations in the
form the facts can be presented in. Prolog uses so called
"Horn' form, where a fact is expressed as predicate with some
arguments, eg.

father (Adam, Beat).
stating that 'Adam is the father of Beat’,

or more complex rules, where the truth of a predicate is
dependent on the truth of some others:

grandfather (g, s) if father (g,p) and Ffather (p,s).

stating that 'g is grandfather of s, if g is father of p and
P is father of s’ (note: constant symbols start with upper
case letters like Adam, Beat, and variables with lower casge
letters, eg. g, p, s).

To complete our example, we add a few more facts:

father (Beat, Caesar).
father (Caesar, Daniel).

and we can now ask the Prolog interpreter:
father (x, Caesar).
and receive the answer ' father (Beat, Caesar)’ informing us

that according to the given data Beat is the father of
Caesar. We can also ask who is the son of Caesar:

father (Caesar, x).

and receive the answer ’ father (Caesar, Daniel)’ informing
us that according to the given data, Daniel is the son of
Caesar. For these two queries, only a search of the data base
was necessary.

Prolog, however, permits more complex questions, like, who is
the grandfather of Caesar:

grandfather (x, Caesar).

and it will use the above stated rule to find rAdam’. It
works not only in such simple cases, but Prolog generally
permits to state facts in form of predicates or as rules,
where a fact depends on the truth of other predicates (which
in turn may depend on other rules).

Prolog interpreters can be found for many computers, from
personal computer to mainframe. Several good texts describe
the full power of Prolog [Clocksin 19817 [Clark 1984], and
anybody interested in computer programming and LIS is well
advised to read them.

Prolog can not only be used for retrieving data from a small
database but has the full power of a general programming
language (eg. Pascal or FORTRAN). It was originally built to
help with the understanding of natural language text, but has
since been used in many different projects. The major
disadvantage of Prolog was its relative slow execution speed.
Most Prolog implementation are interpreters, but fast
compilers become available now and some claim that Prolog
programs can execute as fast as a program written in a
procedural language.

4 LOBSTER - A SPECIAL PROLOG INTERPRETER

Users need tools to retrieve data from a database. The
previous section should have convinced that Prolog is well
suited for data retrieval, However, most Prolog
implementations are not prepared toc store the large number of
facts that a LIS must contain (eg. the millions of point
coordinates etc). Thus we concluded that a Prolog like
language could be used as a user interface or query language
to a regular LIS, based on a database suited for dealing with
large numbers of spatial data records. The database for a LIS
must respond to a number of requirements[Frank 1984b], eqg.

- object oriented database design,

~ generalization/spezialization available for data
structuring,

- suitable for modelling geometric data,

~ fast access based on spatial location, etc.

We had spent considerable effort to build such a database
[Frank 1982c¢] [Frank 1983a] [Frank 1983b]. Thus we decided to
use this database for storing the LIS data and to use the
Prolog interpreter and language for building a query
language. It was necessary to build a path for the Prolog
interpreter to access the data stored in the LIS, and to have
stored data appear as Prolog facts. This was achieved in two
steps: First, coding procedures for database access and
integrating these with the Prolog interpreter such that they
appear as regular Prolog predicates (so called built-insg);
this allows a low level of access to database facts from
Prolog. Second, we had to define mappings from tle conceptual
database schema to Prolog predicates, which defines how
database facts appear under Prolog, and implement these
mappings as Prolog rules using the database access built—ins.

We constructed other Prolog built-in predicates for graphical
output and can now use Proleog to retrieve data from the
database and to show them graphically. So far we found the
Prolog language to be a fast and easy way to formalize the
complex rules for gquery processing and output generation in
LIS gquery languages.

At the time this work started, not many versatile Prolog
interpreters were available and we decided to write our own
code. LOBSTER is slightly different from a standard Prolog in
the following aspects:

1. permanence of rules and facts: rules and facts a user
stores are kept in a permanent database and are available
for any future work (standard Prolog demands that the
used rules and facts are loaded at the beginning of each
session). '

2. organization of rules and facts into groups: making rules
and facts permanent required some crganizational tools
for the user to keep track of what he had previously
defined,

3. " extendability: new built-in predicates can be added
easily.

In the meantime a number of other research groups have
appreoached similar issues and some of the Prolog interpreters
now commercially available would at least partially fulfill
our requirements (especially the possibility to integrate
code written in standard high level programming languages).

5 QUERY LANGUAGES FOR LIS

The query language of a database system is the language a
user uses to express to the database what data he needs and
how it should be presented. Despite considerable efforts the
ultimate query language for standard commercial databases has
not been found. Presently the SQL language used in IBM’s
relational databases seems to emerge as a standard for
commercial applications; nevertheless, it is not very easy or
natural to use and is limited in its expressive power (no
loops or recursion). Many new proposals are presented at
every database conference, which indicates that the ultimate
solution is not yet found.

Few proposals have been made for a database query language to
deal with graphics output [Frank 1982b]. Our previous
implementation of MAPQUERY [Egenhofer 1984] was based on SQL
and suffered from the lack of a general loop construct or
recursion. This becomes most apparent for a request like:

Find a specific forest parcel and return the largest
connected forest area this parcel is part of.

This is logically translated to:

1. find the parcel x and place it in a set s.

2. Repeat till the set does not grow any more:
for each parcel p in s find all its adjoiners and if the
parcel type is forest, add them to the set 5.

Technically we call this transitive closure and it is a
typical example for a least fixed point operation. It can be
implemented using a loop or a recursion, but both of these
devices are missing in $QL and therefore it is not possible
to express these (and all similar) queries in SQL. Prolog
like languages include recursions and thus have no problems
to express the above gquery.

Further, a query language to be used in a multi purpose LIS
must provide means to define the terms used for one purpose
in terms of another one. This is extremely simple in Prolog
(or LOBSTER) and can even be done by a user. For example, a
user wishes to define a motorway as a road that is used by
automobiles and has a width of at least 8 m:

motorway (x) if usedBy (x, automobiles) and width (x, w) and
larger (w, 8).

From then on, the user can use the term motorway with this
specific definition. In LOBSTER we plan to include facilities
so that each user (or user group) can include his own
definitions. These definitions then can be used to define
others, for example personal abbreviations.

For cartographic query languages it is necessary to complete
a user query (which may ask for a specific point) with a
statements to retrieve a suitable environment (context) for
presentation. This completion must be done considering the
~user and the task he tries to accomplish. In other Artificial
Intelligence projects, attempts to accumulate information
about the user and his interests have been made; similar
efforts are necessary for LIS and it seems that a Prolog like
language can easily support such efforts,

6 FORMAL LOGIC FOR DEFINITION OF TERMS

Discussion of terminology between application domains is
primarily hindered by the difficulty to percisely explain
what is meant by a term (the semantics),

The selection of different terms for the same thing or using
the same term for different things do not cause problems, as
long as the use of the terms is consistent for each user
(group) and exact definitions exist. It is then possible to
translate the terms into some artificial standard terms,
using Prolog rules [Frank 1985b] [Frank 1985c].

The correct and unambiguous definition of terms, however, is
much more difficult and subtle differences can have
considerable effects. Prolog rules can not only be used to
retrieve data from a database, but they can also be
interpreted as formal definitions for terms. Palmer reports
the use of Prolog rules to retrieve hills and valleys from a
irregular triangulation terrain model[Palmer 1984]. The same
rules can be read as formal definitions for the terms rhill’
and ‘valley’. These definitions are precise and do not leave
room for differing interpretations (they are based on other,
formally defined terms and are ultimately based on a
triangulation of the surface and the height of points). Their
intuitive correctness can be observed when used to retrieve
data, but they can also be examined and formal deductions
made from them.

7 - CONCLUSIONS

The methods and tools Artificial Intelligence research has
developed over the past decade are very helpful for the
construction of intelligent Land Information Systems. A logic
based language like LOBSTER provides the additional
expressive power standard which commercially oriented
database gquery languages do not have, and which is necessary
for geometry oriented data. The interface with the database
can be selected such that the resulting language is not more
complicated than standard SQL.

Moreover, a logic oriented language allows experts to set up
the language such that the differences in terminology between
user groups of a LIS can be accomodated. It seemg also
possible to build systems that note the user’s behavior over
time, extrapolate and meet his expectations automatically.

Finally, a logic oriented language draws our attention to
formal methods to specify our terms and thus helps to
overcome the misunderstandings in natural language terms.
Formal definitions do not only help programmers, but
generally improve our understanding of things.

Granted, all this can be achieved using the formal logic and
any programming language. The difference between a system
like LOBSTER and other traditional solutions is the
separation of concern between the logical inference system,
and the user definitions. Using procedural languages these
aspects are tightly interwoven, and it is therefore more
difficult and more expensive to write the programs and very
time consuming to change them. The definition in a Prolog
needs not to be written by a programmer, but can be done by
an expert in the application domain.

BIBLIOGRAPHY

Barr, A., Feigenbaum, E.A., The Handbook of Aritificial
Intelligence, Pitman, London 1982

Chevallier, J.J., Land Information Systems - a global and
system theoretique approach, paper 301.2, Federation
Internatinale des Geometres, XVI Congress, Montreux
(Switzerland), 1981

Chevallier, J.J., De la mensuration cadastrale a un systeme
d'information du territoire, revolution ou evolution,
Surveying, Photogrammetry and Rural Engineering (VPK),
no. 2, Feb. 1980, 2zurich (Switzerland)

Clark, K.L., McCabe, F.G., micro-Prolog: Programming in
Logic, Prentice Hall international SEries in Computer
Science, 1984

Clocksin, W.F., Mellish, C.5., Programming in Prolog,
Springer Verlag, New York, 1981

Egenhofer, M., MAPQUERY - Query Language for Land Information
Systems, Report Nr. 79, Institute for Geodesy and
Photogrammetry, Swiss Federal Institute of Technology,
Zurich (Switzerland), 1984

Epstein, Earl F., Duchesneau Thomas D., The User and Value of
& Geodetic Reference System, Federal Geodetic Control
Committee, 1984

Frank, A., Land Information Systems - theoretical and
practical problems, paper 305.1, Federation
Internatinale des Geometres, XVI Congress, Montreux
(Switzerland), 1981

Frank, A., Conceptual Framework for Land Information Systems
— A First Approach, paper presented to the 1982 Meeting
of Commision 3 of the FIG, Report No. 38, Surveying
Program, Universtity of Maine at Orono, 1982

Frank, A., MAPQUERY, Data base gquery language for retrieval
of geometric data and its graphical representation,
Proceedings SIGGRAPH '82, Computer Graphics, vol. 16,
No. 3, July 1982, p. 199

Frank, A., PANDA: a Pascal network database management
system, in: W. Gorsline, Ed., Proceedings of the Pifth
Symposium on Small Systems, ACM SIGSMALL, Colorado
Springs, Col., 1982

Frank, A., Data Structures for Land Information Systems -
Semantical, Topological and Spatial Relations in Data of
Geo-Sciences, Ph.D. Thesis, Swiss Federal Institute of
Technology, Zurich (Switzerland), 1983

Frank, A., Storage methods for space related data: the FIELD
TREE, in: M. Barr (Ed.), Proceedings Spatial Algorithms
for Processing Land Data, Symposium of the Lincoln
Institute, Cambridge, Mass., 1983

Frank, A., Extending a network database with prolog, in: L.
Kerschberg (Ed.), Proceedings First International
Workshop on Expert Database Systems, Kiawah Islands,
S.C., 1984

Frank, A., Requirements for database systems suitable to
manage large spatial databases, in: D. Marble, et al.
(Eds), Proceedings of the International Symposium on
Spatial Dbata Handling, Zurich (Switzerland), 1984

Frank, A., Combining a Network Database with Logic
Programming, Report No. 45, Surveying Program,
Universtity of Maine at Orono, 1984

Frank, A., Distributed Databases for Surveying, Journal of
Surveying Engineering, American Societey of Civil
Engineers, Vol., 111, No. 1, March 1985

Frank, A., Computer Assisted Cartography, Lecture Notes,
Surveying Engineering Program, University of Maine at
Orono, 1985

Frank, Integrating Mechanism for Storage and Retrieval of
Data, in: Onsrud, H.J., Workshop on Fundamental Research
Needs in Surveying, Mapping, and Land Information
Systems, Report, Virginia Polytechnic Institute and
State University, Blacksburg, va, 1985

Guttag, J., Abstract data types and the development of data
structures, Comm. of the ACM, June 1977

Guttag, J., et al., The design of data specifications, , in:
Yeh, R.T. (Ed.), Current Trends in Programming
Methodology, Vol. 4, Data Structuring, Prentice-Hall,
1978

Guttenberg, A., Land data classification - a lingquistic
approach, Proceedings of the 7th European Symposium on
Urban Data Management, The Hague, 1979, paper 8

Guttenberg, A., Uniformity and flexibility in the
classification of topographic data, paper 301.4,
Federation Internatinale des Geometres, XVI Congress,
Montreux (Switzerland), 1981

Hayes-Roth, F., Waterman, D.A., Lenat, D.B., Building Expert
System, Addison Wesleyu, Reading (Mass.), 1983

Kowalski, R., Logic for Problem Solving, Elsevier, New York,
1979

Palmer, B. Symbolic feature analysis and expert systems, in:
D. Marble, et al. (Eds), Proceedings of the
International Symposium on Spatial Data Handling, Zurich
{Switzerland), 1984

Parnas, D.L., A technique for software module specification
with examples, Comm. of the ACM, Vol. 15, No. 5, HMay
1972

Peuquet, D., The application of artificial intelligence
techniques to very large geographic databases, Proc.
Sixth Internat. Symposium on Automated Cartography,
Ottawa, 1983, vol. 1,pp. 419-420.

Address of author:

Dr. Andrew U. Frank

Surveying Engineering Program
Boardman Hall 103

University of Maine

Orono, Maine 04469

USA

