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Abstract
Using hierarchical methods for spatial reasoning is a popular research topic.
Hierarchical spatial data structures, especially quadtrees, are used in many
implementations of GIS and have proved their efficiency. Operations on hierarchical
spatial data structures are effective to compute spatial relations, but do not
automatically imply Hierarchical Spatial Reasoning. Hierarchical spatial reasoning is
using coarser, less detailed representations to compute an approximative answer if the
quality of the approximation is sufficient. Hierarchical spatial reasoning is closely
related to computing approximative results and estimation of their errors.

This paper explores two spatial reasoning operations and deduces a general
definition of ‘hierarchical spatial reasoning’. Although the examples are very simple -
computation of area and intersection - and applied to a raster representation, the
definition appears general. Compared with other definitions it captures much of the
essence of hierarchical spatial reasoning. This sets the framework in which general
rules when hierarchical spatial reasoning can be employed may be deduced.

Hierarchical data structures are useful for hierarchical reasoning, but they can be
transformed to a more efficient ‘incremental hierarchical structure’, e.g., an
incremental quadtree. Then, incremental hierarchical spatial reasoning algorithms use
previously computed values to compute the next approximation and are therefore as
efficient as a direct calculation with the same error bound.

1 Introduction
Hierarchical data structures are very popular in computer science, because they
support the ‘divide-and-conquer’ strategy for algorithms efficiently. The best known is
the quadtree structure, with a large number of variants (Samet 1989a; Samet 1989b).
There are also other efforts for hierarchical structures in spatial information theory,
defining hierarchical divisions of curves (Ballard 1981), hierarchical triangulation (De
Floriani and Puppo 1992; Puppo and Dettori 1995), and hierarchical networks (Car
and Frank 1994b). Timpf has shown how a spatial task is broken down hierarchically
into subtasks (Timpf et al. 1992) and Voisard has formalized similar task subdivisions
for a mapping system (Rigaux et al. 1993; Voisard and Schweppe 1994).

In a recent discussion, the five characteristics of spatial knowledge, which make
spatial reasoning difficult, were listed as:

• incomplete
• imprecise
• hierarchical
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• qualitative
• time dependent or related to motion or process.

Progress in these areas is crucial for effective spatial reasoning systems. Recently,
the term ‘hierarchical spatial reasoning’ has been used (Car and Frank 1994a; Jones
and Luo 1994; Whigham 1993) and several examples explore such ideas (Abler et al.,
1971; Dutton 1993; Fotheringam 1992; Goodchild and Shiren 1990; Hirtle and Jonides
1985; Noronha 1988). Golledge has included ‘hierarchical reasoning’ in a recent list of
the most important open questions in spatial reasoning (Golledge 1992). Cohn has
discussed coarser and finer representations (Cohn 1995), and Papadias and Glasgow
(Papadias and Glasgow 1991) have extended symbolic projections to hierarchical
situations. Different levels of spatial resolution are typical for topographic maps and
map series of varying scale can be seen as hierarchies (Timpf and Frank 1995).
Whigham extends the hierarchical structure to both space and time in which events
happen (Whigham 1993). These efforts have provided some points in this wide and
admittedly very important field of hierarchical reasoning, but a general framework for
hierarchical spatial reasoning and a definition for it are still missing.

Hierarchical data structures have been developed for particular algorithms (Samet
1989a; Samet 1989b). It was found that the quadtree data structure with a nearly
infinite number of variants is generally very useful for many different tasks and leads to
efficient algorithms for spatial data with high levels of spatial autocorrelation.

Spatial reasoning is used here to denote any deduction of information from a
representation of a spatial situation. It includes the simple calculation of spatial
predicates, used here as running example (e.g. the area of a region), and spatial
relations (i.e. the intersection of two areas), but also all operations of map algebra
(Tomlin 1983a; Tomlin 1983b), symbolic spatial reasoning, etc. (Freksa 1991; Freksa
1992; Cohn - new submitted paper) and more complex tasks like planning of routes,
allocation of resources etc.

Hierarchical spatial reasoning computes approximation with error bounds. This
permits to decide when the result is ‘good enough’ for the task at hand and further,
more detailed, computation is not warranted . Hierarchical spatial reasoning is the
application of a non-hierarchical spatial reasoning algorithm to a series of increasingly
finer (higher resolution) representations of the same situation, giving a series of
improving approximations of reality. For each application of the algorithm not only the
value is computed, but also bounds on the errors. These allow to determine when the
approximation is good enough for the given task. A hierarchical operation is more
efficient as it avoids exploring detailed levels if it can be decided on a coarser level that
further detail does not contribute to improve the approximation.

Davis (1990, p. 270) points to advantages and disadvantages of spatial reasoning
using occupancy arrays (as we do here) and his comments can be generalized. It is
difficult

• to merge partial knowledge or knowledge at different levels of detail,
• to reason about cells which are only partially occupied.

The approach here - hierarchization of the knowledge base and to reason with
error bounds - addresses both issues.
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Content of the Article
In this paper I will explore hierarchical spatial reasoning based on a quadtree-like
structure, assuming that quadtrees are a good, simple and well understood example
used in spatial reasoning. Quadtrees are widely used due to their efficiency; they are
also well explored theoretically (Samet 1989a; Samet 1989b). No particular use is
made of the regularity of the tesselation and it is expected that the results hold for
hierarchical spatial data structures which are not based on a regular tesselation (e.g.,
(De Floriani and Puppo 1992)).

Two spatial reasoning operations are used as examples: the computation of the
area and the decision if two areas intersect. They are applied to a representation of
regions as regular tessellation (raster). In this framework, the difference between
algorithm on quadtrees and hierarchical spatial reasoning becomes clear and a
formalization of the informal definition for hierarchical spatial reasoning given above
emerges. The question remains what conditions a problem or an algorithm must fulfil
so that hierarchical processing is possible. Minimally, a method to assess the quality of
the computed result is necessary, but possibly other conditions, e.g., order
decomposability (Overmars 1983), must hold.

A special case can be identified: hierarchical spatial reasoning is more efficient if it
is incremental, i.e. if the computation of each successive approximation uses the values
computed for the previous approximation. A transformation of quadtrees to an
‘incremental quadtree’ is shown and demonstrated how it makes computation more
efficient. The same ‘breadth first’ transformation can be applied to other hierarchical
data structures. It remains to be seen for which class of algorithms 1) incremental
computations are possible and when 2) error bounds can be computed for each
incremental approximation. The framework developed here allows such an analysis.

The connection between hierarchical spatial reasoning and approximations and
errors - another key research field today (Burrough and Frank 1996; Goodchild and
Gopal 1989) - appears to be closer than expected. There are also connections to
fractals, but these are not explored here.

This paper is structured as follows: the next section shows how common-sense
spatial reasoning is widely used and is crucial for our understanding of space as a
container. The following section introduces the two simple spatial reasoning tasks
which are used as an example and gives the solution for a regular raster. The same
tasks are then applied to quadtrees, which provides the contrasting case of a non-
hierarchical algorithm applied to a hierarchical data structure. Section 5 transforms the
same tasks to a hierarchical processing and generalizes to a definition of spatial
reasoning. The simple case demonstrates the interaction between data structure and
reasoning method clearly. It points to an improved incremental formulation.
Incremental spatial reasoning with the corresponding incremental hierarchical data
structures makes computation more efficient. Using a ‘breadth first’ transformation,
incremental data structures can be constructed from regular ones. An incremental
quadtree is given as an example. The paper concludes with a list of questions to
investigate the limitations of this framework and which spatial reasoning tasks can be
‘hierarchized’
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2 Common Sense Hierarchical Spatial Reasoning
Humans reason about space and spatial properties, often using hierarchical reasoning
structures. Observations of human reasoning suggest the two princips of hierarchical
spatial reasoning as presented above:

• the need for abstraction to reduce the level of complexity, and
• the conceptualization of space as containers.

An additional principle, the hierarchical organisation of processes which are
modelled to operate at different levels of resolution and interact in a hierarchical
fashion, appears as a more complex extension of the methods presented here and
should be treated in a separate paper.

2.1 Humans Use Hierarchical Reasoning in Spatial Situations
Humans apply hierarchical concepts to spatial situations very often. Space as a
container (the in/out image schema of Lakoff (Lakoff and Johnson 1980)) is one of the
most often used conceptual schemas. Containers lead to an inclusion relation, which is
transitive and therefore gives rise to a hierarchy of inclusions. Human reasoning often
uses this simple ‘hierarchical transitivity’:

• If an apple is in the fridge and the fridge is in the kitchen, then the apple is in the
kitchen;

but also:

• if the apple is not in the kitchen, and the fridge is in the kitchen, then it is not in
the fridge.

A very strong evidence of hierarchical effects in spatial reasoning is the
observation that humans use this hierarchical reasoning based on spatial containers,
even when not appropriate (Figure 1) (Stevens and Coupe 1978).

A

B

A County

B County

Reno

San Diego

NevadaCalifornia

Figure 1 - For correct and error reasoning (according to (Stevens and Coupe 1978))

1) A in A County
2) B in B County
3) A County North of B County

->  A North of B

1) San Diego in California
2) Reno in Nevada
3) Nevada East of California
->?? Reno East of San Diego

2.2 Hierarchies Are Crucial for Spatial Reasoning
Space is continuous in two dimensions and can be observed from many different points
of view and at different resolution. The same objects can be represented differently,
depending on the purpose, indicating the point of view to take and the level of detail to
be included. This is generally called ‘multiple-representation’ of spatial objects
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(Buttenfield 1993; Buttenfield and Delotto 1989; NCGIA 1989; Timpf to appear). The
representation of a spatial object at different levels of resolution leads to hierarchical
representation: more and more details are included as one descends the hierarchy.

Spatial reasoning - here defined as any inference process with spatial properties -
uses the level of detail appropriate for the task. This is an economic principle: a task is
solved with the least amount of effort. Effort is reduced by selecting a level of detail
which is sufficient for the task, but not finer. Working through more details does not
contribute to the solution comparable with the cost of the additional computation:
computing better solutions costs increasingly more, but contributes decreasingly to the
solution.

This hierarchical reasoning works, because the interactions of processes are
clustered around some typical level of detail: the size of everyday small objects and
buildings are two typical levels of detail, where many interactions occur. For each task
an appropriate level of detail is known from experience (Fraser 1981). Informally, one
can observe many examples of this general behavior in everyday situations: while
driving a car, one does not worry about its parts; while planning a building subdivision,
the plants in the future gardens are not considered.

Brief, spatial reasoning is infinitely complex, because the spatial world is infinitely
complex. Hierarchical structuring of this complexity is crucial to reduce the spatial
reasoning tasks to manageable levels. Hierarchical spatial reasoning can be generalized
and applied metaphorically to non-spatial situations, provided they fulfil the necessary
conditions that the rules are applicable.

3 Example Tasks and their Formalisation
Two simple tasks, one a spatial calculation, the other a test for a spatial relation, are
applied to regions represented in a regular tessellation (raster). The tasks are well
understood, and algorithms for the selected representations are well known. They lend
themselves to a ‘natural’ form of hierarchical structuring, using quadtrees efficiently.
These tasks are also simple enough to be formally described in the space allocated for a
paper, here in the functional language Haskell (Hudak et al. 1992)(exactly the Gofer
implementation of it (Jones 1991; Jones 1994)). The use of this functional language,
which allows second order functions (i.e. functions which have functions as
arguments), permits the separation of operations on the representation of spatial
objects (resels) and on the data structure (quadtree). The two operations ‘intersect’
and ‘area’ are organised in two classes (Regions and Areas):

class Bools b => Regions a b where
intersect ::  a -> a -> b

class (ZeroOne i, Num i) => Areas a i where
area :: a -> i

3.1 Representation of Regions
A sharply delimited area is given as an array of resels (resolution elements (Tobler
1995)). The resels have two values: inside or outside the region, coded as I or O.

data Pixel2 = I2 | O2

3.2 Area as a Count of Black Resels
The standard method for computing the area in an array is to count the inside resels. A
count operation working on a single resel (defined in the first instance) is sequentially
applied to all resels in the array (in the second instance). This code is fully general and
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will work for arbitrary data structures, provided the generalized folding operation gfoldr

is defined.
instance Num1 i => Areas Pixel2 i where
   area I2 =  one1

area O2 =  zero1
instance (Folds f, Areas a i) => Areas (f a) i where

area a = gfoldr ((+).area) zero1 a

3.3 Intersection Operation
Two regions are intersecting if there is any resel inside both of them. For this we have
to check for each corresponding pair of resels if we find a combination of two values,
i.e. two resels in both (all other combinations yield False); mathematically, we observe
that spatial ‘intersect’ and Boolean ‘and’ form the same algebra1.

instance Regions Pixel2 Bool where
    intersect I2 I2 = True
    intersect _ _ = False

The test is then sequentially applied to all resels in the two arrays and the result
combined with logical ‘or’ (for the test if ‘any’ resel is inside); this is coded generally
for all data structures provided the logical folding operation ‘any’ (here g2any) is
defined.

instance (Fold2s f, Regions a b) => Regions (f a) b where
intersect a b = g2any intersect a b

footnote:

4 Quadtree Computation
Representing regions in an array fills much storage space and leads to slow processing,
due to a large number of resels, which must be inspected. The effort for the
computation is linear in the number of resels and therefore in the size of the array,
independent of how much of the space is filled with objects of interest, how much is
background etc.

Spatial data show much spatial correlation. An encoding where large areas with
the same value are grouped together and encoded with a single value is therefore more
efficient, for example run length encoding or quadtrees. It results in a much more
compact representation and speeds up processing at the same time. The improvement
is achieved with the small investment of initially building the data structure.

4.1 Definition of Quadtree
There are many different variants of quadtrees known (Samet 1989b), all based on the
same principle of a 4-way branching tree data structure. Recursively, a quadtree is
either a leaf (QV) or it is a tree with four quadtrees:

data Quad2 p = Q2 (Quad2 p)(Quad2 p)(Quad2 p)(Quad2 p) | QV2 p

4.2 Spatial Interpretation of Quadtrees
It is customary to interpret a quadtree structure as a representation of space, in which
the leaf nodes are resels in a square array (Figure 2). Resels of higher level represent

                                                  
1 In functional languages the arguments to which a function is applied
follow the function name and are not enclosed in parentheses, f(x) is
written as f x. Parentheses are only used to group expressions. The two
higher order functions gfoldr and g2any apply the function passed as a
second argument to all elements in the data structure and combine the
results. Areas are summed up with (+); (.) combines  two functions, g2any
tests if any value is true.
The code given here is simplified and leaves out some technical detail,
running code can be obtained by ftp from the www homepage of the author
(http://www.geoinfo.tuwien.ac.at.)
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four times the area of the resel one level lower. The values of the resels are the color of
the area, but other properties of the area can be represented as well.

Figure 2 - Example of a quadtree

To keep the code simple, the size of the resel is included with each leaf of the
quadtree; this can be left out in optimized code.

data QuadLeaf p  = QL Int p    -- the leaf size and the resel value

4.3 Area Count and Intersection Test in a Quadtree
Code to compute the area of such a leaf and the intersection of two leaves uses the
corresponding operations for the resels and corrects for the size of the area.

instance (Num1 i, Areas p i) => Areas (QuadLeaf p) i where
    area (QL i p) = smult  (2^(i-1)) (area p)
instance (Regions p b, Num1 b) => Regions (QuadLeaf p) b where
    intersect (QL i p) (QL j q) = if (intersect i j) then …

These operations are ‘spread’ over the quadtree with the higher order functions gfoldr
and g2any as given above. These functions require the definition of a map and a fold
operation on the quadtree.

4.4 Quadtree as More Efficient Resel Arrays
Quadtrees are an effective method to represent areal data, and a number of specialized
data structures and algorithms are known. For operations, quadtrees have the
conceptual simplicity of arrays of resels, but allow more efficient processing. In
general, the processing time of spatial algorithms which are based on comparison of
resels (e.g. most operations from the map algebra (Tomlin 1983b; Tomlin 1989):
intersection, union of areas, reclassification etc.), have a processing time, which is
linear in the number of resels to be compared. As a quadtree has much less quad resels,
processing is faster. The number of resels in a quadtree of fixed resolution is O(l)
(Samet 1989a, p. 6), where l is the length of the boundary of the region, and thus most
algorithms are also linear in the length of the boundary (and not in the area of the
regions).

4.5 Invariance of Operations Under the Transformation Between Array
and Quadtree Representation
It is obvious that the result from the operations must be the same independent of the
representation selected, thus the area calculation or the intersection test yield the same
result, if applied to an array or a quadtree representation. The performance of the
computation may be faster with the quadtree. It always computes a result which is
completely accurate, and inspects therefore all details where there are such.

This invariance can be used to test the algorithms, but it is also possible to show in
the abstract that the conversion from array to quadtree (or the reverse) does not affect
the result. In terms of category theory, the following diagram commutes (Figure 3):
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Array to Quad

conversion

Size Size

int

Array to Quad

conversion

Array
Rep.

Quadtree
Rep.

a b a’ b’

intersect a b (intersect a’ b’)

Figure 3 - Commutative diagram for size and intersection

This can be demonstrated inspecting the code.

5 The Essence of Hierarchical Reasoning
Hierarchical reasoning is based on the economic principle to use the least detailed
representation to answer a question. Assuming that all data are inherently somewhat
imprecise, and most tasks need only answers which are good enough for the decision
at hand, it is sufficient to compute a result which is sufficiently precise. Computing
more detail is a waste as it does not contribute to the solution.

Human behaviour follows nearly always this pattern and deviations are ridiculed:
the engineer, who computes the diameter of a pencil to 15 places after the decimal
point; the accountant, who declares the gross income of a company as
$13’435’342’677.42 etc. all demonstrate some basic incomprehension of the limits to
measurements of real world objects. The lay person marvels at the precise
measurements possible today, when the length of the year can be determined down to
very small fractions of a second, or the distance from Europe to the USA measured
with an accuracy better than one centimeter. Standard measurement practice by lay
persons seems to yield 1/1000, professionals achieve 1 ppm and specialists can push
precision even further (to 10**-12).

Hierarchical reasoning is based on data structures which represent the objects of
interest with an appropriate margin of error and level of detail commensurate with it.
For figures, one expects a small number of significant digits (4 to 6): the number of
inhabitants of a small town is given (and accepted) as 221, but everybody knows that
the population figures for a nation (e.g., the result of the US census) have a margin of
error. Therefore, multiple representations of objects at different levels of resolution and
- implied - with different error margins are constructed and used.
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Information is needed to make decisions. Human spatial reasoning deduces a result
from a given information and implicitly assesses the quality of this result. If the quality
of the result is sufficient that the decision can be taken with acceptable risk, then there
is no need to collect more detailed information and to deduce a better result.

5.1 Array Representation
From a given array of resels at maximal resolution a sequence of coarser
representations are constructed by grouping together four resels and giving them a new
value: ‘inside’ if all four smaller resels are inside, ‘outside’ if they are all outside. For
the mixed case, we can either employ a majority rule (3 resels inside give ‘inside’ for
the aggregate, 3 resels outside give ‘outside’ for the aggregate), but to decide on the
split case (2 inside, 2 outside) is difficult. Any decision will bias the result one way or
the other.

The solution selected here is an ‘all’ rule: only all inside or all outside cases are
recorded as inside or outside in the coarser representation and all mixed cases marked
as such. Resels can then have 3 values, inside, outside or mixed (Figure 4).

data Pixel3 = I3 | O3 | M3

W W W W

M M W B B W

W B W W B B

W W B B

Figure 4 - Three levels of aggregation of resel array

5.2 Hierarchical Computation of Area and Intersection
The computation for the area and the intersection values in a hierarchical algorithm
must include the computation for the error bounds. A general type of value with error
pair is introduced. The quality of the result is here - for simplification - represented
with the area of uncertainty, i.e. the area which might possibly add to the area count
already fixed, or the area of uncertainty in which an intersection could possibly happen.

data VE v e = VE v e

For these ‘values with errors’ the standard operations (+) or ‘and’ and ‘or’ must
be defined, carrying forward the errors (in defining the operations, care must be taken
to assure that commutativity, associativity etc. of these operations is preserved)2.

                                                  
2 instance Num v => Num (VE v Int) where

(VE v1 e1) + (VE v2 e2) = VE (v1 + v2) (e1 + e2)
instance (ZeroOne (VE v Int), Bools v) => Bools (VE v Int) where

(VE v1 e1) &&& (VE v2 e2) = VE (v1 &&& v2) (max e1 e2)
(VE v1 e1) ||| (VE v2 e2) = VE (v1 ||| v2) (max e1 e2)
not1 (VE v1 e1) = VE (not1 v1) e1

M



 Hierarchical Spatial Reasoning 10

5.2.1 Area Computation
The computations for area and intersection are mapped back to the corresponding
computations for the pixels with 2 values:

instance Areas Pixel3 (VE Int Int) where
    area M3 = VE 0 1 -– a mixed resel contributes only to the error
    area p =  VE (area p) 0 -- a black or white resel contributes
nothing to the error

5.2.2 Intersection Computation
The intersection operations can also be performed on coarser representations. If the
two regions are not intersecting on the coarser representation, they are also not
intersecting on the finer one. There are, however, cases where we cannot decide if two
resels intersect on the coarser level; this is the case for all combinations with a mixed
resel. The computation of the intersection therefore yields three values: true and false
(for computations with resels with values of inside or outside) or maybe (if one of the
two resels is a mixed case); the three-valued logic proposed by Lukasiewicz is
applicable (Sinowjew 1968) with the logical operators as given in Figure 5. The error
bound on the result is computed as the maximal area where an overlap could occur.

instance Regions Pixel3 (VE Bool3 Int) where
    intersect a b = VE v (if v==Maybe then 1 else 0)
            where v = (intersect a b)

When the test for intersection, defined for the combination of two resels, is spread over
the tree, the partial results must be connected logically. The interpretation is:

• if there is any certain overlap, the intersection test yields true;
• if there is no certain overlap, but any maybe value, the intersection test yields

maybe (the number of maybe resels gives a bound for the error);
• if all resels are ‘no overlap’, the intersection test yields false.

A B A and B A or B

T T T T

T M M T

T F F T

M T M T

M M M M

M F F M

F T F T

F M F M

F F F F

A not A
T F
M M
F T

Figure 5 - Truth tables for ‘and’, ‘or’ and ‘not’ in the three-valued logic of Lukasiewicz
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5.3 Quadtrees for Hierarchical Reasoning

Quadtrees are efficient hierarchical data structure to replace resel arrays. Standard
quadtree processing is more efficient as it exploits spatial autocorrelation and
computes always correct results. Hierarchical reasoning computes results with error
assessments and stops processing when an acceptable result is achieved. A quadtree
must be inspected only as deep as the contribution of the details is necessary to get a
sufficiently precise result. Conceptually, one can imagine that the quadtree leaves are
cut away at the level of detail which is of no further interest (Figure 6):

W B

M

BBWW WW W W W

M M

Figure 6 - Quadtree cut at levels

This can be seen as a ‘coarsening’ operation on the quad resels, which is replacing
inner nodes at the ‘cut-off’ level with leaves of value M (Samet 1989a, p. 326 with
additional references). Then area size and intersection operations are performed on this
coarser quadtree. The coarsening of the quadtree and performing the operation could
be integrated in a single operation, but this is a technical detail of optimisation.

6 Definition of Spatial Hierarchical Reasoning
Spatial hierarchical reasoning assumes that the given values have a certain error and
that results need only to be computed at a level of certainty appropriate for the task at
hand. Both are often only implied assumptions and need to be made explicit for the
formulation of hierarchical reasoning algorithms. The estimate of the error in the values
given is associated with the coarseness level of their representation (e.g., how many
digital places given), but must be introduced quantitatively. Similarly, the tolerated
error in the result must be given in the same measurements. Here it is assumed to be
directly related to the spatial resolution of the resels.
To apply spatial hierarchical reasoning, the following is necessary:

• an algorithm f to work on a representation of the facts at a given level of detail
(in our case a resel array of a given resolution) producing a value v ;

• an algorithm f’ to work on the representation ri  and producing an estimate of
the error ei  on the result of applying f to the representation ri , yielding vi

(above we have merged f and f’ in single computations for area (with area
uncertainty) and intersection (with intersection uncertainty));

• a filter c to produce a sequence of representations ri , such that ri−1  is coarser
than ri  (observe the ordering of the representations, which proceeds from the
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coarsest to the finest: r0  is the coarsest representation, ri  is the finest; therefore
r c ri i− =1 ( ) ).

The computation at one level of detail must yield a result, which is compatible with the
result of the next level with more detail and, by transitive extension, eventually
compatible with the true result. The approximations must monotonically improve
towards the correct result. This imposes a number of conditions on the coarsening
operation and the spatial reasoning operation.

6.1 Formal Conditions

Given a sequence of representations of the same situation with increasingly more
detail:

r r r ri m1 2, � �

where r1  is the coarsest and rm  is the most detailed representation. The coarsening
operation c produces ri−1  from ri :

r c ri i− =1 ( )

The operation of interest f applied to each element of this sequence of ri  produces
a sequence of values vi  and with the corresponding error estimation function f’ a
sequence of error estimates ei .

v v v with v f rm i1 2 1, ( )� =

e e e with e f rm i i1 2, ( )� = ′

6.1.1 Conversion Towards Correct Result
The computations must converge towards the correct result. This requires that the
error bounds get more and more restraining. This means that the sequence e e em1 2, �

must monotonically decrease, i.e.e ei i≥ +1 .

This gives the condition

′ ≥ ′f c r f ri i( ( )) ( )

for the functions f’ and the coarsening function c (because e f ri = ′ and
e f r f c ri i i+ += ′ = ′1 1( ) ( ( )) ).

This is the case for the coarsening function on arrays and the computation of error
bounds as the sum of the ‘mixed’ pixels: the coarsening operation produces a larger
and larger area of mixed pixels (if one of the four pixels is mixed, the result of the
coarsening is mixed).

6.1.2 Non-Contradiction of More Detailed Values
The value reported by the calculation with a more detailed representation must not
contradict the value achieved with a less detailed representation. For Boolean values
resulting from the intersection calculation, once a value of True or False is achieved,
all computations with more detail must produce the same value. Only for a value of
vi = Maybe, the value vi+1  can be either True or False.

For the calculation of area, the value ei is the sum of the inside pixels, the value
vi is the sum of the mixed pixels. The total area can vary between vi and v ei i+ . The
interval resulting from a more detailed computation with representation rj (with j i> )
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[ v v ej j j, + ] must be inside the interval resulting from the detail level ri , which is

[ v v ei i i, + ]. Simple computations give the conditions for the operations.

6.1.3 Termination
The computation of the values in the sequence progresses till a value vi is found, for
which the error bound ei is smaller than the error which can be tolerated for the
decision to be made. No further computation is necessary. The sequence of error
values must monotonically decrease and reach ultimately 0.

This is efficient as it excludes all computations with detail which are not
significantly contributing to the solution of the problem.

7 Optimization: Incremental Spatial Reasoning
Spatial reasoning as broadly defined above is computing the value for each
representation from scratch, repeating for all areas where there is no additional detail,
the same calculation for each level, achieving the same results. This is clearly inefficient
and can be improved using an incremental approach: instead of recomputing the value
for the representation ri from scratch, the value obtained from ri−1 is used and only the

increments Δ vi  and Δ ei  are computed and added to vi−1  and ei−1 .

W B

M

BBWW WW W W W

M M

Figure 7 - Incremental processing: arrows mark the flow of computation

To compute the increment, only areas which have details must be inspected; in the
representation used here, only mixed resels must be visited. Calculating the area, only
these add to the area count and decrease the error level. When calculating the
intersection and the overall result is maybe, only resels which yielded maybe must be
inspected on the more detailed level to see if a true or false result can be obtained.

The same incremental concept is applied to the data structure resulting in
hierarchical incremental data structures, where a finer level of detail contains only the
increment in detail and does not repeat the representation of the areas, where the
coarser and finer representation agree. Such data structures have, in the best case, the
same size as non-hierarchical ones and give all the advantages of multiple-
representations. An incremental variant of a quadtree will serve as an example.

7.1 Incremental Hierarchical Reasoning
Incremental hierarchical spatial reasoning is a special case of hierarchical spatial
reasoning. It requires that the coarsening filter does not construct a series of
increasingly detailed structures r rm1�

, but a sequence of increments, such that i r1 1=
and r r ij j j= +−1 .
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The algorithm f and f’ for spatial reasoning are transformed to work on the i1  and

produce Δ vi  and Δ ei , such that

v v vj j j= +−1 Δ

with v f ij j= ( ) ,  and

e e ej j j= +−1 Δ

with Δ e f ij j= ′( ) .

7.2 Incremental Quadtree
Quadtrees are pointer structures and are most efficiently searched ‘depth first’. For an
incremental algorithm, we need a ‘breadth first’ search. This is effectively searching the
quadtree with detail level 0 and then process the additional nodes that needed
expansion to get to the next more detailed representation level by level.

A regular quadtree can be transformed into a structure which gives the nodes for
each level (in left to right order) - this is the result of single breadth first traversal (and
can be done in linear time in the number of nodes). The incremental quadtree can be
represented as a list of levels, each level as a list of the nodes (coded as above as I, O
or M). This transformation can be reversed, as all details are preserved (the
transformation is lossless). The number of nodes remains the same and storage is very
compact as no pointers are stored (this is closely related to the linearized, pointerless
quadtree (Samet 1989a, p. 55) resulting from a depth-first traversal).

Applying the size or intersection test to each level gives the increment this level
contributes to the improvement. If we sum up these increments till we reach the
desired level of quality in the result (i.e. an error smaller than acceptable), the desired
efficient computation is achieved. The amount of computation is exactly the same as in
a regular quadtree for the same depth of detail. With the regular quadtree algorithm the
processing would not have progressed in increasing the level of detail and stopped,
when a sufficient result achieved. It would have proceeded till all details are inspected
to produce the unnecessary precise result.

8 Open Questions
The major open problem is to find general rules to decide which spatial objects and
operations can be brought into this framework. How does it apply to linear or point
features? How does it extend to representations with irregular tesselations (vector data
model)?

8.1 Hierarchical Map Algebra
A large part of areal spatial reasoning is included in the concept of the map algebra. It
is the logical framework for many of the widely available GIS software systems. In
principle, all these operations can be brought into the framework of hierarchical spatial
reasoning, because any operation can be applied to the representation expanded as an
array of resels (of the given level). It can be expected, that more efficient solutions are
possible, using the results from research in efficient algorithm in quadtrees (Mark and
Lauzon 1985).
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The difficult task is to determine the corresponding functions to compute errors
for spatial analysis functions. This is a generally useful exercise, which yields insight
into the tasks and analytical functions.

8.2 Hierarchical Reasoning on Irregular Tesselations
The discussion here was motivated by the quadtree organization of a regular
tessellation (raster). Much effort has been invested in irregular tesselations, as they
represent an irregular situation with more resolution and less storage cost. Efforts to
construct hierarchies of irregular tesselations have been started (Bruegger and
Egenhofer 1989; Bruegger and Frank 1990; De Floriani and Puppo 1992; Puppo and
Dettori 1995).

The logical framework presented here does not depend on the type of spatial
subdivision, and works equally with irregular tessellations if they form an inclusion
hierarchy, even if there is an irregular fan out.

8.3 Hierarchical Reasoning for Line-or Point-based Spatial Problems
Car has studied hierarchical reasoning for a hierarchically structured network and used
the shortest path problem (Car to appear). Her definition of a hierarchical reasoning
process is very similar, but in the framework of point- and line-based objects (Car
1996).

For point- and line-based spatial problems, the definition above would not
immediately work. The hierarchy of a e.g., road network is not based on the transitive
inclusion hierarchy of (spatial) containers. Depending on the applications, for example,
a hierarchy can be established by defining for each node a series of ‘coarsened nodes’,
such that the coarsened node is the nearest node to a given node on the next upper
level. Then the hierarchical reasoning is applied with a sequence of coarsening of the
start and goal node. It appears that this algorithm can be made incremental, but only as
a heuristic; correct only if some restrictions on the graph are fulfilled.

9 Conclusions
“Hierarchy is fundamental to human cognition” (Langacker 1987, p. 310). Humans
apply hierarchical concepts to spatial situations very often. It is one of the major
conceptual tools to structure the infinite levels of detail in our spatial environment. The
spatial inclusion hierarchy is used to make reasoning more efficient: results are
deduced at the coarsest level of detail to reduce the amount of facts to be considered
and areas, for which it is possible to quickly exclude that they contribute to the
solution, are discarded and not further explored.

Spatial hierarchical reasoning proceeds in steps of increasing resolution and
produces increasingly better approximations to the correct result, till an approximation
is found which is ‘good enough’ to fulfil the requirements of the task at hand. (In real-
time applications, the same method can be used to compute a series of increasingly
better approximations to fulfil stringent requirements on response: it is sometimes
more important to have a first approximation quickly, then to wait till the correct result
becomes available too late. )

Spatial hierarchical reasoning is thus the combination of

• a data structure which provides increasingly more detail and allows to compute
an error bound on the approximation, and
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• an algorithm which computes the desired value and an error bound for it (this is
generally recommended for spatial algorithms, but seldom done for most
computation in a geographic information system, where input data are always
somewhat erroneous).

Quadtrees are a well known, efficient method to support this reasoning approach.
Standard quadtree algorithms produce correct results with minimal effort. We have
shown here, how quadtrees can be used for a hierarchical processing, which stops
when the quality of the result is sufficient for the decision to be made. In spatial
information systems, which cover multiple levels of detail, this can result in large
performance improvements, as processing of a complete level of detail is avoided.

Spatial hierarchical reasoning can be optimized if the data structure and the
algorithm permit incremental processing. Incremental spatial hierarchical reasoning
proceeds to compute a result and then computes a series of increments, which improve
the previous result. This makes computation as efficient as a straightforward approach,
except that it produces intermediate values, which are useful, and can be stopped,
when the desired error bound has been achieved. This can also be used for very
demanding real time application, where improving approximations are computed to
guide reactions to a changing environment.

In this framework, general rules when and how spatial hierarchical reasoning is
possible, were given. For each reasoning task, a computation of error bounds must be
possible. The interaction of the method to deduce the less detailed representation and
the computation of error bounds must correspond, such that

• the computation converges towards the correct result,
• more detailed values do not contradict previously computed values, and
• the computation terminates.

It is expected, that most of the standard spatial operators (e.g., from the map
algebra (Tomlin 1983a; Tomlin 1983b; Tomlin 1989)) can be translated into the
hierarchical reasoning framework and that even incremental algorithms can be found.
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