
Prelude for Haskell Number Classes 08-Apr-06 1

Numbers in Prelude for Haskell’
Andrew U. Frank
Dept. of Geoinformation
Technical University Vienna
frank@geoinfo.tuwien.ac.at

Abstract
A more differentiated structure for the classes Num and related in the Haskell-98 prelude

is proposed. It structures operations along the lines of algebraic structures but remains close

to and compatible with the current prelude. It allows overloading of the regular arithmetic

operations for instances where the corresponding axioms are valid.

1 Introduction
The current structure of the number classes Num, Real, Integral, Fractional, and Floating

is very close to traditional programming languages and has served the Haskell community

well. New applications – we use Haskell for example as a design tool and specification

language for geographic information systems – are hindered by the current coarse structure

and require a finer subdivision of operations in classes along the lines of their algebraic

structure. It is desirable, to separate the additive, commutative group with (+) from the ring

which includes also (*), so for example vectors can be made instances for an additive group

and not automatically get a (*) as multiplication. We design and specify of parts of

geographic information systems and use algebraic methods and Haskell. We push for reuse of

well-known structures (like monoid, group, and lattice); the current prelude makes this

impossible and we have replaced it with our homebrew version. Similar requests were voiced

by more mathematically oriented groups, for example Mechveliani [Haskell and computer

algebra].

The proposal here is conservative and very close to the current prelude; it is intended

such that current code is not requiring any change. It separates the class number classes in

Haskell (report 6.4) in xx classes:, namely Campgroup, Combing, Euclidean Ring, Field, and

Floating. It further follows the rule that all operations are included in a class to achieve a

uniform method of overloading.

2 Proposed structure in classes
Code to show the classes and default implementation for some operations, covering what is

currently in the prelude:

Prelude for Haskell Number Classes 08-Apr-06 2

import Prelude hiding ((++), Num (..), Integral (..), Fractional
(..),
 abs, signum, gcd, lcm)

class Zeros z where
 zero :: z

class Ones o where
 one :: o

To be able to define some operations in classes, the constants for the units of the algebras

must be available in instantiable classes, therefore the two classes Zeros and Ones.

class Monoid s where
 infixr 5 ++
 (++) :: s -> s -> s

The class monoid (without a context of a unit) fixes one operation. For the definition of the

commutative group, a unit (zero) would be necessary, but is not included to reduce change in

existing code.

class CommGroup a where
 infixl 6 +, -
 (+) :: a -> a -> a
 negate :: a -> a
 --
 (-) :: a -> a -> a
 a - b = a + (negate b)
 subtract :: a -> a -> a
 subtract = flip (-)

The class for groups with orders require no separate detailed instances, both operations can be

derived and defined by default:

class (Zeros a, Ord a, CommGroup a) => OrdGroup a where
 -- context required to allow definitions
 abs:: a -> a
 abs a = if a > zero then a else negate a
 difference :: a -> a -> a
 difference a b = abs (a - b)

The class for rings does again not include the zero to avoid context.

class CommRing a where
 infixl 7 *
 (*) :: a -> a -> a
 sqr :: a -> a
 sqr a = a * a

The operations gcd and lcm, which are currently in no class, move to EuclideanRing, where

also quot, rem, div and mod are found. A separation in EuclideanRing as a superclass of

GCDRing is possible, but I do not see much justification.

Prelude for Haskell Number Classes 08-Apr-06 3

class (OrdGroup a, CommRing a) => EuclideanRing a where
 quot, rem, div, mod :: a -> a -> a
 gcd, lcm :: a -> a -> a

 gcd x y = if x == zero && y == zero
 then error
 "Prelude.gcd: gcd 0 0 is undefined"
 else gcd' (abs x) (abs y)
 where gcd' x y = if y == zero then x
 else gcd' y (x `rem`
y)
 lcm x y = if x == zero then zero else
 if y == zero then zero
 else abs ((x `quot` (gcd x y)) * y)

 quot a b = i where (i,f) = quotRem a b
 rem a b = f where (i,f) = quotRem a b
 div a b = i where (i,f) = divMod a b
 mod a b = f where (i,f) = divMod a b

 divMod, quotRem :: a -> a -> (a,a)

Operations for increment and decrement (possibly renamed to succ and pred) and the

determination of the sign of a number is in the class IntegralDomain:

class (Zeros a, Ones a, Ord a, CommGroup a) => IntegralDomain a
where
 inc, dec :: a -> a
 inc a = one + a
 dec a = a - one
 signum :: a -> a -- result is (-1, 0, 1)
 signum a = if a > zero then one else
 if a == zero then zero else(negate one)

The class field replaces Fraction:

class (CommRing a) => Field a where
 infixl 7 /

 recip :: a -> a -- reciprocal

 (/) :: a -> a -> a
 a / b = a * (recip b)

The current class Floating is not changed.

3 Tough Questions
3.1 How to determine units for a type
Mechveliani’s proposal suggests additional example parameters for functions. E.g. an

operation to find the zero for a data type with signature zero :: a -> a. I think that zero :: a

achieves the same effect, possibly in connection with `asTypeOf`. (zero `asTypeOf` x)

3.2 Enforce algebraic structure
Mathematical definition of these algebraic structures demand additional rules. Should this be

enforced? What are the rules that go with a class and the operation signs defined in it? In

Prelude for Haskell Number Classes 08-Apr-06 4

particular, is + and * always commutative or is commutativity added in a separate class

(Mechveliani does this). The same question for the inclusion of units -

I go for commutativity of + and * and document this in the suggested names for the

classes. If a program needs non-commutative operations, the programmer is free to add a new

class and select other symbols for the operation. My goal is to structure the current prelude

such that such additions become feasible, but are not forced upon those, who do not need

them.

3.3 Including of context
The question of including context in the classes is similar. I have opted not to include more

context than is strictly necessary for the proposed classes and not document the usually

required context of classes like Eq,, Ord, etc. The compiler is checking with instances the

presence of the required classes and instances later. Context at the class level seems mostly a

documentation issue and precludes later use of a class when you cannot provide the regular

Eq, Ord etc. (I want to avoid forcing instance of Eq which then say “_ == _ = error “not

implementable for type xxx”). Example: an implementation may allow the multiplication of

functions, but defining Eq, Ord, or Show for functions may be impossible or unnecessary.

3.4 Seldom used operations
The ‘mixed type’ operations ^ and ^^ which compute special case of the power function are

left out and could be carried forward from the current prelude; I would prefer to drop these

operations to free some namespace for operations and use special instantiations of the general

operation ** (which would then require an additional, separate class).

3.5 FromInteger, FromRational
These two operations are not related to algebraic operations but to the understanding of

constants values in the program text or input – they are related to conversions, rounding and

input/output and could be grouped with other conversions (to string, from string etc.). This

requires a separate proposal.

4 Additional burden compared to current prelude
Most programmers will not see a difference. The currently exported operations for the base

types remain unchanged. Only those programs, which define a new number-like class, have to

instantiate more classes but not more operations than before. The splitting in several classes

will often be beneficial – we have encountered numerous situations where addition is defined

reasonably, but not a multiplication or an absolute value.

5 Additional library
The proposal is to change the current class structure but not to extend the prelude. An

additional library could include additional classes. For example, algebraic modules and vector

spaces with scalar multiplication ($*:: s -> a -> a), noncom mutative etc. I assume also that

Prelude for Haskell Number Classes 08-Apr-06 5

Mechveliani’s implementation could be built as additional classes and data types on top of

this proposal.

6 Conclusion
It is possible to change the class structure for the numeric classes in the prelude to bring them

in line with a more algebraic structure and allow more flexibility in the application code. The

effect of this change on existing code is minimal and only programs where instances for these

classes where defined, are affected.

