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Abstract

Malerialized views are supporled in order to decrease system response-bime. To maintain
efficiency in views, il is important. to support update methods that will first consider the changes
in the base relations, and if those modifications are relevant, will propagate them to the views
in an incremental and localized manner. One way to accomplish this is to maintain minimal
vicw-stales, i.e., maximally reduced intermediate results thal ean be updated withoul reference
to their component objects.

This paper is concerned with the construction of minimal view-states by a transformational
approach, i.e., one that applies a succession of operators to the basic conslituents of a view. This
worlk initially sels forlh two conditions on intermediate results necessary and sufficienl to qualify
them as a view-glales. It aflerwards presents algorithms for the synthesis of view-states: these
algorithms start with the base objects as view-states and then apply sequences of transformations
that reduce the states and yet keep invariant the aforementioned conditions. A byproduct of
these algorithms is the lormulation of methods for the detection of relevant updates and for the
implementation of incremenial update policies.

In this paper the relational model is taken as an illustration, and using this model, the results
of the transformational approach are briefly compared to these resulting from an approach hased
upon fnitial alyebras; this latter approach guarantees a maximum reduction of view-states. Il
wag found that lo achieve efficient reduction of view-states by means of the transformational
approach, we must resort to more powerlul languages (i.e., relational languages with aggregate
functions).

Worlk is being done for extending this results to object-oriented madels with aggregation and
thus lo handling a wider class of queries.

1 Introduction

DBMS provide mechanisms, called wicies, that enable the user to work with derived objects, i.e., objects
that are a composite of one of more base objects and, possibly, of other views. A view may be either
temporarily derived to assist in the resolution of a particular query  a fogical or virtual view) or computed
and stored in permanent memory as a malcrialized view in anticipation of a particular class of queries.
In the later case, when changes in the base objects occur, the DBMS must keep the consistency of the
views either on-the-fly or by using a lnzy strategy. Ds
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from NSF for the NCGIA under grant number SES 88-10917 is gratefully acknowledged,
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The focus of this paper is on materialized views and all references to views will implicitly be to this
type unless otherwise stated. '

For the purposes of user inquiry a view is indistinguishable from a base object. Views are, however,
supported for many goad reasons:

i) to reduce the level of detail for the user;

i) to provide some amount of data security at lower DB levels;
ili) to isolate the user from certain changes in the database;
iv) to assist in the transportability of application programs;
)

to augment query processing speed and reduce data transmission time.

Two aspects of updating materialized views have received considerable attention in the literature:
how a view can be efficiently updated when a change is executed upon one or more of its base ob-
jects (propagation of updates) [ROSE89] [BLAKB9] [BLAK86] [BUNE79] and how a base relation can
be modified if a change is attempted upon a view (distribution of updates) [DAYA82]. In a further
restriction, this paper discusses only the propagation of updates.

There is an obvious trade-off between query processing speed and storage costs with materialized
view maintenance; equally important, however, is a concern with query response time versus view
modification time. If the entire view must be reconstructed every time some of its components are
updated, then its utility may be seriously reduced. Incremental update strategies may provide a solution
to the view update problem.

As stated in [ROSEB9] views are implemented by observation operators on an object and can admit
to an incremental representation with the following characteristics:

i) Upon a change, both basic ohjects and views can be associated with an incremental result that
conveys the differences between the before and after states of the database.

ii} All data validation is done at the base object level.

iii) A change to a view considers the increments of its composing objects as the only external infor-
mation available.

iv) No race situations occur, i.e., if a view must accommodate several changes in its composing
objects, the implementation must be such that the order of arrival of the changes is one that gives
the desired final result. This can be done by methods akin to those used for firing rules while
maintaining integrity constraints [CASAB88] or in production systems [COHEB9].

A vicw-state is a set of objects associated to a view; the ohjects in question can be taken from any
of three sources: i) the view itself i) the base objects iii) objects intermediate between the base objects
and the view. That aforementioned set of objects, to qualify as a view-state, must fulfill two conditions:

i} The final view can be derived from the view-state,

i) Updates to the view-state can be effected without reference to any base object that is not a
member of the view-state.



The set of base objects constitute, of course, a trivial view-state; however, it is convenient to search
for a minimal view-state onto which an homomorphism from any other view-state exists.

In the ideal case, updates are autonomously computable, i.e., the minimal view-state coincides
with the final view. Reference [BLAK8Y] has given necessary and sufficient conditions for autonomous
computability for a project-select-join view in relational algebra.

Even when autonomy can not be satisfied, it might still be more efficient to store the minimal
view-states rather than to perform incremental updates of the materialized view based upon the base
ohjects.

This paper discusses methods for reducing view-states, and is organized as follows: the next section
introduces the concepts of view-states and minimalism, using the framework of the relational algebra.
Section 3 discusses an algorithm for reducing view-states, and the next section reviews an example using
the intial algebra approach. Finally, section 5 presents some comments and future research lines.

2 View-States and Minimalism

This section will introduce, using the terminology of relational algebra, the framework needed by the
algorithms for the reduction of view-states that will be presented in section 3. In particular, the concepts
of view-state, of homomorphism between view-states, and of splil operators are introduced. A skeleton
for a view-state reduction algorithm is explained. These concepts may be extended to any object-oriented
formalism that is provided with suitable associativity, commutativity, etc., axioms.

2.1 Version operators, Consistency and Factorability

Definition A database R is the set of relational schemata {R,,- -, R,,} used in a particular application.
Each 1; is a schema for either a base relation or view. The standard notation for algebraic relational
operators will be used [ULLMB8O] i.e., ™My caicare (o) Opredicatel - )s Lopraist(-)y X —, U, 1 will stand
respectively for the Join, Selection, Projection, Cartesian product, Difference, Union and Intersection
operators.

Throughout this work, we will use two base relations in our examples. The schemata for these two
relations are Emp(E_SSN, E_name, Salary) and Child{E_SSN, Child_Name, Age).

Definition A view is an expression Vuw(Ay,- -, A, ) in relational algebra, where A;'s are either base
relations or (nested) subviews. The recursive substitution of subviews by their corresponding expressions
must end in base relations. A will be used as shorthand for {Ay,---, 4,}.

Versions We will consider a model similar to the one used in [COHE89], in which during a transaction,
base relations A\; are provided with before and after versions, denoted by ~ A; and A; ~. This has several
advantages: it simplifies the satisfaction of no-ruce conditions of updates, it facilitates the undoing of
transactions, and it allows the inclusion of some temporal constructs used in active databases, such as
the Previous and Start constructs found in [COHE89].

As an example, the following expressions are views on h:

Example 1:
Nanies  =Ilg_jqme{ Emp) Names of Employees

Rich-Emp =csqjnry>a2r (Emp) Affluent Employees
Rich-Tots =epig _Name Cagecs{ Cild} M g0 ysa20( £ mp)) Affluent Children

—
The parse trees of those three views are shown in Fig. 1.



Version Operations

Two operators DFI), CM () are needed to perform the forward and backward transitions between
the versions (~ A;, A;~) of base relation ;:

Operator DFFY{) reports the difference between two successive versions of A;. |ts properties are:

DFF(~Aj di) = A iy (forward difference)
DFF(Ajre, A = Ad; ~ (backward difference)

A~ dA; and AA; ~ express the forward and backward changes between the versions. We shall
sometimes, for brevity, refer to A ~ A; as AAd;.

Example 2: Modifying a relation. ‘
Suppose that relation ~('hild is updated to C'hild~. The results of the A are:

AChild = DFF(~Child, Child~) = { insert <4312, Ralph, 3>
delete <4913, Xavier, 21>
insert <4057, Ruth, 2>

-}

and they represent the relevant changes between those two versions. To reduce view-states, only in-
sertions and deletions to the basic relations will be considered; all other modifications will be represented
as sequences of those two operations, —.

The composition operator, C'MP() combines a version with its changes. |ts properties are:

CMP(~ A A A = A~ (forward change)
CMP(A;~ Al ~) =~ i (backward change)

The composition operator executes the appropriate set union or set minus operations for the respec-
tive tuple insert or deletes found in Ad;.
The compaosition and difference operators obey the following axioms:

DFF(~ A v Ap) = DFF{Aio, Ajv) = 0
CMP(~ ;. DFF(~ Ap, Aj ) = Aj~
CMP{A; o, DFF( A, ~ A;) =~ A;

Definition: Let Vw{A)be a view on A, and {St1{Aq, -+, dy), -+, STl Ay, -+, 4,)) be an indexed
set of relational algebraic expressions on A, abbreviated to ST(A). A particular ST(A) is a vicw-slate
of the view V() if the conditions of consistency and of faclorability, set forth below, are met.

Consistency Condition - There exists an expression OBS5() (abserver copression) in relational al-
gebra that obeys the equation:
Vil d) = OBS(ST(4)) (f)

b

Example 3: View-states for the views of example 1.
Fig 2. shows three different view-states and O B.5() expressions for view Nanics, while Fig. 3
does the same for view Ricl.lols. In Fig. 2 we can see that, when SU{Emp) = Hgmp_vomel Emp),



the observer expression is the identity, and when St({ Emp) = H mp_Name,Salary(Emp) the observer is
]—[Em]J_Numﬁ {51 E”'I]J) )

Factorability Condition- There exist expressions FCT = {Fcty, -+, Fety} (factoring expressions)
such that: '

ST~ A) = FCT(ST(A~), A~ d) (2)
ST(An) = FOCT(ST(~A), Adr) (3)

Equation {2) specifies that the before state-view can be obtained as a function of the affer state-view
and the forward changes only, while eqn. (3) specifies a symmetrical condition for the before state-view.

The factoring expression must be thus able to compute the changes in the view-state as a composition
of two factors, one involving the existing view-state and another one related to the changes in the base
relations only. The proof {or disproof) of this fact is nontrivial for higher-level view-states. Successful
factoring depends upon the algebraic properties of association, commutation, and distribution among
the relational operators involved in the view-state expression.

All composition and difference operators for relations can be expressed in the form 4; U 84; or
A; — 8, respectively. Thus, we will use those operators to exemplify factoring.

Example 4: View-state for a cartesian product
Let us consider two base relations /1, Ay and the expression $1( 41, Aa) = 4y X Ay. The Cartesian
product is symmetric, so we only have to prove that Ay UdAy, Ay — 64y can be factored. Using

Sty daUdda) = Ay x (A2 Uddy)

(Ay X Aa)U{Ay x 843)

SUA)U (Tyom.a, (SHA)) X 6A42) (-1}
StA, da —84dq) = Ay x(Ay—64s)

(A x Ag) — (Ag X d43)

= SHA) = (Myoma, (AN X 6A43) (5)

[l

[l

t

We can see that the right hand sides of eqns.(4, 5) has the form prescribed by equations (2, 3) and
thus the state 51(Ady, As) can be factored,

Example 5: View-state for a projection operator.
Let us consider a A; and the expression 51{4,) = Watrr 3 A1), where {attr} is a subset of R(Aq).
If {atiry} contains a key of Ay, then

SHA U8 = I4Lusdy
A ) UTI(6444 )}
= SHANUIL(&AD)

StAy —daAy) = TI(Ay —d64d)
= II{dy) - H{o4d))
= SU{A) - 1{dA)

(b3 §
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Example 6: View-state for the Union operator.

Let us consider the expression S#{ A1, d2) = A; U Ay, Because the operator is symmetrical, we may
be concerned with the changes to A, only, for the changes to Ay will be handled in a similar way. The
inclusion of new tuples to A5 can be factored if we remember that A; U (A2 UdAy) = (AU Az )UdA,.
Deletions, however, cannot be factored since:

4'-11 U (fl'g - b.rlg) (.41 U Ag) — (5:12 — .*11)

St( A1, Ag) - ((5.4_). - ."11.)

and A; can not be obtained from 4, U 4y —

In a similar fashion, it can be proved that St(4;, ds) = (A7 M A3) can not be factorable, since
Ay M (A — 84s) is equal to SH(A) — (A4 X dAy) and it is in general not possible to reconstruct A4
from (A9 & Ay).

The following table gives the factorability properties of the five basic operators of relational algebra.

Table 1.
STATE Fact. Eqn. for Fact. Egqn. for
.5’1’{) (*l_z U 5:‘12} {flg — (sx‘-lg}

AU A Non factorable

Ay~ Ay Nan factorable

Ay x As  STOU TSI % 6A) | St(YU (TI{51()) X dAa)

U(.*lg) S'[-( ) U G'((Sflg) S{() - 0'(6}12)

Iy la)! St)U T xi{dAAs) §H) = Myxy(6da)

! where {X}] conlains a key to Aa

2.2 Reduction of view-states

We will now proceed to define homomorphism between view-states, and to state conditions for reducing
view-states and for having minimal view-states.

Definition Let ST = {&1y,---.5t;} and ST = {51},---, 5t} be two view-states defined on the
same view and base relations. Let OBS(ST), OBS(8T"), FCT(5T), FCT'(ST’) be their respective
observer and factoring expressions.

There exists an homomorphism from ST onto _ST " if there exists an indexed set of expressions

TR ={Iry.---.Tr;} ( transformation expressions) fulfilling the two followings equations:
ST
e e,
OBS(ST) = 0BS(ITR(ST)) (6)
ST
FCT(IR(ST).64) = IR(ECT(ST) 64)) (7)
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Equation (6} specifies that the resulting observed value is the same in either case, while Equation
(7) means that the factor equations for ST and TR( ST ) can be interchanged.
Definition ST reduces ST'if there is an homomorphism from ST onto ST, but there is no homomor-
phism from ST onto ST} the expression TR(} that performe ST'= TR(ST) is called the reducer.
:].

Loosely speaking ST reduces ST if both are view-states from the same view, and the former can
be evaluated from the later in an information-losing manner.

Definition A state 57, is said to be minimal if cannot be further reduced. —

There can exist several view-states isomorphic to a minimal one; once a minimal view-state has been
obtained, techniques similar to these of query optimization procedures ought to be applied to select the
most efficient among them,

View-states are states in the sense of dynamical systems [ZADE63] [CANA75]: they obey observer
and factoring (or evofulion) equations, and their minimization procedures (to be discussed in the fol-
lowing sections) are based upon applying classes of equivalence of inputs.

We will now introduce a new definition, crucial for the development of view-state reduction algo-
rithms.

Definition Let ST = TR(5T) be a reduction of view-state ST. Then O0BS5( 5T) = OBS'(TR(5T))
and the pair 717, OBS"is said to be a split of OBS [—.

The term splil is used because a relational expression is split from the observer expression, and
is reassociated with the new view-state. Generally a valid split may occur if an axiom of distribution
holds between the particular relational operator involved in the split and the set union and set minus
operations which are used in the C'AFP() operator.

The use of splits for view-state reduction is illustrated in the following algorithm:

Let ST = A, Let OBS = V'w
WHILE (exists an untried TR that splits OBS into OBS{ZR) ) DO
IF TR (CMP(ST{A),AA) is isomorphic to { TR{(ST(A),AA} THEN

BEGIN

SI' = TR(S)
ORS = 0BS5S’
END;

ST arin = 5T
END{ Algorithm }

The following two sections will deal with the implementation of this algorithm using relational algebra
and the initial algebra approaches.

3 Reducing view-states in relational algebra expressions

A much simpler version of the algorithm sketched at the end of last session can be applied when the
view is equivalent to a Select-Project-Join query and each relation appears at most once in expression.
In that case, the query can be parsed as a Projection operator, followed by a Selection, and terminated
by a Cartesian product of all involved relations, that is, in the form:

Wgpplaa(dy x - x Ay))



where {7} is a set of attributes of relations in R, and 'is a boolean expression written as a conjunctions
of terms of the type i op constantor x op y, where op € {=,>,>,<, <}, and =, y are attributes of 1.
Let (v, be that fragment of (¥ that involves terms of the type z op constant, where ¥ is an attribute
of ;. Let {F}} be a set of attributes composed of the union of a key of A, the attributes of ;. that
appear as join conidtions in & and those that appear in {F}.

Then, it can be proved that Il g (Fq, (A1), - - palog, (Ay)) is a view-state for the Project-
Select-Join view, and that it can not be further reduced using operators of relational algebra. Fig 4)
shows how that view-state is obtained.

The implementation of the reduction algorithm of Section 2 presents severe difficulties in its general
case: i) when enumerating the possible transformations TH used to generate split candidates and i)
when it intends to prove or disprove factorability for the new candidate split.

To avoid these difficulties we propose a greedy algorithm for the reduction of view-states. The
results of this algorithm, even if applied in the simplified Project-Select-Join case, are not guaranteed
as minimal.

This algorithm has been designed following these premises:

Transformational approach - |t modifies the parsing tree to a standard form and, beginning
with the base relations, proceeds to search in a systematic bottom-up fashion for splits that reduce
view-states.

Disjointness - View-states correspond to subtree-patterns in a modified parse tree and a hase
relation can participate in one of such patterns only. In particular, a given relation can appear in
a single subtree-pattern.

Non-backtracking - The (modified) parse tree of the view is covered by a forest of subtrees
categorized according to their patterns; categories are marked as either nlive or {ested. Tested
subtrees correspond to reduced states, while the subtrees belonging to live categories are retained
as prospective building-blocks for new view-states.

Split Characterization - The search for splits will be done consnderlng either unary or binary
operators. A unary operator [/op(.) will be split as an operator pair Uap((n'op_ﬁ'( 1), where Ifrjp{)
(the split operator) will be part of the view expression and Uop_s() (the reducer) will go to the
view-state. A binary operator Bop(., .} will be trivially split as an operator pair fd{Bop_s(., .}).
Bap_s{., .} will go to the view-state. Members of a category that cannot generate a split become
tested and will not be considered further in the process.

The greedy algorithm proposed here has the following steps:

Step 1: Preprocess the view. Execute algebraic transformations on the relational operators required by
the view. These transformatians are similar to those undertaken by query optimization procedures
to maximally reduce the operands of each relational operator involved [SMIT75], such as migrating
projections and selections towards the base relations. Consecutive selects and projects may be
combined, but since there is a pattern matching phase of the algorithm, some predetermined
ordering scheme would be employed, e.g., always select before project, multiple parameters of any
operator should be sorted by attribute name, etc.

Step 2: Initialize the list of view-states. The starting view-state STy(Aq.---. 4, ) is the trivial one,
namely A. This will correspond to {eaves of the relational parse tree representlng the particular
database view 17w, The starting observation expression, (JB.Sy is the same as 1. Mark all leaves
as live subtrees.

el



Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Pattern matching. Categorize the live subtrees according to their patterns: two subtrees belong
to the same category if and only if they are equivalent. Construct two lists, one for the unary
ancestors of live subtrees and other for the binary ancestors of them. The lists have the format:

Unary({ Uopy.caicpipga}. -+ - { Uops, calenitas})
-B“H”'.U({BOP] JCOL, cRitd 1, Catﬁ'._.child_l } [ { BOPJ' CUlr_cihitd e Cﬂ‘tR_C-'hl'hf_l'})

Discard categories. Perform the following simplifications:

i) Apply as many times as required on the members { Bopy,cal;, cat;} of the binary list:

a) If cal; is tested, mark cal; as tested and vice versa.

b) If another member exists and has either the form { Bop,,, cat;, cai,} or { Bopy, caly,, cal;}
and cat; # caly, mark categories (cat;, caij, caty) as tested.

c) If Bop is asymmetrical, catf; # cat;,, and there exists a member {Bop,cat;, cat;} with
caf; #eal;, mark categories (cat;, cal;j) as tested.

ii) Drop from the unary and binary lists all those items containing a tested subtree.

The previous three simplifications stem from two of the premises on which the greedy algorithm
is based: that of disjointedness of the state components and the one that characterizes splits.

Determination of candidates for splits Two different procedures are used for generating
splits, depending on whether a particular subtree is referred to in the Unary operator or the Binary
operatar list. The two cases are:

Unary operators Extract the sublist of operators { Uop{, RN Uop',’:, } for each category jin the

unary list. Obtain a split operator 5}},’ common to all operators in the sublist. The problem of
finding a common split operator is reciprocal to the one treated in [LARSB5]; the issue there
was the computation of queries from derived relations, while the goal here is the obtention
of a minimal view from which a set of queries can be computed. For example, the split of
two prajections (Ilg.Il¢) is ITguc, and the split of two selections (og,0¢) is opyc. As
mentioned before, if the split is eventually accepted, @] will pass to the parse tree, and the
state will be substituted by (op_s' (operunds of category j)).

Binary operators There will be at most one binary operator Bop() for each category. The
split will be the identity operator and the reducer will be Bop() itself.

Testing for factoring Test each of the candidate splits for factoring. As a first step, mark as
tested all splits that have obtained an unfactorable operator as a reducer {e.g., a union, a joir, a
projection that does not involve a key, etc.). Once that is done, verify the fulfillment of eqns.(2,
3) for each of the remaining ones. |t must be noted that factorability is not certain even if the
reducer operator admits factoring; for example, both a Cartesian product and a selection admit
factoring, but a join, composed of those two operators, does not.

The members of all rejected splits are marked “tested” and erased from the [7nary and Binary
lists. Those lists are further modified so that the subtrees corresponding the accepted splits replace
the instances of the split's components; the observer operator ) B5() is modified accordingly.

Iterate from step 4 while there is a subtree alive; atherwise the algorithm terminates. Construct
FC'TY(} from the factoring expressions of step 6 using the tested categories as the components of
the view-state ST ); use the last version of OBS() as an observer.



The algorithm just described is overly simplistic: it can be improved in several ways:

1. by relaxing its non-backtracking condition and allowing branching of decision and the parallel
exploration of several alternatives.

2. by eliminating its disjointness condition permitting a base relation to be covered by several view-
states. This implies using horizontal and vertical partitions and has all the inherent complications
of cover problems.

3. tly__gccepting more general splits for binary operators, e.g., Bop(.,.) = ﬁé}}(ﬂop_s(., J) Bop(.,.) =
Bop{Uop_s1{.}, Uop_sa(.)}, etc.

4. by eliminating its strict bottom-up approach and using more general methods for pattern matching.

Some examples of the behavior of this version of the greedy algorithm will now be presented.

Example 7: View-State for View Names (cf. Example 1).

Let us apply the greedy algorithm. Steps 1-2 of the procedure render relation Names as the only
expression in the state and set the observer operator as OBS(} = Ilg_iumc(). Proceeding with the
algorithm, no pattern matching is needed in step 3, and in step 4 nothing is discarded. Step 5
generates a split by decomposing g _am:() to g samel (g ume,5_s53){ ) )i the view-state is then
e name, E_ssvy (Emp), while the observer remains unchanged. In step 6 the view candidate is proven
factorable. A second iteration through steps 4-6 declares the state-view as tested and the algorithm
terminates—;

Fig. 5a shows the initial view-state; 5b the final view-state; 5¢ how the factoring is done for the set
union operator, and fig 5d, how an incremental implementation of the view can be attained.

This particular view cannot be reduced any more if splits are restricted to be generated by expressions
in the relational algebra; however, a further reduction can be performed if we resort to languages
with more expressive power, such as the one of relational algebra with aggregate functions [KLUG82],
[CHANB82]. That would allow us to specify (B nane,Count(E_55N)} () s a view-state (Employee names
plus the count of tuples that have that name). This matter will be examined again in Section 4.

Example 8: View-state for Rich_Tots (cf. Example 1).

In this example the initial states are 5y = Child, Sy= Emp. Applying the greedy algorithm, nothing
new happens until step 5, where splits are found that propose a state composed of two expressions
(51, 52) given by (Tuyecs{ Child), asatary>aan( Emp)). Both new expressions pass the factorability
test of step 6, and on the second round (steps 4-6 again), both are declared tested; the observer is now
0BS5S, 52 = Nepitdname(S1 M 52). Fig. 3a and 3b show the initial and the final choices of values;
Fig 6a, the implementation of the factoring expression for the set union operator; and fig 6b, how an
incremental view can be implemented —.

The factoring equation gives a straightforward method for including the changes in a view; the
incremental form of that equation can afterwards be very easily adapted to render an incremental
version of the view,

It should be re-emphasized that the reduction of view-states is related to the removal of redundant
information only. This, by itself, does not suffice for achieving an efficient implementation; optimization
techniques ought to be used complementarily in the search of efficient equivalent implementations.
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4  The initial algebra approach

The previous two sections dealt with the problem of obtaining a reduced view-state using an approach
based on the algebraic modification of operators to render new equivalent expressions.

An alternative approach, that of initial algebra, [GOGU78] characterizes the view as a catalog of
inputs and outputs; the view itself is defined by three components:

i} A set S of the soris ( or basic types) that are used in it.
i) a signature & with the names, domains and ranges of its operators

i) a presentolion ¢ consisting of the set of axioms that characterize the properties of the operators
of T,

In the following paragraphs Example 7 (which involved a view of a projection operator) is redone
using the initial algebra approach.

Example 9 Our specification of the projection operator involves three basic data types, Relalion,
tuple and Boolean, and is provided with two constructor operators:

CMP(R, 1, b), a constructor for relations. If the boolean parameter bis TRIUE, it adds
tuple # to relation R; otherwise, the tuple is removed.
T tuple() performs the projection of a tuple.

and two observer operators:

IT (that projects a relation) and
Ident(...}) i.e.,, TRUF if two tuples are equal.

The sorts 5, signature ¥ and presentation ¢ of the algebra are:

S = { Relation, tuple, Boolean}
[1: Relation — Relation Projection of Relations
T tuple: tuple — tuple Projection of tuples
z =< [fdent: tuple X tuple - Boolean. Comparison of tuples
CMP: Relation X tuple X Boolean — Relation Insertion or removal of a tuple
Null : N — Relation Empty Relation

( CMP({ Null | tuple;, FALSE ) = Null
CMP{CMP(A fupley, TRUE) dupley, TRUE) = CMP{A,tuple;, TRUE)
CMP(CMP{A duple; TRUE) tuples, TRUE) = CMP{CMP(A tuples, TRUE ) tuple), TRUE)
CMP(CMP(Adupley, TRUE ) tuple) JALSE )= A
CMP(CMP(Aduple) . FALSE ) tuples, FALSE )= CAP(CMP{A tupley FALSE) tuple | FALSE)
[F = fdent(fy. t2) THEN

CMP{CMP(A duple) FALSE) tupley, TRUE )= CMP(CMP(A tuplea, TRUE Jtuple, FALSE)
IHOMP(A tupley, TRUE)) = (CMP(IL(A ) I uple, . TRUE))

.

Let us consider a sequence { CAIP(A. tuple| by ). - - CMP{4 . tuple,.b, ]} of insertions and deletions
applied on an initially empty relation. From the point of view of the projection operator, and by
successive application of the equations of the presentation, that sequence can be proved equivalent to
another one constructed by the following steps:
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Step 1) Remove cancelling inseri-delete operations, i.e., if a pair i,j exists obeying i < j and
Identftuple; tuple;)and by = TRUE and b; = FALSE, remove CAIP(A Luple; b; ), CMP{A tuplc; . b; )
from the list.

Step ii) Remove all remaining deletes.

Step iii) Remove redundant inserts i.e., if a pair i,j exists obeying i < j and Ident(tuple;,tuple;)
and b; = TRUE and b; = TRUE remove CMP(A,tuple;,b;) from the list.

Step iv) Form groups with the remaining inputs. Two inputs i, j belong to the same group if
Tdent(Tltuple(tuple; ), Ti_tuple(tuple;))is TRUE.

Any tupley, in one of the aforementioned groups can be substituted, from the point of view of the
projection operator, by any tuple; for which Ident{Il_tuple(tupley, tuple;) is true; no further reductions
can be applied. Therefore, instead of storing all the elements of a group, it suffices to store a single
element plus a count of the elements in that group.

The first three steps above are equivalent to filtering all deletes and all redundant inserts; conse-
quently, if only valid updates and deletions to the original relations are propagated to the projection, a
reduced state is given by the projection of the relation with each tuple of the projection carrying the
count of their corresponding tuples in the basic relation.

Ref. [GOGU78] proves that any possible view-state is homomoarphic to the previously defined state,
and that all maximum reduced states are isomorphic to it, i.e., they contain exactly the same information.

T

We can now compare the two approaches to the obtention of view-states:

The initial algebra approach reduces the view-state to a minimum. Although this approach
furnishes us with ways to reduce a sequence of inputs to a minimal sequence that is isomorphic to any
view-state, it does not readily provide a mapping from that minimal sequence to a suitable implementa-
tion of the state, i.e., one that utilizes the base objects of the view and the operators defined on those
objects.

The transformational approach of sections 2, 3, on the other hand, provides that suitable
implementation. |t may fail, however, to reduce the view-state to 2 minimum.

5 Conclusions

Support for materialized views is an important database capability. Incremental updating is vital to
efficient view maintenance, especially in active databases, since the complete re-evaluation of a view
may be unnecessary and its cost unacceptable,

This idea is especially critical in complex information systems where a context for inquiry must be
established before meaningful results may be obtained. For instance in a GIS/Mapping program, it is
only against an established map background view that questions on other map features make sense
[FRANB87]. For instance, a request to display all the public boat access ramps in a given area would be
virtually useless without some context such as contour lines or roads and hydrological features to assist
the user in gaining a sense of scale or position. If the context view must change rapidly, such as should
occur if the system permitted real-time pan and zoom capabilities, then efficient update strategies would
be essential.

For similar reasons, efficient view maintenance is important in other applications as well, such as
for interactive editing based upon attribute grammars [HORWSS5], and for the maintenance of alerfeps
[BUNE79] to report when some database state has been reached.

12



We have shown, however, that complete incremental updating becomes difficult or impossible when
view construction operators lose information. In these cases, an update may require substantial or
complete view re-evaluation. To ameliorate the effects of these problems, we have suggested the main-
tenance of minimal view-states which are the set of the highest-level intermediate view constructions
(not necessarily disjoint) which still admit incremental updating. The convenience of applying this
concept must be empirically established, since it is dependent upon the activity levels of the particular
database.

We have also shown that minimal view-states and the form of the incremental updates can be
mechanically derived using relational algebra, and that this concept may be extended to any object-
oriented formalism having the appropriate distribution and association axioms.

Current research is being conducted to extend these ideas to views which include aggregation op-
erations and to methods of empirical analysis to assist in determining in which situations the minimal
view-state concept would be most practically employed.
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