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a b s t r a c t

Many applications in geosciences need to deal with 3D objects. For this, among other requirements, 2D

spatial analyses must be extended to support 3D objects. This extension is an important research topic

in GIS and computational geometry. Approaches that extend an existing algorithm for a 2D spatial

analysis to work for 3D or higher dimensions lead to different algorithms and implementations for

different dimensions. Following such approaches the code for a package that supports spatial analyses

for both 2D and 3D cases is nearly two times the code size for 2D. While dimension independent

algorithms are an alternative toward generalization, they are still implemented separately for each

dimension. The main reason is that each dimension is modeled using a different data structure that

requires its own implementation details. In this article we use the list data structure to implement

n-simplexes—as a data type that supports spatial objects of any dimension. Primitive operations on

n-simplexes become manipulating functions over lists, which are independent of the number and type

of the elements. We define spatial analyses as combinations of primitive operations on n-simplexes.

Since the primitive operations on n-simplexes have been implemented independently of dimension, the

spatial analyses are dimension independent, too. Construction of Delaunay triangulation of nD points,

as the basic data structure for many geoscientific researches, is used here as the running example. The

implementation results for Delaunay triangulation of some 2D and 3D points are presented and

discussed. As a case study the implementations are used to calculate the area and volume of the

reservoir of a dam at different water levels, which leads to a level–surface–volume diagram.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Many applications in geosciences (e.g., geological modeling,
oceanography, pore-space modeling and landslide deformation)
need to deal with 3D objects (Apel, 2004; Houlding, 1994; Monga
et al., 2007; Pouliot et al., 2008; Turner, 1992; Tzenkov and
Gospodinov, 2003; Yanbing et al., 2007). There are also applica-
tions where ‘‘the objects of interest are spatial distribution of 3D
continuous geographical phenomena such as the salinity of a body
of water, the humidity of the air or the percentage of gold in the
rock’’ (Ledoux and Gold, 2007). There is much effort on the
extension of geospatial information systems (GIS) – as the tool to
manage spatial information in a wide range of issues from data
collection and storage to manipulation and visualization - to
support 3D objects (Abdul-Rahman and Pilouk, 2008; Raper,

2000). This extension, among other requirements, needs support
for 3D spatial analyses.

Extension of 2D spatial analyses to 3D has been the subject of
many studies (Ledoux, 2007; Nonato et al., 2001; Preparata and Hong,
1997). Some research has modified an existing algorithm for a 2D
spatial analysis to work for 3D or higher dimensions. Such approaches
result in different algorithms, and consequently different implemen-
tations, for different dimensions. Following such approaches the code
for a package that supports spatial analyses for both 2D and 3D cases
is nearly two times the code size for 2D. An alternative is a dimension
independent approach. Its advantage is that the same algorithm
works for any dimension. However, because of lack of efficient
geometric data structures, they are still implemented separately for
each dimension. For example, the Bowyer–Watson algorithm to
construct Delaunay triangulation is an n-dimensional approach,
but it is implemented differently in 2D (Bowyer, 1981) and 3D
(Field, 1986). Therefore, from an implementation point of view, there
is no advantage in using dimension independent approaches.

This article pushes more toward dimension independency in
spatial analyses (Frank, 1999; Frank and Kuhn, 1986; Karimipour
et al., 2008a, 2008b). We use the list data structure and its
manipulating functions to implement dimension independent
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spatial analyses. A list is a collection of any number of elements of
the same type. A set of manipulating functions over lists are
implemented, which are independent of the number and type of
the elements of the list. As Fig. 1 shows, we represent an n-simplex

� a data type that supports spatial objects of any dimension – as
a list of nD points. It enables us to describe primitive operations
on n-simplexes as manipulating functions over lists, which will be
dimension independent. Finally, we define spatial analyses as
combinations of primitive operations on n-simplexes. Since the
primitive operations on n-simplexes have been implemented
independently of dimension, the spatial analyses are also
dimension independent.

The rest of the article explains the above diagram and shows
how to use this for an example spatial operation. Section 2
introduces Delaunay triangulation as the running example. This is
a frequently used spatial analysis in geoscientific applications. In
this section, we explain a dimension independent algorithm for
this spatial analysis, which will be implemented in the rest of the
article. Section 3 reviews the concept of n-simplexes and their
primitive operations. In Section 4, we describe the list data
structure and introduce a set of manipulating functions over lists.
Section 5 develops the n-simplex type and its primitive operations
using the list data structure and its manipulating functions.
Section 6 contains a dimension independent implementation of
Delaunay triangulation using the algorithm described in Section 2.
It starts with implementing a set of spatial operations that are
required for constructing Delaunay triangulation. Their combina-
tion ends up in a dimension independent implementation of
Delaunay triangulation. The implementation results for some 2D
and 3D points are shown and discussed in Section 7. In Section 8, a
case study from hydrographic data of the reservoir of a dam is
presented. In this example, the n-dimensional Delaunay triangu-
lations are used to calculate the area and volume of the reservoir
at different water levels, which leads to a level–surface–volume
diagram. Finally, Section 9 contains some conclusions and ideas
for future works.

The algorithms and implementations presented here are n-
dimensional. However, we limit the research to 2D and 3D, which
are of interest in geosciences and their geometrical illustrations
are possible.

2. Running example: Delaunay triangulation

There are two modeling approaches to treat the real world:
object-based modeling where the real world is represented as

discrete and identifiable entities and field-based modeling that
represents the real world as a continuously changing field
(Ledoux, 2007). Although the geoscientific phenomena are
continuous, their representation through the field-based ap-
proach is problematic, because it is not possible to measure
continuous phenomena everywhere. Therefore a sampling pro-
cess at some finite locations is performed and the field is
reconstructed from these samples. Delaunay triangulation is the
widely used approach for this reconstruction (Aurenhammer,
1991; Delaunay, 1934; Ledoux and Gold, 2007).

Delaunay triangulation is well known in geosciences for many
years (Mostafavi et al., 2003). It is the basic data structure for
many geoscientific applications such as terrain modeling, spatial
interpolation and geological mapping problem. It is also widely
used in 3D geoscientific modeling. ‘‘3D Delaunay triangulation is
used in many geoscientific applications that collect data about
spatial objects and domains such as features of the solid earth
(aquifers), oceans (currents) or atmosphere (weather fronts),
which fill 3D space’’ (Lattuada and Raper, 1995). Furthermore,
there are several applications in geosciences for which construct-
ing the 3D Delaunay triangulation is the basis, e.g., surface
modeling, isosurface extraction (Ledoux and Gold, 2007) and
reconstruction of 3D complex geological objects (Yong et al.,
2004).

Delaunay triangulation for a set of 2D points is the partitioning
of the space into triangles that satisfies the empty circumcircle
test: the circumcircle of each triangle does not contain any other
point of the data set. Extension of this spatial analysis to nD
points constructs a partitioning of the space to nD pyramids
(with triangular bases) in which the nD circumsphere of each
pyramid does not contain any other point of the data set. Fig. 2
shows Delaunay triangulation of some 2D and 3D points.

There are several algorithms to construct Delaunay triangula-
tion (Guibas and Stolfi, 1985; Ledoux, 2006; Okabe et al., 2000;
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Fig. 1. Proposed approach of research.

Fig. 2. Delaunay triangulation of some (a) 2D points and (b) 3D points. In 2D case,

some of circumcircles are drawn. In 3D case, one of tetrahedra is highlighted.
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O’Rourke, 1998). In this article we use an incremental algorithm
called Bowyer–Watson algorithm, which is dimension indepen-
dent (Bowyer, 1981; Watson, 1981). This algorithm is selected
because it is among the simplest algorithms for constructing
Delaunay triangulation and enables us to concentrate on the main
goal of the research – which is nD implementation of a spatial
analysis using lists – than describing the details and subtleties of
the algorithms.

The Bowyer–Watson algorithm for a set of 2D points starts with
constructing a big triangle that contains all of the points. Other
points are inserted one by one into the construction and after each
insertion the DT is modified: all the triangles that violate the
circumcircle test, i.e., whose circumcircle contains the new point
(Fig. 3a), are deleted from the construction (Fig. 3b). This creates a
hole, which is filled by new triangles that are created by joining
the new point to each edge of the boundary of the hole (Fig. 3c).

For 3D points, the overall procedure is similar, but with some
changes in terminology:

� The algorithm starts with a big tetrahedron that contains all of
the points.
� After each insertion, all the tetrahedra whose circumsphere

contains the new point are deleted, and the hole is filled by
new tetrahedra that are created by joining the new point to
each triangle of the boundary of the hole.

The differences in terminology remain in the customary
implementations, which lead to different implementations for
2D and 3D. The next section introduces the concept of n-
simplexes that enables us to implement the Bowyer–Watson

algorithm, absolutely independent of dimension.

3. n-Simplexes bring different dimensions together

The first step toward generalizing the Bowyer–Watson algo-
rithm is to remove the expressions that depend on the dimension:

� Create an initial nD pyramid that contains all of the points
� Insert the other points to the construction and update the DT

after each insertion as follows:
J Delete all the nD pyramids that violate the nD circumsphere

test, which results in creating a connected hole.
J Fill the hole by new nD pyramids, which are created by joining

the new point to each element of the boundary of the hole.

This definition explains the functionality of the Bowyer–Watson

algorithm for points of any dimension. For its implementation,
however, we need a data type that supports the general
terminology used in this definition. This section introduces the
concept of n-simplexes, as an n-dimensional data type for spatial
objects, which has this capability. For this, the n-simplexes are

introduced and some of their properties and operations are
presented. The last subsection gives an implementable version for
the above general definition, based on the concept of n-simplexes
and their operations.

3.1. What is an n-simplex?

An n-simplex Sn is formally defined as ‘‘the smallest convex set
in a Euclidian space (denoted as Rm, with nrm), containing n+1
points v0, y, vn that do not lie in a hyperplane of dimension
less than n’’ (Hatcher, 2002). A simpler definition describes an
n-simplex Sn as the simplest spanning geometric figure in the
n-dimensional Euclidean space that contains n+1 points v0, y, vn

of dimension n, providing that the vectors v1�v0, y, vn�v0 are
linearly independent. An n-simplex Sn is represented by the list of
its vertexes as

Sn ¼ ov0,. . .,vn4

Note that each vertex itself is an nD point, so a detailed
representation of an n-simplex is

Sn ¼ oðe01,. . .,e0nÞ,. . .,ðen1,. . .,ennÞ4

in which eij is the jth defining coordinate of the ith vertex.
n-Simplexes are defined for any dimension. Table 1 shows 0- to
3-simplexes and their common names, representations and
geometric configurations.

The concept of n-simplexes is extensively studied in the late
19th century by Henri Poincaré. It is the basis of the simplicial
homology field, which is today considered as a part of algebraic or
combinatorial topology (Hatcher, 2002).

For a given dimension n, an n-simplex is the elementary spatial
objects from which other complex objects of that dimension are
constructed. Any subset of the vertexes of Sn represents a face of
Sn. A simplicial complex C is a finite set of simplexes that satisfies
the following conditions (Fig. 4):

� Any face of a simplex from C is also in C.
� The intersection of any two simplexes s1, s2 AC is either empty

or a face of both s1 and s2.

Simplicial complexes have interesting properties (see Alexandr-
off, 1961; Hatcher, 2002). They have been considered as a basic
data type in developing spatial database systems (Penninga and
van Oosterom, 2008; Schneider, 1997).

Simplicial complexes may consist of simplexes of different
dimensions (Fig. 4a). A homogeneous simplicial k-complex is a
simplicial complex where every simplex of dimension less than k

is the face of some simplex of dimension exactly k (Alexandroff,
1961). For example, a triangulation of a set of 2D points is a
homogeneous simplicial 2-complex. In this article, only sets of
n-simplexes are used, so they are homogenous n-complexes and
have their properties.

Fig. 3. New point indicated as white is added to DT: (a) and (b) all triangles whose circumcircle contains new point are detected and deleted. (c) Hole is filled by new

triangles, which are created by joining new point to each edge of boundary of hole (Ledoux, 2006).
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3.2. Orientation of n-Simplexes

Vertexes of an n-simplex are ordered, which induces an
orientation (either positive or negative) on the n-simplex. By
convention, the orientation of a 0-simplex (node) is positive. The
orientation of a 1-simplex (edge) is positive from vertex v0 to
vertex v1 and negative from vertex v1 to vertex v0. For a 2-simplex
(triangles), the orientation is defined based on the order in which
the vertexes are listed: clockwise order is positive and counter-
clockwise order is negative. The orientation of a 3-simplex
(tetrahedron) is the sign of the volume constructed by its ordered
vertexes (Alexandroff, 1961): based on the right-hand rule, a
positive volume means that if the first three points are ordered so
that they follow the direction of the curled fingers, then the
thumb is pointing towards the 4th point.

Generally, the orientation of an n-simplex can be specified
using the sign of the determinant of a matrix constructed as
follows: for an n-simplex with vertexes ov0, y, vn4 , an element
1 is added to the end of each vertex and then they are arranged as
the rows of a square matrix. For an n-simplex with vertexes
o(e01, y, e0n), y, (en1, y, enn)4 , the result is

e01 ::: e0n 1

e11 ::: e1n 1

::: ::: ::: :::

en1 ::: enn 1

���������

���������
¼

e11�e01 ::: e1n�e0n

::: ::: :::

en1�e01 ::: enn�e0n

�������

�������

Non-negative values for this determinant indicate a positive
orientation, while negative values mean a negative orientation.
Similar to the determinant of a matrix, odd numbers of
permutations of the vertexes of an n-simplex change the
orientation, while even numbers of permutations maintain it

unchanged (Stolfi, 1989). For instance, for the n-simplexes of
Table 1:

S0 ¼ ov04

S1 ¼ ov0,v14 ¼�ov1,v04
S2 ¼ ov0,v1,v24 ¼�ov0,v2,v14 ¼ ov2,v0,v14 ¼ . . .
S3 ¼ ov0,v1,v2,v34 ¼�ov0,v1,v3,v24 ¼ ov0,v3,v1,v24 ¼ . . .

3.3. Boundary of n-Simplexes

The boundary of the n-simplex Sn¼ov0, y, vn4 , which is
written as @Sn, is defined as follows:

@Sn ¼
Xn

i ¼ 0

ð�1Þiov0,. . .,vi,. . .,vn4

where vi means omitting the vertex vi from the vertex list. The
boundary of an n-simplex is n+1 of (n�1)-simplexes (Stolfi,
1989):

� The boundary of a 0-simplex (node) is an empty set;
� The boundary of a 1-simplex (edge) is two 0-simplexes

(nodes);
� The boundary of a 2-simplex (triangle) is three 1-simplexes

(edges);
� The boundary of a 3-simplex (tetrahedron) is four 2-simplexes

(triangles).

For instance, for the n-simplexes of Table 1:

@S0 ¼j
@S1 ¼ ov14�ov04
@S2 ¼ ov1,v24�ov0,v2,4þov0,v14
@S3 ¼ ov1,v2,v34�ov0,v2,v34þov0,v1,v34�ov0,v1,v24

3.4. Simplex-based definition of Bowyer–Watson algorithm

Using the concept of n-simplexes, an implementable version
of the dimension independent definition of the Bowyer–Watson

algorithm introduced at the start of this section is as follows:

Algorithm Bowyer–Watson (P)
Input: A set P¼{p0, y, pm} of nD points ðmZnÞ

Output: A homogenous simplicial n-complex D that is the
n-dimensional Delaunay triangulation of P

Table 1
0- to 3-simplexes and their common names, representations and geometric configurations.

Dimension Name Representation Geometric configuration

0 0-simplex Node S0¼/v0S v0

1 1-simplex Edge S1¼/v0, v1S v0
v1

2 2-simplex Triangle S2¼/v0, v1, v2S

v0 v1

v2

3 3-simplex Tetrahedron S3¼/v0, v1, v2, v3S

v0

v3

v2

v1

Fig. 4. (a) A simplicial complex that consists of 0-, 1- and 2-simplexes. (b) Few

configurations of simplexes that are not simplicial complex, because they violate

axioms.

F. Karimipour et al. / Computers & Geosciences 36 (2010) 1123–11341126
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1. D’a big n-simplex that contains all of the points {p0, y, pm}
2. for all points pA P

3. S’Set of all n-simplexes eA D whose circumsphere contains p

4. B’Set of (n�1)-simplexes that make the border of S

5. N’Set of n-simplexes constructed by adding p to all
(n�1)-simplexes bA B

6. D’fD\Sg [ N
7. return D

This definition converts the Bowyer–Watson algorithm to a set
of successive operations on n-simplexes. Dealing with n-sim-
plexes and their operations is a case where the number of
elements is not known:

� An nD point in the Euclidean space is represented by n

numbers.
� An n-simplex is represented as a set of (n+1) points of

dimension n.

� The operations on an n-simplex can take any number of points
as input each of which can have any number of elements,
per se. The same applies to the output.

The situation is even worse if a number of operations are
composed. In the next section, we introduce the list as an abstract
data type that can model efficiently both of nD points and n-
simplexes as well as their operations. Using the list has some
advantages:

� Elements of a list can be from any type, so a list can model a
point, an n-simplex (as a set of points), or even any other data
structure that may be needed (e.g., a pair whose first and second
elements are a point and a list of simplexes, respectively).
� A list can have any number of elements, so it can be used to

model points and simplexes of any dimension.
� List operations are independent of the number of elements in

the list, so the operations on points and simplexes can be
equally used in any dimension.

The next section reviews the list data structure and some of its
manipulating functions. We limit the functions to those that are
required for the implementation of the operations on n-simplexes
and dimension independent implementation of the Bowyer–

Watson algorithm, which will be presented in Sections 5 and 6,
respectively.

4. A review on list data structure

A list is a collection of any number of elements of the same
type. For instance, all of the following collections are lists:

½1,2,7,5,1,4�-½Int�

½‘a’,‘c’,‘a’,‘d’,‘k’�-½Char�
½ð1,4Þ,ð5,3Þ,ð9,3Þ,ð6,2Þ,ð3,3Þ�-½ðInt, IntÞ�

½True, True, False, True, False, False�-½Bool�
½½1,2,7�,½5,1�,½8,5,2,9�,½3�,½5,1��-½½Int��

where [a] means a list of values of type ‘a’. The order of elements
in a list is significant: [1, 2, 3] is different from [3, 2, 1], so we can
talk about the first, the second, y and the last elements of a list.
The number of occurrences of an element does also matter: [3]
contains one element and [3, 3] contains two, which happen to be
the same.

The operator ‘:’, called list constructor, builds a list from an
element and a list. Thus

½1,2,7� ¼ 1 : ½2,7� ¼ 1 : 2 : ½7� ¼ 1 : 2 : 7 : ½�

The example shows that every non-empty list is built from an
empty list [] by the repeated use of the list constructor ‘:’. This
characteristic is used to define most of the functions over list,
recursively (see Appendix 1). Table 2 presents a set of
manipulating functions over lists that we will use in the
following sections. Their implementations are presented in the
Appendix 1, except the ones that need some other functions as
prerequisites. A complete list of standard manipulating functions
over lists and their implementations can be found in (Thompson,
1999).

Some of the functions in the table (e.g., map and filter) have
another function as input. Such functions are called second order
functions and are efficiently handled in functional programming
languages (Bird and Wadler, 1988; Thompson, 1999). Therefore,
we have used such an environment for the implementations.
However, no familiarity with functional languages is considered
in this article and the mathematical equivalences of the functions
are presented.

5. Using lists to implement n-simplexes and their primitive
operations

This section implements the n-simplexes and their operations
using the list data structure. Next section will use these materials
to implement the Bowyer–Watson algorithm for Delaunay trian-
gulation computation.

We begin by defining a type for nD points. In the n-
dimensional Euclidean space, a point is represented by its
coordinates in the Cartesian coordinate system. In 2D and 3D

Table 2
Some of standard manipulating functions over lists.

Function
and syntax

Description Example

length (x) Returns the number of

elements in the list x

lengthð½2,3,4�Þ ¼ 3

lengthð½�Þ ¼ 0

x++y Concatenates two lists ½2,3,4�þ þ½4,5� ¼ ½2,3,4,4,5�

½2,3,4�þ þ½� ¼ ½2,3,4�

concat (x) For the list of lists x, puts all

elements together in a

single list

concatð½1,2�,½2,3,4�,½3,4,5,6,½7,8��Þ

¼ ½1,2,2,3,4,3,4,5,6,7,8�

concatMap

(f, x)

For the list of lists x, applies

the function f to all elements

of x and then puts them

together in a single list

concat Mapðsum,½½1,2�,

½3,4,5�,½5,6��Þ ¼ ½3,12,11�

sum (x) Calculates the sum of all

elements of the list x

sumð½1,2,3,4�Þ ¼ 10

map (f, x) Applies the function f to

every elements of the list x

mapððþ2Þ,½1,2,3�Þ ¼ ½3,4,5�

filter (c, x) Returns all elements of the

list x that fulfill the

condition c

filterðð42Þ,½1,2,3,4�Þ ¼ ½3,4�

filterðð ¼ ¼ 2Þ,½1,2,3,4�Þ ¼ ½2�

fold (f, a, x) Combines the elements of

the list x with the specified

function f and the start

value a (e.g., add all

elements)

foldððþÞ,0,½1,2,3,4�Þ ¼ 10

foldðð�Þ,1,½1,2,3,4�Þ ¼ 24

once (eq, x) Returns the values that

appear only once in the list x

regarding the eq definition

of equality

onceðð ¼ ¼ Þ,

½1,2,2,3,2,4,3,5,4,6�Þ ¼ ½1,5,6�

x\\y Drops elements of the list x

that exist in the list y, i.e., x–y

½1,2,3,4�\\½3,4,5� ¼ ½1,2�

sort (x) Sorts the elements of the list x sortð½3,4,5,1,2,3,1,5,6,3�Þ

¼ ½1,1,2,3,3,3,4,5,5,6�

removeEach

(x)

Returns a list of lists in ith

element of which the ith

element of x has been

removed

remove Eachð½2,3,4,5�Þ

¼ ½½3,4,5�,½2,4,5�,½2,3,5�,½2,3,4�
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spaces, they are usually defined as pairs (x, y) and triples (x, y, z),
respectively. To have an n-dimensional representation, here we
use a list of floating numbers:

Point :: ½Float�

where :: presents the signature of the data type point. Definition
of a vertex is the same as a point, i.e., the Point data type can be
used equally for a vertex. However, their equality is explicitly
indicated here, for the sake of clarity:

Vertex¼ Point

Then an n-simplex is a list of vertexes:

Simplex :: ½Vertex�

Dimension of a point is the number of defining elements. For
an n-simplex it is the number of its vertexes�1. Thus, they can be
specified using the length of a list:

ptDim ðsÞ ¼ length ðsÞ

simpDim ðsÞ ¼ length ðsÞ�1

The first operation is the orientation of an n-simplex, which
uses the determinant of the matrix introduced in Section 3.2. We
create the required matrix and calculate its determinant:

orn ðsÞ ¼ det ðmatÞ40

where
mat¼map ðð1 : Þ, sÞ

where det is a function that calculates the determinant of a square
matrix. Note that ‘map((1:), s)’ is a function that adds the value ‘1’
to the front of each element of the list s.

For switching the orientation of an n-simplex, the first and the
second elements are swapped, which change the sign of the above
determinant:

switchOrn ð½�Þ ¼ ½�

switchOrn ð½v�Þ ¼ ½v�

switchOrn ððv1 : v2 : vsÞÞ ¼ ðv2 : v1 : vsÞ

The way we defined the function switchOrn, and it will be used
henceforth as well, is called pattern matching:

� If the input of the switchOrn is null, the output is null, too.
� If the input is an one-element list [v], the output is [v], too.
� If the input has the form (v1:v2:vs) � where v1 is the first, v2 is

the second and vs is the rest of the elements of the input list �
the output is (v2:v1:vs).

This is as if we used the following mathematical notation to
define switchOrn:

switchOrnðxÞ ¼

½� for x¼ ½�

½v� for x¼ ½v�

ðv2 : v1 : vsÞ for x¼ ðv1 : v2 : vsÞ

8><
>:

The checks whether two n-simplexes have the same vertexes
or orientation are

eqVs ðs1, s2Þ ¼ sort ðs1Þ ¼¼ sort ðs2Þ

eqOrn ðs1, s2Þ ¼ orn ðs1Þ ¼¼ orn ðs2Þ

Thus, the equality of two n-simplexes (i.e., consisting of the same
vertexes and having the same orientation) is defined as follows:

eqSimps ðs1,s2Þ ¼ eqVs ðs1, s2Þ4eqOrn ðs1, s2Þ

The boundary operation for an n-simplex is implemented as

boundary ðsÞ ¼setOrn : removeEach ðsÞ

setOrn ð½�Þ ¼ ½�
setOrn ð½s�Þ ¼ ½s�

setOrn ðs1 : s2 : ssÞ ¼ s1 : switchOrn ðs2Þ : setOrn ðssÞ

where ‘.’ means function composition, i.e., applying the first
function to the result of applying the second: f.g (x)¼ f(g(x)). In
this definition, removeEach (vs) creates the boundary (n�1)-
simplexes and setOrn is a recursive function that switches the
orientation of the even elements.

6. Dimension independent implementation of Bowyer–Watson
algorithm

This section aims to implement the dimension independent
Bowyer–Watson algorithm presented in Section 3.4. It needs a
number of spatial analyses, which will be implemented first.

The first required operation is addVertex, which adds a vertex
to an n-simplex (Fig. 5):

addVertexðv,sÞ ¼ ðv : sÞ

Another required operation is the border operation. As Fig. 6
shows, this operation extracts the bordering (n�1)-simplexes
from a set of connected n-simplexes (A set of n-simplexes S¼{s1,
s2, y, sm} are connected if and only if for each siAS, there is at
least one sjASðia jÞ such that si \ sj is an (n�1)-simplex). Note the
difference between this operation and the boundary operation,
which extracts the boundary of an individual n-simplex.

To implement this operation, we use the fact that bordering
simplexes appear once and only once (simplexes with the same
vertexes are considered equal here). Thus, to get the bordering
simplexes, we extract and concatenate the boundaries of all n-
simplexes and then take the simplexes that appear once in this
list:

border ðsÞ ¼ once ðeqVsÞ : ðconcatMap ðboundaryÞÞ ðsÞ

Note that if f is a function of n variables v1, y, vn, i.e.,
f(v1, y, vn), then f(v1, y, vn�1) is a unary function of vn. Therefore

Fig. 6. Functionality of border operation for a set of connected 2-simplexes

(dotted triangles), which results in their bordering 1-simplexes (bold edges).

Fig. 5. Functionality of addVertex operation for 1- and 2-simplexes: a new vertex

is added to (a) 1-simplex and (b) 2-simplex.
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(concatMap (boundary)) is a function that has already been given
its first input and now it is a function of its second input.

The test whether an nD point is inside the nD circumsphere of
an nD pyramid is achieved by using the sign of the determinant of
a matrix constructed as follows: for an nD point (e1, y, en) and an
n-simplex with vertexes /v0, y, vnS, the sum of square of all
points (including the nD points and vertexes of the n-simplex) and
an element ‘‘1’’ are added to the end of each vertex and then they
are arranged as the rows of a square matrix. For an n-simplex with
vertexes /(e01, y, e0n), y, (en1, y, enn)S, the result is

e1 ::: en e1
2þ :::þen

2 1

e01 ::: e0n e01
2þ :::þe0n

2 1

::: ::: ::: ::: :::

en1 ::: enn en1
2þ :::þenn

2 1

����������

����������

¼

e01�e1 ::: e0n�en ðe01�e1Þ
2
þ :::þðe0n�enÞ

2

::: ::: ::: :::

en1�e1 ::: enn�en ðen1�e1Þ
2
þ :::þðenn�enÞ

2

�������

�������
Positive values for this determinant indicate that the point is

inside the nD circumsphere, while negative values mean that the
point is outside. If the determinant is zero, all of the points (the
new point and vertexes of the n-simplex) are co-spherical and
both configurations can be equally used (here, we leave it as it is).
Implementation of this test is

inSphere ðp,sÞ ¼ det ðmatÞ4 ¼ 0

where
mat¼map ðtr ðsÞÞ

tr ðxÞ ¼ dxþþ½sum:map ðsqðdxÞÞ�

dx¼ x�p

sum ðxÞ ¼ fold ððþÞ, 0, xÞ

Having implemented all of the required data types and spatial
analyses independent of dimension, the implementation of the
Bowyer–Watson algorithm presented in Section 3.4 is as follow:

DelaunayðptsÞ ¼ foldðupdateDT,bigSimp,ptsÞ

where

bigSimp¼ . . .ðsome simple computations left for readersÞ

updateDTðdt,ptÞ ¼ ðdt\\sÞþþn

where

s¼ filterðinSphere,pt,dtÞ

n¼mapðaddVertexðptÞ,border ðsÞÞ

The complexity of the described algorithm is O(n2) in 2D,
where n is the number of input points: The number of triangles is
kn (k is a constant); The procedure runs for each point and in each
iteration, all of the existing rn triangles (r is a constant) are
checked against the new point (InSphere test), which makes the
complexity O(n2). In 3D, however, the complexity is O(n3),
because some configurations of n points in 3D have kn2

tetrahedra, so in each iteration, InSphere test runs for all of the
existing rn2 tetrahedra (r is a constant).

To improve the efficiency of the algorithm, two steps are taken:

� Instead of running InSphere test on all of the triangles, we use
the fact that the violating n-simplexes are connected, so after
detecting the first violating n-simplex, its adjacent n-simplexes
are checked and it continues until all of the adjacent n-
simplexes satisfy the test. This modification is also required to
prevent degenerate cases, where roundoff error may cause
creating more than one hole (Field, 1986).
� If InSphere test is used to find the first violating n-simplex, all

of the n-simplexes must be checked in the worst case and so it
destroys the efficiency achieved in the first step. Instead, a
strategy called walking is used to detect the n-simplex that
contains the new point, which certainly violates the empty
sphere rule: Using the orientation test, the position of the new
point P is checked against the first n-simplex S. If the point P is
not inside the S, the next n-simplex that is checked is the
adjacent of a boundary of S that has the point P on the wrong
side (Mostafavi et al., 2003). By repeating this procedure,
we walk directly toward the n-simplex that contains the
point P. This algorithm finds the first violating n-simplex in
k log n and kn iterations for 2D and 3D, respectively (k is a
constant).

In order to support the above improvements, the following data
structure is used, which stores adjacency information of n-
simplexes:

i V1 . . . Vn S1 . . . Sn

where i is the index of the n-simplex, Vis are the vertexes of the
n-simplex i, and Sk is the index of the opposite n-simplex to
Vk. Thus, after detecting the first violating n-simplex, its adjacent
n-simplexes are detected and checked in a constant time.

The above improvements reduce the overall complexity to
O(n log n) in 2D and O(n2) in 3D. These modifications were applied
in the code, but not explained here in order to keep the
implementations simple.

7. Implementation results

The definitions given in Sections 5 and 6 were implemented
using the functional programming language Haskell (Thompson,
1999). Some 2D and 3D points, whose positions are presented in
the Appendix 2, were used as examples. Fig. 7 illustrates the
results of the Delaunay triangulation of these points.

To investigate the efficiency of the implementations, the
program was executed with different numbers of randomly
generated 2D and 3D points (Table 3 and Fig. 8). The results

Fig. 7. Delaunay triangulation of example points presented in Appendix 2. (a) 2D points and (b) 3D points.
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show that the running times goes as O(n log n) and O(n2) for 2D
and 3D points, respectively, as it was expected. They also illustrate
that for the same number of points, the running time for 3D is
larger than 2D. This is because of the more and bigger size of the
matrixes that must be dealt with in 3D: To check if a point is inside
a tetrahedron (the case for 3D) it computes four 4� 4matrixes,
while this is three 3� 3matrixes for a point against a triangle

(the case for 2D), or to check if a point is inside the circumsphere of
a tetrahedron (the case for 3D) it computes a 4� 4matrix, while
this is a 3� 3matrix for a point against the circumcircle of a
triangle (the case for 2D). These tests are frequently used in
Bowyer–Watson algorithm. In abstract, the running time is a
function of the number of n-simplexes as well as the size of the
computation units, which depends on the dimension.

Table 3
Running time as a function of number of input points for 2D and 3D Delaunay triangulation.

Number of points 10 50 250 500 1000 2000 4000 8000 16,000 32,000 64,000

Time (s) 2D 0.01 0.02 0.14 0.33 0.74 1.67 3.67 7.83 17.12 36.70 78.00

3D 0.01 0.06 0.15 0.32 1.17 2.76 7.55 21.49 60.63 212.95 873.69
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Fig. 8. Running time as a function of number of input points for 2D and 3D Delaunay triangulation.

Fig. 9. Satellite image of Latyan dam and its reservoir.
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Fig. 10. 3D view of Latyan dam and its reservoir.

Fig. 11. Points resulted from hydrography of Latyan dam reservoir.

Fig. 12. 3D TIN of Latyan dam reservoir.
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8. Case study

In this section, the dimension independent implementation of
Delaunay triangulation is used to calculate the area and volume of
the reservoir of a dam at different water levels, which leads to a
level–surface–volume diagram. This diagram is important for
managing the water consumption and monitoring the dam
construction: observing the daily water level, this diagram is
used to estimate the surface area and water amount of the
reservoir. This information helps the decision makers in applica-
tions like water usage allocation, dam deformation control and
managing water release behind the dam.

The Latyan dam � located in North East of Tehran, Iran � was
selected as the case study (Figs. 9 and 10). The bed of the dam
reservoir was surveyed in a hydrographic process (Fig. 11) and its
3D TIN was produced (Fig. 12). To calculate the area and volume
of the reservoir at a certain water level, say h, the 3D TIN was
intersected with the plan z¼h, which results in the volume of the

reservoir where zoh and the surface of the reservoir at z¼h.
Fig. 13 shows the results for the water level of 1570 m. To
calculate the area and volume of the results, the implemented
n-dimensional Delaunay triangulation was used: For a convex nD
structure, it is triangulated to a set of n-simplexes and then sum
of the nD-volume (i.e., area for 2D, volume for 3D, etc.) of the
components is calculated. The absolute value of the determinant
used to specify the orientation of an n-simplex yields its
nD-volume:

vSimp ðsÞ ¼ abs ðdetðmapðð1 : Þ, sÞÞÞ

vConv ðpÞ ¼ sum : map ðvSimpÞ : dt ðpÞ

As Fig. 13 shows our structures are non-convex. Therefore, first
they must be decomposed to a set of convex components and
then the above calculation is applied separately to each
component. For this, a dimension independent decomposition of
polytopes was implemented (for implementation details of this
analysis, see Bulbul et al., 2009). Each component is triangulated

Fig. 13. 3D TIN and surface of Latyan dam reservoir at water level of 1570 m.
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Fig. 14. Level–Surface–Volume diagram of Latyan dam reservoir.
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using the implemented n-dimensional Delaunay triangulation.
Calculating the area/volume of each component and summing up
the results will provide us with the total area/volume of the
reservoir at the desired water level. The function that takes an
n-dimensional polytope and calculates its nD-volume is as follow:

vPoly ðpÞ ¼ sum : map ðvConvÞ : decompose ðpÞ

By applying the explained process for different water levels,
the level–surface–volume diagram was produced for the reservoir
of the Latyan dam that shows the surface area and volume of the
reservoir at different water levels (Fig. 14).

9. Conclusions and future work

Providing spatial analyses for 3D objects is an essential
requirement for many geoscientific applications. The current
approach is to use separate implementations of spatial analyses
for 2D and 3D objects. This article pushes more toward dimension
independency in spatial analyses. It shows how to have not only a
dimension independent algorithm, but also a dimension inde-
pendent implementation. It shows the elegancy of the list data
structure and its manipulating functions, which are treated
efficiently in functional programming languages. The goal here
is to show how to use the same code for applying a spatial
analysis (Delaunay triangulation, here) to spatial objects of any
dimension. The results for the case study that produces the level–
surface–volume diagram of the reservoir of the Latyan dam show
the beauty of the approach.

The same approach can be applied to other spatial analyses.
We have used this approach to implement decomposition of non-
convex polytopes of any dimensions as a set of convex ones, from
which binary operations (e.g., intersection, union, difference, etc.)
on polytopes - which are frequently used in geoscientific
applications such as geological modeling - will follow.

Appendix 1. Implementation of some of the functions over
lists presented in Table 2.

Table 4

Appendix 2. Positions of the example points used in Section 7.

� 2D points

½3,4�; ½1,3�; ½4,1�; ½8,1�; ½7,2�; ½9,2�; ½5,3�;

½8,4�; ½6,3�; ½5,1�; ½3,4�; ½6,7�; ½6,3�; ½8,6�;
½3,5�; ½4,0�; ½7,1�; ½2,3�; ½3,6�; ½9,4�

� 3D points

½1,2,1�; ½6,2,1�; ½4,2,5�; ½4,5,6�; ½3,3,2�;

½3,1,2�; ½1,3,4�; ½8,4,2�; ½9,1,4�; ½4,5,4�;
½8,6,7�; ½5,4,3�; ½9,2,6�; ½5,6,8�; ½3,1,4�;
½2,8,6�; ½8,4,2�; ½1,6,8�; ½9,3,9�; ½9,1,1�
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