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Abstract

Geographers use spatial reasoning extensively  in large-scale spaces, i.e., spaces that cannot be seen or

understood from a single point of view. Spatial reasoning differentiates several spatial relations, e.g. topological

or metric relations, and is typically formalized using a Cartesian coordinate system and vector algebra. This

quantitative processing of information is clearly different from the ways humans draw conclusions about spatial

relations. Formalized qualitative reasoning processes are shown to be a necessary part of Spatial Expert Systems

and Geographic Information Systems.

Addressing a subset of the total problem, namely reasoning with cardinal directions, a completely qualitative

method, without recourse to analytical procedures, is introduced and a method for its formal comparison with

quantitative formulae is defined. The focus is on the analysis of cardinal directions and their properties. An

algebraic method is used to formalize the meaning of directions. The standard directional symbols (N, W, etc.)

are supplemented with a symbol corresponding to an undetermined direction between points too close to each

other which greatly increases the power of the inference rules. Two specific systems to determine and reason with

cardinal directions are discussed in some detail.

From this example and some other previous work, a comprehensive set of research steps is laid out,

following a mathematically based taxonomy. It includes the extension of distance and direction reasoning to

extended objects and the definitions of other metric relations that characterize situations when objects are not

disjointed. The conclusions compare such an approach with other concepts.

1 . Introduction

Qualitative spatial reasoning is widely used by humans to understand, analyze, and draw conclusions about the

spatial environment when the information available is in qualitative form, as in the case of text documents.

1 Part of this work was done while the author was with the National Center for Geographic Information and

Analysis (NCGIA) and the Department of Surveying Engineering, University of Maine, Orono. Funding from

NSF for the NCGIA under grant SES 88-10917 and from Intergraph Corporation  is gratefully acknowledged.
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Tobler and Wineberg (1971), for example, tried to reconstruct spatial locations of historic places from scant

descriptions in old documents. Verbal information about locations of places can leave certain aspects imprecise

and humans deduce information from such descriptions (for example in order to analyze a description of a

location in natural science collections (McGranaghan 1991)). The use of cardinal directions is typical for

reasoning in geographic or large-scale space, but other spatial relations are equally important.

Most formalizations or implementations of spatial reasoning rely on the Euclidean geometry and the

Cartesian coordinate system. There is a clear need for a fully qualitative system of spatial reasoning, combining

topological and metric relations. In qualitative reasoning, a situation is characterized by variables which 'can only

take a small, predetermined number of values' (de Kleer and Brown 1985, p. 116) and the inference rules use

these values and not numerical quantities approximating them. It is clear that the qualitative approach loses some

precision, but simplifies reasoning and allows deductions when precise information is not available.

The work presented here is part of a larger effort to understand how space and spatial situations are described

and explained. Within the research initiative 2, 'Languages of Spatial Relations' of the National Center for

Geographic Information and Analysis (NCGIA 1989) a need for multiple formal descriptions of spatial

reasoning—both quantitative-analytical and qualitative—became evident (Mark, et al. 1989a), (Mark and Frank

1990), (Frank and Mark 1991), (Frank 1990b), (Frank 1990a).

Three special arguments for research in qualitative spatial reasoning serve as examples for numerous others:

- the formalization required for the implementation in Geographic Information Systems (GIS), or generally

for spatial information systems,

- the interpretation of spatial relations expressed in natural language, and

- the comparison of the semantics of spatial terms in different languages.

Formalizing spatial reasoning is a precondition for the implementation of any spatial data processing

method. Most methods currently used for spatial reasoning translate the problem from the quantitative to the

qualitative realm and use analytical geometry for the solution (Dutta 1990, Webster 1990). This is not always an

appropriate solution. The treatment of the uncertainty inherent in qualitative spatial descriptions causes problems

that cannot be overcome easily in methods translating the problem to the quantitative realm (McDermott and

Davis 1984). For this reason, the construction of expert systems which deal with space and spatial problems has

been recognized as being difficult (Bobrow, et al. 1986). Abstract, non-coordinate-based methods are necessary for

the planning of the execution of spatial queries and their optimization. This is most urgent for intelligent spatial

query languages for Geographic Information Systems (Egenhofer 1991). Specifically, algebraic properties of the

operations, primarily commutativity and associativity, determine the optimization steps possible.

It has been suggested that user interfaces currently available in Geographic Information Systems are strongly

influenced by Anglo-saxon concepts which are difficult to translate to users from a different cultural or linguistic

background (Campari 1991), (Mark, et al. 1989b). This problem will increase in importance, as GIS become

widely used outside of the Anglo-saxon world and may in the long run limit their usefulness to address the

pressing needs of resource management and spatial planning in third world countries. A necessary, but not

sufficient step to address this problem is to identify and formalize the concepts used in spatial reasoning, so one
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can compare methods used in one language with concepts present in another one (Campari and Frank 1994),

(Campari and Frank 1993).

The structure of this paper is as follows: The next section describes large-scale space and discusses in some

detail reasoning with cardinal directions as an example of spatial inference in a rule based system. Section 3

outlines desirable properties of reasoning with cardinal direction from geometric intuition. Section 4 describes

alternative approaches to reason about cardinal directions based on the concepts of angular directions and

projections. Section 5 outlines previous approaches to spatial reasoning and links the different perspectives.

Section 6 lays out a comprehensive set of research steps which extends distance and direction reasoning to

arbitrary objects and shows how to search for additional metric relations that characterize the situations when

objects are not disjoint. The conclusion summarizes the results and briefly discusses alternative guiding

principles for research in spatial reasoning.

2 . Reasoning about Cardinal Directions in Geographic Space

Spatial reasoning is commonplace and defines the conceptualization of a situation as spatial. The details of

spatial reasoning, the specific inference rules, depend on the type of space to which it applies. Conceptualization

of space does not always lead to the customary Euclidean geometry, but depends on the situation. Zubin

differentiates four different spaces, covering the range from the small objects in an area which can be seen at a

single glance, to the large areas, where one accumulates knowledge about the space by moving through it (Mark,

et al. 1989a) (Couclelis 1992), (Montello 1993). Similar differentiations have been made previously; for

example, Kuipers and Levit (1990, p. 208) define large-scale space as

"a space whose structure is at a significantly larger scale than the observations available at an instant.

Thus, to learn the large-scale structure of the space, the traveler must necessarily build a cognitive map

of the environment by integrating observations over extended periods of time, inferring  spatial structure

from perceptions and the effects of actions".

Geographic Information Systems, and geography and cartography in general, deal with this large-scale space,

and this justifies the focus of the paper. Moreover, cardinal directions presented as an extensive example, are

almost exclusively used in large-scale space. Reports of statements like "the pencils are in the upper, west

drawer" - which is said to be used in some mid-west families - or a description as

CHRISTY: "He gave a drive with the scythe, and I gave a leap to the east. Then I turned around with

my back to the north,  .... " (Synge 1941, The Playboy of the Western World, p. 132)

which apply cardinal directions to smaller spaces, seems strange or quaint to most.

Cartographic rendering of large-scale spaces in reduced scale transfers the situation to small-scale space and

makes concepts from small-scale spatial reasoning available for the analysis of geographic space. An extreme

example of applying small-scale space concepts to large-scale space are maps that compare the area of two states

by superimposing one onto the other, moving states in space as one would move books on a table.  One can,

therefore, not limit investigations to a single space and the spatial relations valid in it, but consider the transfer

of concepts of spatial reasoning from one to another.
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A standard approach to spatial reasoning is to translate the problem into analytical geometry and to use

quantitative methods for its solution. Many problems can be conveniently reformulated as optimization with a

set of constraints, e.g. location of a resource and shortest path. A similar approach of mapping a situation to

coordinate space, has been applied to understand spatial reference in natural language text (Herskovits 1986,

Nirenburg and Raskin 1987, Retz-Schmidt 1987). A special problem is posed by the inherent uncertainties in

these descriptions and their translation into an analytical format. McDermott (1984) introduced a method using

'fuzz' and in (Dutta 1988, Dutta 1990, Retz-Schmidt 1987) fuzzy logic (Zadeh 1974) is used to combine such

approximately metric data.

A qualitative approach to spatial reasoning does not rely on a coordinate plane and does not attempt to map

all information into this framework. It  can deal with imprecise data and, therefore, yields less precise results

than the quantitative approach (Freska 1991). This is highly desirable (Kuipers 1983, NCGIA 1989), because

• precision is not always desirable and

• precise, quantitative data is not always available.

Verbal descriptions have the advantage, that they need not be metrically precise, just sufficient for the task

intended. Imprecise descriptions are necessary in query languages where one specifies some property that the

requested data should have. Consider, for example, the query "find all factories about 3 miles southeast of town A

and northwest of town B. The depiction in Figure 1 is oversimplified and inaccurate, while the visualization of

Figure 2 is too complex to show the desired information only.

3 miles

Town A

Town B

3 miles

Town A

Town B

Figure 1: Overspecific visualization Figure 2: Complex visualization

In large-scale space several spatial relations are important. Pullar and Egenhofer (1988) classified spatial relations in:

- direction relations  that describe order in space (e.g. north, northeast),

- topological relations that describe neighborhood and incidence (e.g. disjoint),

- comparative or ordinal relations  that describe inclusion or preference (e.g. in, at),

- distance relations such as far and near and

- fuzzy  relations such as next to and close.

This paper concentrates on reasoning with cardinal directions as a major example. The specific problem

addressed in this example is the following: Given the facts that San Francisco is west of St.Louis and Baltimore

is  east of St. Louis, one can deduce the direction from San Francisco to Baltimore by the following chain of

deductions:

1. Use 'San Francisco is west of St. Louis' and  'Baltimore is east of St. Louis', to establish a

sequence of directions San Francisco - St. Louis - Baltimore .
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2. Deduce 'St. Louis is west of Baltimore' from 'Baltimore is  east of St. Louis'

3. Use the concept of transitivity: 'San Francisco is west of St. Louis' and 'St. Louis is west of

Baltimore', thus conclude 'San Francisco is west of Baltimore' .

This paper formalizes such rules and makes them available for inclusion in an expert system.

One is tempted to apply first-order predicate calculus to spatial reasoning with directions:

"The direction relation NORTH. From the transitive property of NORTH one can conclude that if A is

NORTH of B and B is NORTH of C then A must be NORTH of C as well (Mark, et al. 1989a)"

The description of directional relationships between points in the plane can be formulated as propositions 'A

is north of B'  or 'north (A, B)'. Given a set of propositions one can then deduce other relative positions as the

induced set of spatial constraints (Dutta 1990). Following an algebraic concept, one does not concentrate on

directional relations between points but attempts to find rules for the manipulation of the directional symbols

themselves, when combined by operators. An algebra is defined by a set of symbols that are manipulated (here

the directional symbols like N, S, E, W), a set of operations and axioms that define the outcome of the

operations.

3. Desirable Properties of Cardinal Directions

The intuitive properties of cardinal directions are described in the form of an algebra with two operations

applicable to direction symbols:

- the reversing of the direction of travel (inverse), and

- the composition of the direction symbol of two consecutive segments of a path (composition).

The operational meaning of cardinal direction is captured by a set of formal axioms. These axioms describe

the desired properties of cardinal directions and are similar to vector algebra.

3 . 1 . Cardinal Directions

Direction is a binary function that maps two points (P1, P2) in the plane onto a symbolic direction d. The

specific directional symbols available depend on the system of directions used, e.g., D4 = {N, E, S, W} or more

extensive D8  = {N, NE, E, SE, S, SW, W, NW}. The introduction of a special symbol 0 (for 'zero') avoids the

limitation that direction is only meaningful if the two points are different. In algebra this symbol (usually called

identity ) simplifies the inference rules and increases the deduction power. Its meaning here is that 'two points are

too close to determine a direction between them'.

3 . 2 . Reversing direction

Cardinal directions depend on the direction of travel. If a direction is given for a line segment between points P1

and P2, the direction from P2 to P1 can be deduced (Freeman 1975). This operation is called inverse (Figure 3),

with

inv (dir (P1, P2) ) = dir (P2, P1)  and inv (inv (dir (P1, P2) )) = dir (P1, P2) .
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dir (P1, P2)

inv (dir (P1,P2))

P1

P2

P1
P3

P2
dir(P1,P2) dir(P2,P3)

dir(P1,P3)

Figure 3: Inverse Figure 4: Composition

3 . 3 . Composit ion

The second operation combines the directions of two contiguous line segments, such that the end point of the

first direction is the start point of the second one (Figure 4).

d1 ∞ d2 = d3    means   dir (P1,P2) ∞ dir (P2, P3) = dir (P1, P3)

Associativity: Compositions of more than two directions should be independent of the order in which they are

combined:

d1  ∞ (d2 ∞ d3 ) = (d1 ∞ d2 ) ∞ d3  =  d1 ∞ d2  ∞ d3            (associative law)

Identity: Adding the direction from a point to itself, dir(P1,P1) = 0, to any other direction does not change it.

Algebraic definition of inverse: In algebra, an inverse to a binary operation is defined such that a value,

combined with its inverse, results in the identity value. Geometrically the inverse is the line segment that

combines with a given other line segment to lead back to the start (Figure 5).

inv (d) ∞ d = 0      and    d�∞�inv (d) = 0

Computing the composition of two directions, where one is the inverse of the other, is in the general case

an approximation. The degree of error depends on the definition of 0 and the difference in the distance between the

points - if they are the same, the inference rule is exact. This represents a chain of reasoning like: New York is

east of San Francisco, San Francisco is west of Baltimore, thus  New York is too close to Baltimore (in the

frame of reference of the continent) to determine the direction. In general one observes that deduction based on

directions alone are only applicable if all the distances are of the same order of magnitude.

P1

P2

P3
inv(d)

d=dir(P1,P2)
     

 inv(d2) ∞ inv (d1)

d3=dir(P1,P3)

d2=dir(P2,P3)
d1=dir(P1,P2)

Figure 5:  d ∞ inv (d) = 0 Figure 6:  inv(d3)= inv(d1) ∞ inv(d2)

The inverse is also used to compute the completion of a path to another given one (Figure 6) and one finds

that a combined path is piece-wise reversible inv (d1 ∞ d2) = inv (d2) ∞ inv (d1).

Idempotent: If one combines two line segments with the same direction, one expects that the result maintains

the same direction. This is transitivity for a direction relation:

from d (A,B) and d (B,C) follows d(A,C)
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3 . 4 . Definition of Euclidean Exact Reasoning

These rules for qualitative spatial reasoning are compared with the quantitative methods using analytical

geometry, as, for example, vector addition. The following definition gives a precise framework for such a

comparison. A qualitative rule is called Euclidean exact, if the result of applying the rule is the same as if the

data was translated to analytical geometry and applied to the equivalent functions, i.e., if there is a

homomorphism. Otherwise, it is called Euclidean approximate  (the symbol  +  denotes vector addition)

dir(P1,P2) ∞ dir (P2, P3) = dir ((P1, P2) + (P2, P3))

3 . 5 . Summary of Properties of Cardinal Directions

The basic rules for cardinal directions and the operations of inverse and composition are:

• The composition operation is associative (1').

• The direction between a point and itself is a special symbol 0, called identity (1) (2')

• The combination of an direction and its inverse is 0 (cancellation rule) (3')

• The direction between a point and another is the inverse of the direction between the other point and the

first (2).

• Combining two equal directions results in the same direction (idempotent, transitivity for direction

relation) (3).

• The composition can be inverted (4).

• Composition is piece-wise invertible (5).

d ∞ (d ∞ d) = (d ∞ d) ∞ d (1')

d ∞ 0 = 0 ∞ d = d (2')

d ∞ inv (d) = 0 (3')

Table 1: Group properties

dir (P1, P1) = 0 (1)

dir (P1, P2) = inv (dir (P2, P1)) (2)

d ∞ d = d (3)

for any a, b in D exist unique x in D such that

a ∞ x = b and x ∞ a = b (4)

inv (a ∞ b) = inv (a) ∞ inv (b) (5)

Table 2: Desirable properties of directions

Several of the properties of directions are similar to properties of algebraic groups or follow immediately

from them. Unfortunately, the idempotent rule (transitivity for direction relation)  (3)  or the cancellation rule

(3') are in contradiction with the remaining postulates. Searching for an inverse x for any d ∞ x = 0, both x = d

(using (3)) or x = 0 (using 3') are possible, which contradicts the uniqueness of x in (4). A contradiction results
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also with associativity (1'), computing d ∞�d ∞ inv (d), which yields either d ∞ inv (d) = 0 or d ∞ 0 = d,

depending how parentheses are set.

The customary method to avoid these problems is to define the composition operation to yield a set of

values (not a single value as above) and to include in the result set all values that might apply. The cancellation

rule (3') then becomes d ∞ inv (d) = {d, 0, inv(d)}, because depending on the distances involved, any of these

value may be correct.

The differences are minor and are probably a reflection of the inherent vagueness of the concept of directions

(Herskovits 1986, p. 192). Following the concept of prototype values in radial categories (Lakoff 1987), the

most likely value is selected and the reasoning rule labeled as Euclidean approximate.  The results obtained are

exact if the distances involved are all the same (or similar), which is the case for certain situations of navigation

of large-scale spaces, e.g., walking in an inner city environment, where the size of the block faces are

comparable in length.

4 . Two Examples of Systems of Cardinal Directions

Two examples of systems of cardinal directions are studied, both using the same set of eight directional symbols

(plus the identity). One is based on cone-shaped (or triangular) areas of acceptance, the other is based on

projections. These two semantics for cardinal direction can be related to Jackendoff's principles of centrality,

necessity and typicality (Jackendoff 1983, p. 121) as pointed out by Peuquet (1988).

4 . 1 . Directions in 8 or More Cones

Cardinal directions relate the angular direction between a position and a destination to some directions fixed in

space. An angular direction is assigned the nearest named direction which results in cone-shaped areas for which a

symbolic direction is applicable. This model has the property that "the area of acceptance for any given direction

increases with distance" (Peuquet and Zhan 1987, p. 66, with additional references) and is sometimes called

'triangular'.

The set of directional symbols for this system is V9 = {N, NE, E, SE, S, SW, W, NW, 0}.

and a turn of an eighth anti-clockwise is defined as:

e (N) = NE, e (NE) = E, e (E) = SE, .... , e (NW) = N,   e (0) = 0.

Eight turns of 45° being the identity function. The inverse is defined as 4 eighth turns inv (d) = e4 (d). The rules

for composition of directions are(2') (3) and the approximation rule (3'). This allows deduction for about one

third of possible composition. A set of averaging rules, which allow the composition of directional values which

are apart by 1 or  2 eighth turns, is necessary to complete the system. For example N is combined with NE to

yield N.

e (e (d)) ∞ d = e (d),   e (d) ∞ d = d,  e (d) ∞ inv (d) = 0,  d ∞ e (d) = d, etc.

In this system, from all the 81 pairs of values (64 for the subset without 0) compositions can be inferred,

but most of them only approximately.
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N N E E S E S S W W N W 0

N N n n e o o o n w n w N

N E n n e n e e o o o n N E

E n e n e E e s e o o o E

S E o e e S E s e s o o S E

S o o s e s e S s s w w S

S W o o o s s S W s w w S W

W n w o o o s w s w W w W

N W n n o o o w w N W N W

0 N N E E S E S S W W N W 0

Table 3: Composition of cone-shaped directions (lower case denotes Euclidean approximate inference).

Directions so defined do not fulfill all the requirements, because they violate the associative property; for

example

( S ∞ N )�∞�E = 0 ∞ E = E but

S ∞ ( N�∞�E ) = S ∞ NE = 0.

4 . 2 . Cardinal Directions Based on Projections

4.2.1. Directions in 4 half-planes

One can define four directions such that they are pair-wise opposites (Peuquet and Zhan 1987, p. 66) and each

pair divides the plane into two half-plains. The direction operation assigns for each pair of points a composition

of two directions, e.g., South and East for a total of 4 different directions (Figures 7 and 8).

North

South

West East
NW NE

SW SE

Figure 7: Two sets of half-planes. Figure 8: Directions defined by half-planes.

Another justification for this definition of cardinal direction is found in the structure geographic longitude

and latitude imposes on the globe. Cone-shaped directions better represent the direction of 'going toward',

whereas the 'half-planes' better represent the relative position of points on the earth. Frequently, the two

coincide.

In this system, the two projections can be dealt with individually. When the two projections in N-S and E-

W are combined to form a single system with the directional symbols:

V4 = { NE, NW, SE, SW}

only the trivial cases (NE ∞ NE = NE, etc.) can be resolved.

4.2.2. Projection-Based Directions with Neutral Zone

If points which are near to due north (or west, east, south) are not assigned a second direction, i.e., one does not

decide wether or not such a point is more east or west, one divides effectively the plane effectively in 9 regions
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(Figure 9), a central neutral area, four regions where only one direction applies and 4 regions where two are used.

For N-S the three values for direction dns are {N, P, S} and for the E - W direction the values are dew {E, Q, W}.

 

NW     N      NE

W                 E

SW      S      SE

Oc

Figure 9: Directions with neutral zone

It is important to note that the width of the 'neutral zone' is not defined a priori. Its size is effectively decided

when the directional values are assigned and a decision is made that P2 is north (not north-west or north-east) of

P1. The algebra deals only with the directional symbols, not how they are assigned. The system assumes that

these decisions are consistently made in order to determine if a deduction rule is Euclidean exact or not.

In one projection, selecting dns= {N, P, S} as example, the inverse operation is defined as inv (N) = S, inv

(S)= N, inv (P) = P. For the composition the rules (3), (2') and (3') are required. The two projections in N-S and

E-W are then combined to form a single system, in which for each line segment one of 9 compositions of

directions are assigned.

V9 = {NE, NQ, NW, PE, PW, PQ, SE, SQ, SW}

this can be simplified to yield the customary cardinal directions, if P and Q are eliminated (replacing PQ by 0)

V9 = {NE, N, NW, E, W, 0, SE, S, SW}

If any of the result for the two projections is approximate the total result is considered approximate reasoning.

The inverse is defined as the combination of the inverses of the projection, and the composition is the

combination of the compositions of each projection. Using the three rules the values for each composition are

computed.
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N N E E S E S S W W N W 0

N N N N E e o w N W N W N

N E N E N E N E e e o n n N E

E N E N E E S E S E s o n E

S E e e S E S E S E s s o S E

S o e S E S E S S W S W w S

S W w o s s S W S W S W w S W

W N W n o s S W S W W N W W

N W N W n n o w w N W N W N W

0 N N E E S E S S W W N W 0

Table 4: Composition of projection-based directions (lower case denotes Euclidean approximate

inference)

4 . 3 . Assessment

The power of the 8 direction cone-shaped and the 4 half-plane based directional system are similar. Each system

uses 9 directional symbols, 8 cone-shaped directions plus identity on one hand, the Cartesian product of 3 values

(2 directional symbols and 1 identity symbol) for each projection on the other hand. The same rules are used to

build both systems, but the cone-shaped system had to be completed with a number of 'averaging rules'.

Introducing the identity symbol 0 increases the number of deduction in both cases considerably. Only 8 out

of 64 compositions could be resolved for cone-shaped directions and only trivial cases can be resolved for the

half-plane based system.The systems with identity allow conclusions for any pair of input values (81 different

pairs) at least approximately. The comparison reveals, that the projection-based  directions result in less cases of

approximation results than the cone-shaped (32 vs. 56) and that it yields less often the value 0 (9 vs. 25).

Considering the definite values (other than 0) deduced, differences appear only for results where the 'averaging

rules' are used for the cone-shaped directions, and the values differ by one eighth turn only. In conclusion, the

projection-based system is producing more exact and more definite results.

An implementation of these rules and comparing the computed combinations with the exact value was done

and confirms the theoretical results. Comparing all possible 106 compositions in a grid of 10 by 10 points (with

a neutral zone of 3 for the projection-based directions) shows that the results for the projection-based directions

are correct in 50% of cases and for cone-shaped directions in only 25%. The result 0 is the outcome of 18% of all

cases for the projection-based, but 61% for the cone-shaped directions. The direction-based system with an

extended neutral zone produces in only 2% of all cases a result that is a quarter turn off, otherwise the deviation

from the correct result is never more than one eighth of a turn, namely in 13% of all cases for cone-shaped and

26% for projection-based direction systems. In summary, the projection-based system of directions produces in

80% of all cases a result that is within 45° and otherwise the value 0.
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5 . Spatial Reasoning Studies

Cardinal directions are similar to the four directions 'Front', 'Back', 'Left', and 'Right', which one encounters in

spatial references (Herskovits 1986, Retz-Schmidt 1987). Although cardinal directions are prominent in

geography, humans often use local reference frames, based on either their own position and heading or an implied

frame for the object of interest. It is then necessary to convert distance and direction expressions valid in one

frame of reference to the expression valid in another frame (McDermott gives a solution based on coordinate

values including some 'fuzz' (1984)). In a qualitative reasoning system, composition is used.

Building A Building B

R

viewer
R

F

F

object

Figure 10: Reference frame example

The object in figure 10 is in front of Building B which is to the right of Building A that the viewer  is

facing. Using composition of direction relations (Table 4) we can conclude that the object is to the right

of the viewer using the following chain of inferences:

 c1 = F (front)

c2 = R (right)

c'3 = F, with ref3 = e**4 (the reference frame of Builldng B is 4 eighths turned)

c1 ∞ c2 = F ∞ R = FR

c3 = e**4 (F) = B

c1 ∞ c2 ∞ c3 = FR ∞ B = R (using for example NE ∞ S = E in Table 4).

Conclusion: the object is to the right of the viewer, which is correct.

Artificial intelligence has found the formalization of common sense knowledge a formidable task (Lenat, et

al. 1990). McCarthy (1975) proposed a subdivision of endeavors and singled out spatial reasoning as an

important task, prevalent in many other kinds of reasoning. Spatial reasoning has been further subdivided in

different approaches, mostly concentrating on the aspects necessary to resolve some specific tasks.

Most relevant for geographic or large-scale space is Kuipers' work, which primarily dealt with aspects of

knowledge acquisition for wayfinding in large-scale space and to a lesser degree with spatial reasoning in a
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restricted sense (Kuipers 1982, Kuipers 1983, Kuipers 1990a, Kuipers 1990b, Kuipers and Levit 1990).

McDermott is more concerned with navigation in a complex environment, consisting of buildings etc. and

deductions of routes that permit physical passage(1980 1984). Davis deals with the acquisition of geographic

(i.e. large-scale) spatial information for navigation purposes (Davis 1986).

Others have primarily studied vision, and concentrated on aspects of understanding images for which spatial

reasoning is necessary. An entirely qualitative approach is the work on symbolic projections. It translates exact

metric information, primarily about objects in pictures, into a qualitative form (Chang, et al. 1990). Segments

in pictures are projected vertically and horizontally, and their order of appearance is encoded in two strings.

Spatial reasoning, especially spatial queries, are executed as fast substring searches (Chang, et al. 1987). Holmes

and Jungert (1992) have demonstrated how symbolic projections can be applied to knowledge-based route

planning in digitised maps. Papadias and Sellis (1993) have combined the concepts of symbolic projections and

topological reasoning in one representation framework.

Related to composition of spatial relations is the problem of consistency checking in spatial constraint

networks. A spatial constraint network is a qualitative graph-based description of a scene, where the nodes

represent objects and the arcs sets of spatial relations corresponding to disjunctions of possible relations between

objects. Inserting a new relation between two objects in the network affects not only the two objects, but

because of composition, the insertion might yield additional constraints between other objects in the network

(constraint propagation). Studies of constraint propagation and consistency checking in networks of spatial

relations can be found in (Guesgen 1989) and (Hernández 1993).

In Cognitive Science and Psycology the study of spatial relations and their use in human reasoning has been

a topic of interest for many years. Stevens and Coupe (1978) observed distortions in the recall of direction

relations between cities in Northern America and they attributed these findings to a hierarchical representation of

space. Hirtle and Jonides (1985), observed similar distortions when people reason about distance relations.

Tversky (1993) proposed cognitive maps (i.e., map-like mental constructs which can be mentally inspected),

cognitive collages (i.e., thematic overlays of multimedia from different points of view) and spatial mental

models (i.e., representations which capture spatial relations among distinct objects without preserving metric

information) as alternative mental representations that depend on the reasoning tasks to be performed.

Huttenlocker (1968) suggested that people construct spatial representations in order to draw conclusions about

spatial or non-sparial tasks.

Several computational models and representation schemes have been proposed to deal with aspects of spatial

reasoning. Glasgow and Papadias (1992), for instance, incorporate hierarchical spatial representations that can be

used to reason with spatial relations in their representation scheme of computational imagery. Randell et al.

(1992) proposed a theory for topological reasoning expressed in a many-sorted logic. Levine (1978) developed a

semantic network where the arcs encode spatial relations such as left, inside etc. Myers and Konolige, (1992)

designed a hybrid representation system that integrates both deductive and non-deductive spatial reasoning. A

study of several systems that have been used to represent and reason with spatial relations can be found in

(Papadias and Kavouras 1994).  Although the different systems can represent the same information about a given
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domain (they can be made informationally equivalent), they are not computationally equivalent since the

efficiency of the reasoning mechanisms is not the same. Identical tasks may involve different algorithmic

solutions and consequently have different complexities in distinct representational systems. A discussion about

informational and computational equivalence of spatial representations can be found in (Larkin and Simon 1987).

6 . Research Envisioned

This section describes a comprehensive set of investigations to formalize spatial reasoning with large-scale

space. The description links different aspects of spatial reasoning and discusses their relations. The research effort

concentrates on the formalization of spatial reasoning using methods similar to those used above to reason about

cardinal directions. Its goals are more modest than the ones of the researchers interested in navigation or vision,

intending only to formalize inference rules relevant for spatial relations in large-scale space. This is similar to

efforts of Dutta (1990). Despite these restrictions, a sufficiently complex problem remains to be investigated

with results of utility for GIS.

Following the classical definition by Felix Klein, geometry is the branch of mathematics that investigates

properties of configurations which remain invariant under a group of transformations (Blumenthal and Menger

1970). One differentiates the topological relations like 'inside', 'connected', 'bounding' etc., which remain

invariant under homomorphic transformations, from metric relations, like 'distance', 'direction' etc., which

remain invariant only under the much more restricted group of rotations and translations.

Initial work investigating topological structures (Egenhofer 1989, Egenhofer and Herring 1990, Egenhofer

and Franzosa 1991) and metric relations, specifically distance and cardinal directions (Frank 1990a, Frank 1991)

indicates that topological relations are the first level qualification which are further described by metric relations.

This reflects the fact that topological relations are invariant under a much larger group of transformations than

metric relations. Topological relations can be observed directly and characterized with a value on a nominal scale.

A method to characterize topological relations was proposed by Egenhofer (1990). It uses ideas from Allen

(1983), initially developed for reasoning about time intervals, and applies them to two dimensional space. It

introduces a simple characterization of topological relations in terms of 3 primitives, namely the test if the

intersection of boundary, interior and complement of the two figures is empty.

The plan is stressing a stepwise extension from the known, qualitative reasoning with cardinal directions and

topological relations. Each step is directed towards maximum separation of concerns - assuming that only the

most simple problems can be solved (a tendency that can be generally observed in AI research). The results are

then combined, to yield the complex systems used by human beings - the complexity being the result of the

combination, not being present in the single step.
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6 . 1 . Distance and Directions between Points Embedded in 2 Dimensional Space

Distance and cardinal directions are two very widely used metric relations in large-scale space. Indeed, cardinal

directions are only used in large-scale space. The prototypical case for the metric relations are distance and

directions between points in the plane, i.e. co-dimension 2 (0 D points embedded in 2 D space).

6.1.1. Formalization of qualitative reasoning with distances.

Preservation of metric properties is typical for our experience with physical, solid objects in small scale space

(Adler, et al. 1965). They can be moved but preserve length, angles etc. and Euclidean geometry can be seen as

the ideal formalization of these concepts. In real physical space not all the assumed properties of Euclidean

geometry are fulfilled. For example, one cannot insert between any two (physically embodied) points another

one. Furthermore, movements back and forth over the same distance do not exactly cancel.

Similarly, visual perception cannot distinguish between two points that are sufficiently close (Roberts and

Suppes 1967, Zeeman 1962). Measurement theory  provides a theoretical base when the problems of limited

acuity (the just noticeable difference) are taken into account (Krantz, et al. 1971, Scott and Suppes 1958). Based

on problems with observations of economic utility, Luce (1956, p. 181) has defined semiorders as

"Let  S  be a set and  <  and ~ be two binary relations defined over  S . ( < , ~ ) is a semiordering of S

if for every a, b, c, and d in S the following axioms hold:

S1. exactly one of a < b, b < a, or a ~ b obtains,

S2. a ~ a.

S3. a < b, b ~ c, c < d imply a < d,

S4. a < b, b < c, b ~ d imply not both a ~ d and c ~ d."

These observations can be visualized using graphs (Roberts 1969, Roberts 1971) and lead to tolerance

geometry (Robert 1973). It will be necessary to consider these results when defining qualitative metric relations,

using expressions like 'near', 'far' or 'very far' (Frank 1991).

6.1.2.  Integrating reasoning about distances and directions into a single set of inference rules.

Combining distance and direction reasoning, one becomes aware of the limitations of separating distance and

direction reasoning in individual chains of inference. The integration of distance and direction inferences increases

the precision of the results. Separating distance and direction information and applying independent rules for the

inference on distance and direction, ignores the potential influence between distance and direction inference and

reveals the shortcomings of both distance and direction reasoning.The result of far north composed with near

south is far north (and not 0 as would result from rule (3') above).

It is possible to construct tables for the addition of qualitative distance symbols under the assumption that

the two paths are anti-parallel (i.e., parallel, but in the inverse direction).  Other tables can be constructed if the

two paths form a right angle, or 1 or 3 quarter turns apart. Such distance reasoning rules take into account the

angle between the two paths, computed as the (symbolic) difference between the qualitative directions. The same

concept is applied to the direction reasoning. Hong (1994) produced tables similar to Table 4 indexed by the

difference in length of the paths (computed from the qualitative distance information available).
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This method improves the precision, without having to deal with the composition of all possible inputs (as

suggested in (Mukerjee 1990)). It takes advantage of the invariance of composition of paths under rotation. In

lieu of a table for the results of all input values, only a small set of smaller tables are necessary.

6.2. Combining reasoning about distance and direction relations with topological relations

A valid criticism to formalized spatial reasoning, primarily if using a coordinate plane, is, that it attempts to

map all information given into a single, uniform spatial frame (for examples see (McDermott and Davis 1984)).

This does not compare with the reasoning methods of human beings, which resolves spatial relations in groups

(Stevens and Coupe 1978). It is intuitively clear, that spatial reasoning for a trip from home to office can be

separated in several steps, starting with navigating inside one's home, moving with the car through the street

network, moving inside the office building etc.

In a first instance, the 'inside' topological relation is used, because it allows for propagation of spatial

relations from the container to the parts contained. For example, if the distance between Maine and California is

known to be about 4000 miles, one may conclude that the distance between any point in Maine and a point in

California is in the same order of magnitude. Further inside is transitive (A inside B and B inside C includes A

inside C).

6.2.1. Hierarchically regionalized space

A multi-level hierarchical structure of areas each containing smaller areas is an extreme simplification but leads

to a straight-forward formalization. A similar simplification has been used successfully by Christaller for his

central place theory (1966). In a hierarchically regionalized space, reasoning about distances and cardinal

directions between points is enormously simplified. Papadias and Sellis (1992) have shown how inference of

direction relations can be achieved using hierarchical representations of space, while Car and Frank (1994)

developed algorithms for hierarchical wayfinding. The errors produced in hierarchical systems resemble the ones

observed in humans performing similar operations.

6.2.2. General partially ordered regionalized space

In general, the inclusion relation orders regions (i.e. two dimensional areas) partially, but does not automatically

produce a strict hierarchy or even a lattice (Kainz 1988, Saalfeld 1985). The rules for reasoning about distances

and directions developed for the hierarchical case must be extended to cope with situations, where a point is

contained in multiple regions (town, school district, watershed, etc.), which do partially overlap. Papadias et al.,

(1994) have dealt with aggregation hierarchies where a geographic entity may belong to more than one parent and

observed that the improper specification of multiple hierarchies can lead to the inheritance of incosistent

relations.

6.3. Generalize distance and direction relations to extended objects

Distance and direction relations between extended objects, i.e. objects, which are not point-like, need to be

defined as an extension of metric relations between points. Humans ask questions like, what is the direction from

Maine to Canada and expect an answer of 'north' (indeed, from Maine, Canada is also east and west, and there are

some points in Maine where Canada is also found to the south). Peuquet and Zhan (1987) developed algorithms
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for the determination of direction relations based on a 'visual interpretation' but their determinations do not

always correspond with others' judgment. Papadias and Sellis (1994) have also dealt with direction relations

between arbitrary objects represented by their minimum bounding rectangles. Their method is projection-based,

unlike Peuquet's method which is based on the concept of cone-directions.

Distances and directions are easily definable only for extended objects which are disjoint - i.e. the topological

relations provide the first level of classification of spatial relations, and the metric relations a second level of

characterization, with distance and directions only applicable for disjoint objects (different from the approach by

Peuquet and Zhan).

Using the results from the formalization of distance and direction between point like objects and the

solutions to extending topological relations to higher co-dimensions, distance and direction relations between

extended objects must be formalized, explaining distances between lines and points, two lines, lines and areas

('how far is the town of Dixmont from the Interstate'), etc.

6.4.  Finding other metric relations to characterize relations of objects

Not only the situation of topologically disjoint objects can be further characterized with a metric value. Cardinal

direction is also used for objects which are inside others. For example, Aroostook County (a county in the state

of Maine) is said to be in the northern part of Maine - characterizing the topological relation of 'inside'

additionally with a direction term. This is a different use of a cardinal direction than between two points.

Generalizing this example, the following device helps to discover additional metric relations. Imagine two

objects, first quite distant from each other (figure 11a), characterized by disjoint and a distance value. The smaller

object approaches the other and 'meet' (figure 11b), characterized by the topological relation alone, which implies

distance 0. Moving the smaller object further, the objects overlap (figure 11c), which could be characterized by a

metric value, indicating the degree of overlap. Then the objects meet from the inside for a moment (figure 11d),

before the one is inside the other(figure 10 e).

Figure 10 a: Disjoint Figure 10 b: Meet

Figure 10 c: Overlap Figure 10 b: Covered
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Figure 10 e: Inside

Egenhofer and Al-Taha (1992) studied the gradual changes of topological relations for several cases of

transfomations involving translations, rotations, expansions and reductions. Some topological relations are

'sharp' in the sense that they apply only for a single moment when an object moves, whereas others are 'wide'

and apply for some range of situations, which can be further characterized with a metric value. In English one

can say

Kansas is further inside the United States than West Virginia.

Object A is 'barely' overlapping B in figure y.

Both expressions indicating that a metric characterization of the topological relation is appropriate.

The topological relations which are further characterized by a metric relation are, in first line, 'overlap' and

'inside' (but also 'meet along boundary' - characterized by the length of the common boundary). Possible

candidates for a metric relation would be the relation of area inside and outside for overlap and a similar measure

to determine if A is more inside than B.

7.   Conclusion

Qualitative spatial reasoning is prevalent in human thinking about space and spatial situations. Its formalization

almost always uses Euclidean geometry and the Cartesian coordinate system. This is admittedly not adequate to

model human cognitive structure, but other solutions are not currently known. Spatial reasoning is crucial for

progress in Geographic Information Systems, primarily, but not only, for the design and the programming of

spatial query languages. Spatial relations depend on the type of space, for example cardinal directions are only

used in large-scale spaces. The focus in this paper is on large-scale or geographic space, but the problems

identified, the approaches, the methods and some of the results are meaningful for other types of spaces.

This paper introduced a system for qualitative spatial reasoning with cardinal distances from an algebraic

point of view. Two operations, inverse and composition  are applied to direction symbols and their meanings are

formalized with a set of axioms. Three requirements, that directions should fulfill, are

- the direction from a point to itself is a special value, meaning 'too close to determine a direction',

- every direction has an inverse, namely the direction from the end point to the start point of the line

segment, and

- the composition of two line segments with the same direction results in a line segment with the same

direction.

In order to evaluate the expressive power of our qualitative reasoning approach, the notion of 'Euclidean

exact' was defined using a homomorphism. A deduction rule is called 'Euclidean exact' if it produces the same

results as Euclidean geometry operations would. Two different specific systems for cardinal directions, one based



A. Frank: Qualitative Spatial Reasoning 14/11/95 19

on cone-shaped regions the other based on projections, are explored. They produce very similar outputs, but the

projection-based cardinal directions yield more often results which are 'Euclidean exact'.

Cardinal directions are used as an example to show the advantages of the algebraic approach over the

traditional propositional one.  A series of research steps is laid out, which will lead to a comprehensive set of

formalized spatial relations, that interact in a controlled way. Several guiding principles for the organization of

such work are possible. The taxonomy of spaces from (Couclelis and Gale 1986) and the properties of the

dominant operations could be used. A linguistic approach would primarily investigate which spatial relations are

used in which context (e.g. cardinal directions are typical for large-scale spaces).

The guideline selected is based on traditional divisions in mathematics. The characterization of a spatial

situation is done first by assessing the topological relations and then the metric properties and the same idea is

followed to organize the investigations envisioned. A series of steps are listed, each addressing a specific

researchable problem:

- Extension of topological relations to points, lines and areas (co-dimension > 0)

- Qualitative reasoning with distances, and integration of reasoning about distances and directions,

- Reasoning in regionalized spaces, supporting distance and direction reasoning using the topological relation

'inside',

- Generalize distance and direction relations to extended (non-point) objects, and

- Find additional metric relations which characterize topological relations other than 'disjoint'.

The guiding expectation is, that the combination of different methods of qualitative spatial reasoning will

provide the accuracy expected, an accuracy that cannot be found in any single method in isolation. The lead

example is reasoning about distances and directions in isolation, which leads to approximate rules like

'cancelation' (3'), which are obviously often inappropriate. However, the combination of qualitative distance and

direction reasoning improves precision of inferences enormously.
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