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ABSTRACT. The PANDA database management system was designed for non-
standard applications which deal with spatial data. It supports an object-oriented 
program design with modularization, encapsulation, and reusability, and can be 
easily embedded into complex applications, such as spatial information systems or 
cartographic expert systems. It is presented how complex objects and their 
operations are defined. A layered  structure on top of the programmer’s interface 
provides object operations which include potentially complex consistency 
constraints. 

1. Introduction 

The interface of a non-standard DBMS must fit well into the methods used for the 
implementation of the applications; therefore, it is important that database methods and 
techniques fit well within a software engineering environment. Software engineering 
techniques, such as the concept of abstract data types [Guttag 1977] [Parnas 1978] 
[Zilles 1984] and abstract object types [Sernades 1987], in which each module 
encapsulates an object type with all its pertinent operations, are commonly used for 
applications; however, database management systems do not sufficiently support them. 
Their interfaces to programming languages, like Embedded SQL, have demonstrated to 
be incompatible with sophisticated software engineering concepts and cumbersome 
[Christensen 1987]. 

This short version of a longer report [Egenhofer 1988b] describes the software 
engineering techniques used in PANDA [Frank 1982], an object-oriented database 
tailored for applications with spatial data. PANDA is an acronym for Pascal Network 
Database Management System. The system was originally designed as a network for 
DBMS with object-oriented concepts and enhancements for storage and access of 
spatial data and evolved over the years to an object-oriented design. PANDA consists 
of about 40,000 lines of program code and has been running several years, primarily 
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used for research and teaching in undergraduate and graduate courses. Its development 
started at the Swiss Federal Institute for Technology, Zurich, and has been continued at 
the University of Maine. Code was transferred between such vastly different hardware 
and operating systems as DEC-10 (under TOPS-10), IBM 370 (under VM/CMS), and 
VAX/MicroVAX (under VMS). 

PANDA’s data model is based upon the basic concepts of abstraction: 
classification, generalization, and aggregation [Brodie 1984]. The term object is used 
for a single occurrence (instantiation) of data; type, class, or abstract data type, refer to 
sorts of objects; superclass describes the grouping of several classes in an is_a relation 
(generalization) [Dahl 1966]; and subclass is the specialization of a superclass. 
Inheritance defines a superclass in terms of one or more other classes, propagating the 
properties of the superclass to all subclasses transitively. 

Panda’s DB kernel manages storage and retrieval of data from persistent storage 
devices, buffers pages and records to improve performance, provides facilities for 
transaction management, incorporates structures for logical access (hashing, B*-trees, 
Field Tree for spatial access [Frank 1983]), and provides generic structures for 
aggregation and generalization. The kernel is built in a layered and modular structure 
so that it can be easily extended by additional parts, e.g., a multi-user facility. The 
extensible part of PANDA is the definition of the application-specific classes based on 
the definition of value types which can be arbitrarily complex acyclic data types. 

The paper starts with a brief discussion of PANDA’s software environment. 
Section 3 focuses on PANDA’s object model. The four phases during the definition of 
complex classes are presented. In section 4 the implementation of object operations in 
layered structure on top of the generic programmer’s interface is presented. The paper 
concludes that better object-oriented programming languages can help to implement 
object-oriented databases closer to the designed models. 

2. Software Engineering Aspects 

An abstract data type (ADT) is a mathematical structure which fully defines the 
behavior (semantics and operations) of objects. Abstract data types are specified as an 
algebra describing what sorts of objects (types) are dealt with, and what kinds of 
operations they are subject to. A set of axioms determines the effects of the operations. 
Abstract data types can be combined in layers, where higher –level abstract data types 
are first described independently (specifications), and it is then shown how this 
behavior can be achieved using other, hierarchically lower abstract data types (abstract 
implementation [Olthoff 1985] [Frank 1986]). 

The software engineering environment of PANDA supports modularization, 
encapsulation, reusability, and transportability. Programmers are motivated to write 
object-oriented code as the implementation of ADTs in a standardized way such that 
other programmers can easily read and correct it. Modularization is achieved by using a 
Pascal precompiler [Egenhofer 1988a], which provides types and routines from one 
module to another, with type checking across modules. The implementation of 
operations is encapsulated into the module. A highly modular programming style 
requires that the modules are managed in a controlled library system providing the user 
information about existing ADTs, their operations, and their specifications. The 
compiler is embedded into a library management system with hierarchical directory 
structure where several versions of modules can be kept in parallel. Transportability of 
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code among different Pascal compilers and various hardware is guaranteed by the 
precompiler, because only the precompiler itself, not the particular code, must be 
adapted to fit specific compiler features. 

3. Object Definition 

An object-oriented data model gives rise to the formation of arbitrarily complex classes, 
the majority of which is composed of a (limited) number of lower structured parts, here 
called components. The same components occur repeatedly as part of various classes, 
and it is more economical to define and reuse components, instead of defining 
redundantly a multitude of very similar classes. Though this may resemble a traditional 
entity-attribute type of concept, it is only the object-oriented implementation of several 
classes with the same components which are defined only once and reused in every 
class they are part of. The decomposition of objects into components releases the 
application designer from redundant definitions of specific object operations for the 
structures. Considerable overhead is removed by defining the operations for the value 
types and applying them for classes. Users are not aware of this decomposition because 
they see only objects and operations upon them. 

PANDA’s object definition consisting of value, classes, and a generalized 
objectType adopts the modular concept and fits well into the layered architecture. An 
application model is defined in standardized operations that are easily integrated into 
the kernel. The operations are implemented as short Pascal routines which are executed 
during PANDA’s startup. This approach releases the database administrator from 
recompiling the entire DBMS code; instead, only the initialization modules for each 
class and an interface module must be compiled, and (shareable) images linked. A 
systematic implementation with strict naming conventions allows the generation of 
code for these modules. Currently, code is generated partially from definitions in a text 
file; a more user friendly generation immediately from a graphical schema design is 
being investigated. The four phases of the object definition are distinguished. 

3.1. Phase 1: Declaration of User Terms 

The kernel was originally initiated with templates for the names of the classes, 
components, links, and paths. These templates must be replaced with the particular 
names used in the schema design of the application. 

3.2. Phase 2: Definition of Value Types 

A value type is the Pascal implementation of an abstract data type in a single 
programming unit, consisting of a type definition and a set of pertinent operations, and 
serves as class component. The type definition can be any simple data type, such as 
integer, string, real, etc., or any structured type, such as array or record, except types 
for dynamically allocated variables, such as pointers1. Value types can be built upon 
other value types by using their definitions and methods. Due to restrictions of current 
compilers, only acyclic combinations of value types are permitted. 
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Each value type must provide a set of fundamental operations necessary for 
indexing and hashing structures of objects. For example, hashing requires a function 
that calculates a hash value, and an operation that compares two values for equality. 
The implementation of these operations depends upon the structure and the semantics 
of the class. Unlike traditional databases that support only a limited, hard coded set of 
types, PANDA is extensible. This implies that the operations for the supporting 
structures are not predefined and must be provided by the application designer. 

3.3. Phase 3: Composition of Classes 

The properties of a class are determined by its own components and the components 
transitively inherited from its superclasses. Details about the implementation of a class 
are hidden, such that modules outside of the class definition are not aware of the 
decomposition into object components. Class components are implemented as Pascal 
records. Inheritance is simulated with the help of variant records, which is necessary 
due to the lacking support of inheritance in Pascal. 

These type definitions are not yet sufficient for the object definition. Programming 
languages of the FORTRAN/Algol type separate compilation and execution of code 
into two phases which provide different levels of information. During compilation, 
variables and types are named, and types may be composed from other types. During 
executing, the names and the relation between a variable and its type is not accessible 
by the user code. Likewise, it is not possible to find out whether a type is part of 
another structured type. 

In order to provide the compile time knowledge also during execution, the 
relations between each class must be defined explicitly as programming code. PANDA 
has the database administrator write these standardized routine which will be executed 
by the kernel during startup, initializing the user’s model. For each class, the 
composition of the type and the corresponding ini-routine are combined in a separate 
module. 

3.4. Phase 4: Definition of Database Objects 

All classes are specializations of the most general superclass objectType from which all 
pertinent DB-operations are inherited. The objectType is implemented as a Pascal 
record with varying parts for each specific class. It combines all specific classes into a 
single, compatible type to which common (system) components, such as tuple 
identifiers and aggregate pointers, are added. 

4. A Layered Structure of Object Operations 

The object-oriented approach requires the definition of complex objects and their 
pertinent operations. While the knowledge about the composition of complex classes is 
essential to the database kernel, the object operations are the application programmer’s 
tools to manipulate objects. The programmer’s interface of the DBMS kernel is a 
collection of object-oriented manipulation and retrieval operations which can be called 
from the application programs. These operations are defined for the generalized 
objectType, and are compatible with any class. Conceptually, all database operations, 
such as store, delete, and update, are inherited to each class of the schema. Their 
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implementation on top of the programmer’s interface is a layered structure of model-
specific object operations. This is the location  to implement consistency checks. A 
layered structure of object operations has been developed which is generally applicable 
for any object-oriented application. Based upon the fundamental object operations, 
more complex operations can be defined. By restricting the operations to a single task, 
the code for the routines stays small and correctness can be verified more easily.  

The structure of these operations is the same for every application: First, the 
operations are defined to make s specific object, and to assign values to and access 
them from an object. Then, unary object operations for storing, modifying, deleting, 
and accessing individual objects are defined based upon the generic DB-operations 
offered in the programmer’s interface. Another layer treats all binary operations 
manipulating aggregates. These operations are exploited in the next layer to form 
complex object operations, including complex consistency constraints. 

4.1. Level 1: Make, Get, and Put Operations 

The first layer is a collection of modules with the basic operations to manipulate the 
individual description of a single object: creating an instance (make), assigning values 
to (put), and extracting values from an instance (get). These operations hide the 
implementation of the classes from the user, preventing uncontrolled access. Since the 
properties of a superclass are propagated to all subclasses, get and put operations are 
compatible with objects of the subclasses as well. 

For each class a separate module contains these operations. Their implementation 
is trivial, and the code can be generated with the knowledge of the object description. 
Simple consistency constraints, such as checking whether a value lies within a range, 
can be added to the put operations.  

4.2. Level 2: Unary Object Operation 

The second layer covers all database operations to store, update, and access a single 
object which are inherited from the common superclass objectType. The 
implementation of these operations is straightforward because the generic object 
operations are part of the programmer’s interface and can be immediately applied to 
each object class. Depending on the definition of the class, different access methods are 
supported, such as access with a key value and spatial access. For each class, a separate 
module with the specific object operations is implemented. 

4.3. Level 3: Binary Object Operations 

The third layer comprises aggregate operations that always involve two objects. 
Standard operations are the addition of a part to an aggregate, the removal of a part 
from an aggregate, cancellation of an entire aggregate, and the access of parts of an 
aggregate. The operations which establish links among objects require that the 
corresponding objects have been loaded into the database before. Reversely, remove 
and cancel dissolve the links without deleting the previously linked objects from the 
database. For each aggregation, a separate module with the aggregate operations is 
implemented.  

Three types of access operations for aggregates are distinguished: (1) iterating over 
all aggregate components, similar to a FOR EACH loop in CLU [Liskov 1981], (2) 
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getting a specific aggregate component with a certain value, and (3) getting the 
composite object part of an aggregate. The second access method is only efficiently 
supported if a sorted access path was defined. 

4.4. Level 4+: Complex Object Operations 

The fourth and later layers combine operations of the lower levels to form more 
complex operations. The level structure is open and can be extended according to the 
complexity of the application. Entire applications have been written in this highly 
structured form. The advantage of the object layers is that very complex operations can 
be implemented by combining other object operations. Following the rule that no 
object operation may use other operations of higher level, a well-structured application 
package can be designed. 

5. Conclusion 

The close relation between the implementation of object-oriented databases and object-
oriented software techniques has been explained. For an object-oriented database it is 
of vital interest to tie into the software environment of the application. PANDA’s 
object-oriented programmer’s interface facilitates applications on top which conform 
with an object-oriented design. 

With the growing complexity of the application the layered structure of complex 
object operations can be extended beyond the four basic layers introduced. The 
embedding of consistency constraints into these object operations is a natural and 
object-oriented way, starting with very general operations, and constraining them more 
and more. 

Conventional programming languages do not easily support the implementation of 
object-oriented databases and often, methods must be simulated to match the model. 
Using a language that supports multiple inheritance, clearer designs and more 
condensed implementations become possible. 
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