
Egenhofer, M., and A. U. Frank. "Panda: An
Extensible DBMS Supporting Object-Oriented
Software Techniques." Paper presented at the
GI/SI-Fachtagung, Zürich, March 1989 1989.

Panda: An Extensible DMBS Supporting
Object-Oriented Software Techniques*

Max J. Egenhofer
Andrew U. Frank

National Center for Geographic Information and Analysis
and

Department of Surveying Engineering
University of Maine

Orono, ME 04469, USA
MAX@MECAN1.bitnet

FRANK@MECAN1.bitnet

ABSTRACT. The PANDA database management system was designed for non-
standard applications which deal with spatial data. It supports an object-oriented
program design with modularization, encapsulation, and reusability, and can be
easily embedded into complex applications, such as spatial information systems or
cartographic expert systems. It is presented how complex objects and their
operations are defined. A layered structure on top of the programmer’s interface
provides object operations which include potentially complex consistency
constraints.

1. Introduction

The interface of a non-standard DBMS must fit well into the methods used for the
implementation of the applications; therefore, it is important that database methods and
techniques fit well within a software engineering environment. Software engineering
techniques, such as the concept of abstract data types [Guttag 1977] [Parnas 1978]
[Zilles 1984] and abstract object types [Sernades 1987], in which each module
encapsulates an object type with all its pertinent operations, are commonly used for
applications; however, database management systems do not sufficiently support them.
Their interfaces to programming languages, like Embedded SQL, have demonstrated to
be incompatible with sophisticated software engineering concepts and cumbersome
[Christensen 1987].

This short version of a longer report [Egenhofer 1988b] describes the software
engineering techniques used in PANDA [Frank 1982], an object-oriented database
tailored for applications with spatial data. PANDA is an acronym for Pascal Network
Database Management System. The system was originally designed as a network for
DBMS with object-oriented concepts and enhancements for storage and access of
spatial data and evolved over the years to an object-oriented design. PANDA consists
of about 40,000 lines of program code and has been running several years, primarily

* This work was partially funded by a grant from NSF under No. IST-8609123 and equipment grants

from Digital Equipment Corporation.

 p.2

used for research and teaching in undergraduate and graduate courses. Its development
started at the Swiss Federal Institute for Technology, Zurich, and has been continued at
the University of Maine. Code was transferred between such vastly different hardware
and operating systems as DEC-10 (under TOPS-10), IBM 370 (under VM/CMS), and
VAX/MicroVAX (under VMS).

PANDA’s data model is based upon the basic concepts of abstraction:
classification, generalization, and aggregation [Brodie 1984]. The term object is used
for a single occurrence (instantiation) of data; type, class, or abstract data type, refer to
sorts of objects; superclass describes the grouping of several classes in an is_a relation
(generalization) [Dahl 1966]; and subclass is the specialization of a superclass.
Inheritance defines a superclass in terms of one or more other classes, propagating the
properties of the superclass to all subclasses transitively.

Panda’s DB kernel manages storage and retrieval of data from persistent storage
devices, buffers pages and records to improve performance, provides facilities for
transaction management, incorporates structures for logical access (hashing, B*-trees,
Field Tree for spatial access [Frank 1983]), and provides generic structures for
aggregation and generalization. The kernel is built in a layered and modular structure
so that it can be easily extended by additional parts, e.g., a multi-user facility. The
extensible part of PANDA is the definition of the application-specific classes based on
the definition of value types which can be arbitrarily complex acyclic data types.

The paper starts with a brief discussion of PANDA’s software environment.
Section 3 focuses on PANDA’s object model. The four phases during the definition of
complex classes are presented. In section 4 the implementation of object operations in
layered structure on top of the generic programmer’s interface is presented. The paper
concludes that better object-oriented programming languages can help to implement
object-oriented databases closer to the designed models.

2. Software Engineering Aspects

An abstract data type (ADT) is a mathematical structure which fully defines the
behavior (semantics and operations) of objects. Abstract data types are specified as an
algebra describing what sorts of objects (types) are dealt with, and what kinds of
operations they are subject to. A set of axioms determines the effects of the operations.
Abstract data types can be combined in layers, where higher –level abstract data types
are first described independently (specifications), and it is then shown how this
behavior can be achieved using other, hierarchically lower abstract data types (abstract
implementation [Olthoff 1985] [Frank 1986]).

The software engineering environment of PANDA supports modularization,
encapsulation, reusability, and transportability. Programmers are motivated to write
object-oriented code as the implementation of ADTs in a standardized way such that
other programmers can easily read and correct it. Modularization is achieved by using a
Pascal precompiler [Egenhofer 1988a], which provides types and routines from one
module to another, with type checking across modules. The implementation of
operations is encapsulated into the module. A highly modular programming style
requires that the modules are managed in a controlled library system providing the user
information about existing ADTs, their operations, and their specifications. The
compiler is embedded into a library management system with hierarchical directory
structure where several versions of modules can be kept in parallel. Transportability of

 p.3

code among different Pascal compilers and various hardware is guaranteed by the
precompiler, because only the precompiler itself, not the particular code, must be
adapted to fit specific compiler features.

3. Object Definition

An object-oriented data model gives rise to the formation of arbitrarily complex classes,
the majority of which is composed of a (limited) number of lower structured parts, here
called components. The same components occur repeatedly as part of various classes,
and it is more economical to define and reuse components, instead of defining
redundantly a multitude of very similar classes. Though this may resemble a traditional
entity-attribute type of concept, it is only the object-oriented implementation of several
classes with the same components which are defined only once and reused in every
class they are part of. The decomposition of objects into components releases the
application designer from redundant definitions of specific object operations for the
structures. Considerable overhead is removed by defining the operations for the value
types and applying them for classes. Users are not aware of this decomposition because
they see only objects and operations upon them.

PANDA’s object definition consisting of value, classes, and a generalized
objectType adopts the modular concept and fits well into the layered architecture. An
application model is defined in standardized operations that are easily integrated into
the kernel. The operations are implemented as short Pascal routines which are executed
during PANDA’s startup. This approach releases the database administrator from
recompiling the entire DBMS code; instead, only the initialization modules for each
class and an interface module must be compiled, and (shareable) images linked. A
systematic implementation with strict naming conventions allows the generation of
code for these modules. Currently, code is generated partially from definitions in a text
file; a more user friendly generation immediately from a graphical schema design is
being investigated. The four phases of the object definition are distinguished.

3.1. Phase 1: Declaration of User Terms

The kernel was originally initiated with templates for the names of the classes,
components, links, and paths. These templates must be replaced with the particular
names used in the schema design of the application.

3.2. Phase 2: Definition of Value Types

A value type is the Pascal implementation of an abstract data type in a single
programming unit, consisting of a type definition and a set of pertinent operations, and
serves as class component. The type definition can be any simple data type, such as
integer, string, real, etc., or any structured type, such as array or record, except types
for dynamically allocated variables, such as pointers1. Value types can be built upon
other value types by using their definitions and methods. Due to restrictions of current
compilers, only acyclic combinations of value types are permitted.

1 This limitation is with respect to the intended persistency of objects.

 p.4

Each value type must provide a set of fundamental operations necessary for
indexing and hashing structures of objects. For example, hashing requires a function
that calculates a hash value, and an operation that compares two values for equality.
The implementation of these operations depends upon the structure and the semantics
of the class. Unlike traditional databases that support only a limited, hard coded set of
types, PANDA is extensible. This implies that the operations for the supporting
structures are not predefined and must be provided by the application designer.

3.3. Phase 3: Composition of Classes

The properties of a class are determined by its own components and the components
transitively inherited from its superclasses. Details about the implementation of a class
are hidden, such that modules outside of the class definition are not aware of the
decomposition into object components. Class components are implemented as Pascal
records. Inheritance is simulated with the help of variant records, which is necessary
due to the lacking support of inheritance in Pascal.

These type definitions are not yet sufficient for the object definition. Programming
languages of the FORTRAN/Algol type separate compilation and execution of code
into two phases which provide different levels of information. During compilation,
variables and types are named, and types may be composed from other types. During
executing, the names and the relation between a variable and its type is not accessible
by the user code. Likewise, it is not possible to find out whether a type is part of
another structured type.

In order to provide the compile time knowledge also during execution, the
relations between each class must be defined explicitly as programming code. PANDA
has the database administrator write these standardized routine which will be executed
by the kernel during startup, initializing the user’s model. For each class, the
composition of the type and the corresponding ini-routine are combined in a separate
module.

3.4. Phase 4: Definition of Database Objects

All classes are specializations of the most general superclass objectType from which all
pertinent DB-operations are inherited. The objectType is implemented as a Pascal
record with varying parts for each specific class. It combines all specific classes into a
single, compatible type to which common (system) components, such as tuple
identifiers and aggregate pointers, are added.

4. A Layered Structure of Object Operations

The object-oriented approach requires the definition of complex objects and their
pertinent operations. While the knowledge about the composition of complex classes is
essential to the database kernel, the object operations are the application programmer’s
tools to manipulate objects. The programmer’s interface of the DBMS kernel is a
collection of object-oriented manipulation and retrieval operations which can be called
from the application programs. These operations are defined for the generalized
objectType, and are compatible with any class. Conceptually, all database operations,
such as store, delete, and update, are inherited to each class of the schema. Their

 p.5

implementation on top of the programmer’s interface is a layered structure of model-
specific object operations. This is the location to implement consistency checks. A
layered structure of object operations has been developed which is generally applicable
for any object-oriented application. Based upon the fundamental object operations,
more complex operations can be defined. By restricting the operations to a single task,
the code for the routines stays small and correctness can be verified more easily.

The structure of these operations is the same for every application: First, the
operations are defined to make s specific object, and to assign values to and access
them from an object. Then, unary object operations for storing, modifying, deleting,
and accessing individual objects are defined based upon the generic DB-operations
offered in the programmer’s interface. Another layer treats all binary operations
manipulating aggregates. These operations are exploited in the next layer to form
complex object operations, including complex consistency constraints.

4.1. Level 1: Make, Get, and Put Operations

The first layer is a collection of modules with the basic operations to manipulate the
individual description of a single object: creating an instance (make), assigning values
to (put), and extracting values from an instance (get). These operations hide the
implementation of the classes from the user, preventing uncontrolled access. Since the
properties of a superclass are propagated to all subclasses, get and put operations are
compatible with objects of the subclasses as well.

For each class a separate module contains these operations. Their implementation
is trivial, and the code can be generated with the knowledge of the object description.
Simple consistency constraints, such as checking whether a value lies within a range,
can be added to the put operations.

4.2. Level 2: Unary Object Operation

The second layer covers all database operations to store, update, and access a single
object which are inherited from the common superclass objectType. The
implementation of these operations is straightforward because the generic object
operations are part of the programmer’s interface and can be immediately applied to
each object class. Depending on the definition of the class, different access methods are
supported, such as access with a key value and spatial access. For each class, a separate
module with the specific object operations is implemented.

4.3. Level 3: Binary Object Operations

The third layer comprises aggregate operations that always involve two objects.
Standard operations are the addition of a part to an aggregate, the removal of a part
from an aggregate, cancellation of an entire aggregate, and the access of parts of an
aggregate. The operations which establish links among objects require that the
corresponding objects have been loaded into the database before. Reversely, remove
and cancel dissolve the links without deleting the previously linked objects from the
database. For each aggregation, a separate module with the aggregate operations is
implemented.

Three types of access operations for aggregates are distinguished: (1) iterating over
all aggregate components, similar to a FOR EACH loop in CLU [Liskov 1981], (2)

 p.6

getting a specific aggregate component with a certain value, and (3) getting the
composite object part of an aggregate. The second access method is only efficiently
supported if a sorted access path was defined.

4.4. Level 4+: Complex Object Operations

The fourth and later layers combine operations of the lower levels to form more
complex operations. The level structure is open and can be extended according to the
complexity of the application. Entire applications have been written in this highly
structured form. The advantage of the object layers is that very complex operations can
be implemented by combining other object operations. Following the rule that no
object operation may use other operations of higher level, a well-structured application
package can be designed.

5. Conclusion

The close relation between the implementation of object-oriented databases and object-
oriented software techniques has been explained. For an object-oriented database it is
of vital interest to tie into the software environment of the application. PANDA’s
object-oriented programmer’s interface facilitates applications on top which conform
with an object-oriented design.

With the growing complexity of the application the layered structure of complex
object operations can be extended beyond the four basic layers introduced. The
embedding of consistency constraints into these object operations is a natural and
object-oriented way, starting with very general operations, and constraining them more
and more.

Conventional programming languages do not easily support the implementation of
object-oriented databases and often, methods must be simulated to match the model.
Using a language that supports multiple inheritance, clearer designs and more
condensed implementations become possible.

References

[Brodie 1984] M.L. Brodie. On the Development of Data Models. In: M.L. Brodie et al., editors, On
Conceptual Modelling, Springer Verlag, New York (NY), 1984.

[Christensen 1987] A. Christensen and T.U. Zahle. A Comparison of Self-Contained and Embedded
Database Lagnguages. In P. Stocker and W. Kent, editors, Proceedings 13th VLDB Conference,
Brighton, England, September 1987.

[Dahl 1966] O.-J. Dahl and K. Nygaard. SIMULA—An Algol-based Simulation Language. Communications
of the ACM, 9(9), September 1966.

[Egenhofer 1988a] M. Egenhofer and A. Frank. A Precompiler For Modular, Transportable Pascal,
SIGPLAN Notices, 23(3), March 1988.

[Egenhofer 1988b] M. Egenhofer and A. Frank. Object-Oriented Software Techniques in PANDA. Technical
Report 96, Surveying Engineering Program, University of Maine, Orono (ME), December 1988.

[Frank 1982] A. Frank. PANDA—A Pascal Network Database System. In: G.W. Gorsline, editor,
Proceedings of the fifth Symposium on Small Systems, Colorado Springs (CO), 1982.

[Frank 1983] A. Frank. Problems of Realizing LIS: Storage Methods for Space Related Data: The Field Tree.
Technical Report 71, Institute for Geodesy and Photogrammetry, Swiss Federal Institute of Technology
(EHT), Zurich, Switzerland, 1983.

 p.7

[Frank 1986] A. Frank and W. Kuhn. Cell Graph: A Provable Correct Method for the Storage of Geometry.
In: D. Marble, editor, Second International Symposium on Spatial Data Handling. Seattle (WA), 1986.

[Guttag 1977] J. Guttag. Abstract Data Types and the Development of Data Structures. Communications of
the ACM, June 1977.

[Liskov 1981] B. Liskov et al. CLU Reference. Lecture Notes in Computer Science, Springer Verlag, New
York (NY), 1981.

[Olthoff 1985] W. Olthoff. An Overview on ModPascal. SIGPLAN Notices, 20(10), October 1985.
[Parnas 1978] D.L. Parnas and J.E. Share. Language Facilities for Supporting the Use of Data Abstraction in

the Development of Software Systems. Technical Report, Naval Research Laboratory, Washington
(DC), 1978.

[Sernades 1987] A. Sernades et al. Object-Oriented Specification on Databases: An Algebraic Approach. In:
P. Stocker and W. Kent, editors, Proceedings 13th VLDB Conference, Brighton England, September
1987.

[Zilles 1984] S.N. Zilles. Types, Algebras, and Modelling. In: M.L. Brodie et al., editors, On Conceptual
Modelling, Springer Verlag, New York (NY), 1984.

