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HUMAN INTERACTION WITH GIS/LIS:
EDITING GEOMETRIC MODELS

INTERAKTION MIT GIS/LIS:
EDITIEREN GEOMETRISCHER MODELLE

INTERACTION ENTRE L'UTILISATEUR ET LES SIT:
EDITER DES MODELES GEOMETRIQUES

Wemer Kuhn (Switzerland) and Andrew U. Frank (U.S.A)) -

SUMMARY

The acquisition and interactive manipulation of geometric data are fundamental tagks in
the use of geographic and land information systems (GIS/LIS). Most systems offer
methods for these tasks which are derived from manual geometric constructions. They
tend to have restricted and complex user interfaces. The paper explains these
shortcomings and proposes an alternative approach, based on the idea of sketching and
declaring geometric constraints.

ZUSAMMENFASSUNG

Das Erfassen und interaktive Verindern von geometrischen Daten sind grundlegende
Titigkeiten bei der Beniitzung von Geographischen und Land-Informationssystemen
(GIS/LIS). Die meisten Systeme bieten dafiir Methoden an, die vom manuellen
geometrischen Konstruieren abgeleitet sind. Sie haben meist einschrinkende und
komplexe Beniitzerschnittstellen. Der Beitrag erliutert diese Nachteile und schlagt
einen alternativen Ansatz vor, der von der Idee des Skizzierens und der Angabe
geometrischer Bedingungen ausgeht.

RESUME

L'acquisition et le traitement interactif de données géométriques sont des tiches
fondamentales dans l'utilisation des systmes d'information du territoire (SIT). La
plupart des systémes offrent des méthodes pour ces tiches qui sent dérivées des
constructions géométriques manuelles. Ils ont souvent des interfaces restreinis et
complexes. L'article discute ces problémes et présente une approche alternative qui est
fondée sur 'idée d'esquisser et de déclarer de contraintes géométriques.
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1. Introduction

User interfaces for word processing and administrative tasks like accounting or
ipventory have developed considerably in the last decade. Also, attractive graphics
coftware allows to prepare illustrations and other graphical products in much easier
and more intuitive ways than ever before. So called desktop (or electronic) publishing
environmenis integrate these powerful tools.

Wwhen dealing with spatial information, however, we observe a lower quality and a
slower evolution of user interfaces. Common problems are that

. commands are difficult to learn and use

. system capabilities are not evident from the user interface

. parts of systems have inconsistent interfaces

. users have to worry about making (fatal) errors

. it is difficult to get an overall picture of how a system behaves

. systems react in unexpected ways ]

. documentation is often a nightmare by itself, instead of a help.

A problem at a more fundamental level is that systems often don't serve the needs of
their users for certain tasks. They may be powerful, offering a wide functionality, but
lacking usabiliry. Or they may emulate traditional techniques of problem solving and
thereby miss many opportunities of the new technology. In both cases, users often wish
they could return to the old ways of getting things done.

This paper focusses on user interfaces for plane geometric construction tasks. The =
goals of the reported work were to determine a ‘division of labor’ between user and
system that supports the user's needs and to achieve an effective communication
between user and system. In order to reach these goals, it was necessary to analyze first
the nature of geometric construction tasks. This section summarizes some of the
important characteristics.

Geometric construction tasks are characterized by constraints, i.e. conditions to be
satisfied by a solution. Examples include constraints on parallelity, orthogonality,
distances, radii, angles, areas etc. The concept of constraints plays an important role in
design tasks: An object being designed has to ‘function’, i.e. to satisfy certain
requirements which can be stated as constraints. Every design process involves a
specification of the desired artifact by constraints [Simon 1981, Fischer and Bocker
1983}. Geometric construction tasks can in fact be regarded as design tasks: An
engineer, architect or draftsman designs geometric models by specifying a set of
constraints. We will refer to geometric construction tasks as design tasks throughout
this paper.

The constraints are usually expressed by refering to a sketch of the situation,
annotating it or separately stating the conditions. The sketch represents more than a
simple illustration of the task at hand. It takes care of the ambiguities in task
descriptions and supports the cognitive process of finding a solution. Neither the
graphic depiction by the sketch nor a description by words alone could penerally
contain all the information necessary to find a solution.
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" Designs evolve in stages from sketchy information to more precise data to situationg
which are commonly overconstrained and require some form of optimization to find 5
satisfactory solution. At the beginning, a task description is usually incomplete: The
designer might have to look up values in tables, consult maps and registers, make
assumptions on some properties, etc. Once all the available information is collected, it
normally overdetermines the situation and contains inconsistent requirements,

Geometric constraints are generally not of equal importance and they contain some
degree of uncertainty. The reason for this uncertainty lies in the information sources
involved: Measurements are inherently subject to errors and design constraints are not
always strict or precise {Schenk 1986]. A solution method for design tasks should be
able to cope with these uncertainties.

The remainder of this paper discusses the traditional 'division of labor' between a
designer and a system and proposes an alternative (section 2). A constraint solving
method, as required by the alternative approach, is outlined in section 3. Section 4
shows an interface design for the approach. The paper ends with conclusions,
discussing related work, the feasibility of the approach (based on an existing
implementation) and open problems.

2. Interaction paradigms for design tasks

User interfaces for design tasks are commonly built in analogy to traditional drafting
techniques. They offer a set of elementary ("ruler and compass™) construction steps to
construct geometric figures. We discuss this 'constructive’ interaction paradigm and
suggest a 'declarative’ alternative which is based on the notion of geometric constraints
rather than on geometric construction steps.

2.1. Constructive interaction

The constructive interaction paradigm is based on an analogy to the familiar
construction steps in euclidian geometry. System designers assume that users are
experienced with drafting tools like rulers and compasses. They capitalize on that
experience by simulating these tools electronically. The resulting user interfaces offer
an extended notation of elementary construction steps. To solve design tasks, users can
choose and combine commands from a menu (see figure 1) or in a command language.

Such a simulation of manual construction methods allows for familiar operations and
promises easy learning of a system. With a sufficiently rich collection of construction
steps, many common tasks can be solved in just one step or by a short sequence of
operations. However, the analogy carries some limitations with it as well. In complex
design tasks, users have to derive sequences of operations all by themselves, without
help from the system. Because the sought geometric elements {points and lines) can not
be visualized by the system until they are completely delermined, the users ofien need
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to work with sketches outside the system to develop solution plans. Essentially, they

- have to solve the tasks themselves, by combining appropriate construction steps from

the selection offered by the system.

More importantly, most design tasks are inherently under- or overconstrained. A
constructive system, however, can only handle exactly determined situations. For
example, circles have to be defined by three points, or two tangents and a point, or
corresponding data, but not more (e.g. two points and two tangents) and not less (e.g.
preliminary information that the endpoints of two lines are linked by a circular arc,
without knowing the arc's size yet). Additional difficulties are caused by uncertaintyin
the data. A constructive interface forces users to supply complete and precise data for

every construction step.
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Design tasks, particularly in engineering, ofien involve constraints on arc lengths or
polygon areas. Examples are road designs and parcel subdivisions. Since euclidian
constructions contain neither arcs nor polygons as concepts, constructive systems have
lo provide extra commands for such occasions. Because of the unlimited possibilities
for variations in constraints, these commands can only caver special cases, e.g. splitting

4 polygon with a line which is parallel (but maybe not orthogonal or having a general
angle) to an existing boundary.

.

Figure I: Aypical menu with construction sleps
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The number of commands and, consequently, the complexity of the user interface are
growing, due to the need for special case solutions and high-level construction steps
like particular combinations of points, radii and tangents to define circles. Overloaded
command menus are commonly observed with constructive uger interfaces in practice.

All these shortcomings restrict the usability of constructive systems for practical design
tasks in fields like engineering and architecture. The goal of ‘user friendliness’ which
motivated the analogy with familiar drafting operations, is defeated by the limited
practical usability of the resulting systems. These are often electronic drafting boards
rather than design systems. While this represents already a significant improvement
over manual drafting technology, computers can and should be used in more effective
ways than just to emulate the technology they replace.

2.2. Declarative interaction

Adequate computer support for design tasks [Greenberg 1984] should deal with the
complex and ill-defined nature of the tasks as well as with the fact that design
information is collected in a continual process and necessarily contains uncertainty .
How can these requirements be satisfied without sacrificing the advantages of an
analogy with familiar concepts?

While analogies can be powerful means to facilitate learning and operating of systems
[Smith et al. 1982], we believe that it is crucial to choose them at the right level. In the .
case of design tasks, an analogy can not only be established at the level of task
execution (by construction steps) but also at the leve! of task description. This is the
idea behind the declarative interaction paradigm.

Users should be able to describe their knowledge about a design task and let the system
propose solutions [Kuhn 1986]. The familiar means for such a task description are a
sketch of the desired situation and an indication of censtraints which have to be
satisfied. This kind of sketch-based communication has been successful between
engineers and draftsmen over centuries. It can now be applied to human-computer
interaction, given today's hard- and software environments.

In the declarative interaction paradigm, sketching has two main purposes: First, it
serves to specify the topology of a situation, e.g. which points and lines exist and what
incidences they have. Not only is topological information normally represented
correctly in a sketch of a situation (as opposed to the distorted metric information), but
sketching seeems also to be the most natural way for humnans to express it

Second, a sketch is used to define an approximate solution to a design task. The
declarative interaction paradigm presupposes that a sketch determines a situation
completely and uniquely, though not precisely. This ensures that every task will be
computationally overdetermined: The explicitly stated constraints are improving on an
already determined approximate solution.

A declarative user interface must allow to describe all geometric constraints possibly
occurring in design tasks. This requires some thought about what kinds of constraints
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have to be dealt with. A theoretical study of geomelric Constraints in two dimensions
has been done in [Kuhn 1989). Based on differential geometry, a complete set of
pﬁmitive functions and relations has been identified and a logic-based language for
their combination to simple and complex constraints has been defined. With this
language (which will not be discussed here), two-dimensional geometric models of
arbitrary complexity can be described.

Wwith the declarative interaction paradigm, users don't have to worry about
construction steps necessary to satisfy the constraints. They can fully concentrale on
describing their knowledge of a situation. Over- and underdeterminations are normal
and do not have to concern a user at the time of the task description. Users can,
however, ask the system where more information is needed or where conflicting
information has been stated.

This approach allows to describe as much as is known at a particular time about a
design task. When additional information becomes available, it can be entered, or the
ipformation already described can be edited. The sequence of problem description,
solution planning, plan execution and result assessment [Polya 1945} is broken up: Since
each constraint improves on a previous solution, it can immediately be evaluated and its
effect can be displayed. This supports the interaction style of direct manipulation
[Hutchins et al. 1986]: users see the results of their operations immediately and can
decide to proceed or to undo them.

Finally, an essential difference between the constructive and declarative interaction
paradigms is the following: In a comstructive system, the constraints of a task are not
part of the system's geometric model. They are "forgotten” after the user has transiated
them into construction St€ps. With the declarative paradigm, on the other hand,
constraints are recognized as central to a task and constitute the fundamental entities of
a geometric model. They represent an explicit description of task knowledge ina
system and can be inspected, modified or deleted at any time.

Section 4 will illustrate a possible declarative interface for design tasks. Before getiing
to it, however, we need to show how a system can actually solve a task described Dy
constraints.

3. Satisfying constraints by [east squares adjustments

An automatic satisfaction of geometric constraints requires a method t0 solve a system
of simultaneous equations representing the constraints. This method has to cope with
overdetermined systems of equations and with uncertainty in the constraints. A least
squares adjustment fulfills these requirements and was adopted as constraint solving
method in our approach. This section briefly explains how constraints can be satisfied
by a least squares solution along the lines of [Schmid and Schmid 1965].
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3.1. Describing constraints analytically

Geometric constraints are assertions about topological and metrical properties and
relations of geometric objects. These assertions can analytically be expressed by
equations. The equations contain ‘

« constants {real numbers), standing for observed values and the like;

. variables, standing for point coordinates and for parameters describing curves;

. function terms, expressing metric properties of points and curves.

Summarizing all variables in a vector u and all functions (including constants) in a
vector function f, we can represent the set of geomeiric constraints in a design task by
f(u)=0

Since the sketch represents an approximate solution, we can regard it as defining a set
of initial constraints. For each variable u,, the sketch defines an approximate value u,°,

leading to a constraint

u -u°=0
Including these initial constraints, the system f(u) = 0 will always be overdetermined,
except in the trivial case where no constraints have been added to the sketch.

As we discussed earlier, geometric constraints are subject o uncertainty. This means
that the vector equations representing them have to include a vector of (unknown)
corrections: '

fluy=v
For example, if a distance between two points is constrained to be 10 meters, allowing
for a slight derivation, the corresponding equation is

V(%) + (ypy ) -10 = v

If we regard the corrections v as random variables with an expected value of zero, they
have an associated variance o,% Tchebyscheff's inequality [van der Waerden 1957]
shows that the variance determines how much a random variable can deviate from 1ts
expected value:

Pr{vize) < olc?

By indicating a variance for every constraint, the corresponding correction can
therefore be limited. The smaller a tolerated correction is, the smaller the variance has
to be. Variances can therefore be used as a measure for decribing the uncertainty of
constraints.
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3.2. Satisfying a system of constraints

The vector equation f(u) = v is an underdetermined non-linear system. Its linearized
form shall be :

AA-l=v
where A is the Jacobian matrix of f(u}, A represents the differences between the
parameters and their approximations u®, and I is f(u®).

Applying the least squares principle to the corrections v:
llvil = vTPv -> Min.
leads to the familiar normal equations
A"PAA = AP
and from them we obtain the least squares estimates
A =(A"PAY'API
d=ud+A

‘The solution of this linearized system has of course Lo be iterated to satisfy the non-
linear constraints. The iteration can be stopped when the change in the parameters falls
below a certain threshold.

So far, we have not made any assumptions about the matrix P (except that it should be
positive definite in order to guarantee a positive length of the vector v). It.can be used
to represent the uncertainties in the constraints: If the variances representing the
uncertainties are summarized in a covariance matrix K, the matrix P can be selected
as its inverse. Since P only needs to be known up to a constant factor (as can be seen
from the normal equations), we get:

P=02K,"

Note that no assumption about normal distribution is necessary 1o solve the constraint
system. The least squares principle is not dependent on such an assumption and
minimizes the corrections independently of their probability distribution. A normal
distribution is only required for a statistical analysis of the results, e.g. to test whether
the corrections obtained are compatible with the chosen variances.

More details on using least squares adjustments for solving constraint systems can be
found in {Kuhn 1989]. This reference also contains an extension of the method to
constraints involving inequalities, and an algorithm for a sequential adjustment,
allowing to compute an updated situation for every new constraint.

4. A geometry editor

A declarative user interface for a design sysiem serves lo creaie, view and edit
geometric models and can therefore be regarded as an editor for geometric models.
This section shows a possible design of such an editor, based on the interaction siyle of
direct manipulation. The screens shown are intended 10 illustrate the ideu of declarative
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interaction and are nof taken from an actual implementation. The presupposed
interaction devices (a bitmap screen and a mouse or another pointing and drawing
device) as well as software support for windows, icons, and menus are readily available
for low-cost workstations and personal computers.

The proposed editor allows to describe geometric models by sketching and by building
expressions in a constraint language. The system represents the models graphically
(figure 2), displaying the geometric elements as precisely as they have been described
at any given instant. This graphic view of a model also provides the context for
sketching: Users sketch new elements directly in this view, relating them to existing
elements.

By selecting one of three different sketching tools for points, lines and arcs, users
describe the existence, dimension, and shape of elements. Then, by positioning a point
or sketching the path of a line or arc, the approximate position, orientation, and size of
the element are described. The relative positions of points, lines, and arcs define their
incidences: When a point is positioned on a line or arc or when a sketched path crosses
an existing element, the system infers an incidence between these elements.

« Ablage Bearbeiten Masse Retationen Graphik Hilfsmittel

Casiiakd -in\hiﬂﬂﬁ'-«hﬂ-«h\'-‘-ﬁmkm-ugm ot o
REBEENANDSHES KA NS SN RS R RS
it b LT o e A b L i e e L L g o]

Figure 2: Skelching a ncw boundary linc which splits an existing parcel. Whenever the sketched path
intersects an existing line, the system highlights the line and records an incidence. The sketched path
implicitly defines approximale positions for the new boundary paints.
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To state explicit constraints, users select the geometric elements involved and choose
the appropriate functions or relations from menus. For example, to state that two lines
should be orthogonal, the two lines and the relation 'orthogonal' are selected (figure 3).
Note that in the menus, only those functions and relations can be chosen which are
applicable to the currently selected geometric elements.
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Figure 3: The system has evaluated the skelched information and displayed the new boundary line and
points as far as they have been determined. The user has selected the new and an existing boundary 10
state the constraint that they be orthogonal.
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Functions are used to state constraints involving scalar values. For example, a
constraint on the area of a polygon is stated by selecting the area (represented by the
bounding polygon) and choosing the area-function from a menu (hgure 4). The system
then displays the current value of the area and the user can type it over with the desired
value (figure 5). Thus, the method to define constraints serves at the same time as 3
query language for metric properties.

The system displays constraint language expressions in a separate window. In this
constraint editor window, users can subsequently modify or delete constraints,
Experienced users can also state constraints by directly typing the corresponding
expressions in this window, instead of selecting elements, functions, and relations from
the graphic view and the menus. The last column in the constraint editor window shows
the variances associated with the constraints. The system sets default values for them
which can be modified by the users.

% Rblage Bearbeiten PYEIITH Retationen Graphik Hilfsmittel
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Figure 4: The system has displayed the orthogonality constraint in the constraint editor window
(‘Bedingungsliste®) and updated the geometry to reflect its effect. The user has selected one of the new
parcels (indicated by the highlighted boundary lines) Lo staic an area constraint.
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Figure 5: Afler the user has staled the area constraint, the system displays the updated geometry. To link
the constraint expressions to the graphic vicw, the sysiem displays labels for points and lines which can
be edited by the user to reflect actual names of elements in an application.

The constraint language furthermore provides built-in extensibility, i.e. it can be used
to define higher-level constraints. In a constraint definition window (not shown here),
users compose formulae which define higher-level relations by combining functions
and relations which are offered by the system or have already been defined. For
example, based on the length function, a constraint on the length of a polygon could be
defined.

5. Conclusion

Systemns which solve geometric problems based on constraints have been proposed since
the early days of computer graphics. With the pioneering Sketchpad system [Sutherland
1963], geometric figures could be drawn and topological and metrical constraints could
be formulated. Constraints were solved {(among other, more restricted methods) by
relaxation. This comes close to a least squares adjustment but does not allow for over-
or underdetermination.
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ThingLab [Borning 1979] was a direct descendant from Sketchpad, using the constraint
idea to build a general-purpose, object-oriented simulation system. Another interesting
approach, combining a declarative interaction with a constructive solution of geocmetric

accommodate them.

Some geographic and land information systems are incorporating constraint-based
ideas, primarily for rectifying digitized data, A generalization of thig approach towards
providing constraining and editing functionality for geometric models (not just for
digitized data) has yet to reach the user community.

~The editor for geometric models proposed in this Paper goes beyond related proposals

by combining the following features: '

» Geometric constraints are treated as first-clasg objects of geometric models. They can
be viewed and edited at any time.

+ An underlying constraint language allows 1o €xpress a complete set of constraints and
to define extensions.

* Taking a sketch as a first approximation allows to deal with incomplete knowledge in
design tasks.

* A least squares adjustment is used to satisfy constraints. This allows for dealing with
under- and overdetermined situations as well as uncertainty.

* Users have full ¢ontrol over the influence of individual constraints.

The feasibility of the approach has been shown by a prototype implementation on the
Apple Macintosh™. This program, HILS (Human Interface to Least Squares),
developed by Michael White [White 1987), has evolved into a standalone application for
surveying and civil engineering design tasks. It offers the functionality of the proposed
editor for points and straight lines,
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