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ABSTRACT: 
 
The decision whether a moving object is inside a polygon or not is a function of time. This is an important and instructive example 
problem to discuss a general method to deal with temporal data in GIS. Recently, some efforts have been done to handle temporal 
dimension of our space effectively both in our theoretical and commercial approaches. However, existing commercial GISs have 
only very limited support for it. In this situation, GI theory is investigating an appropriate solution through formalizing the 
utilization of time on the basis of mathematical and computer sciences. This formalization is carried out by definition of spatial and 
temporal concepts, operators, and processes in GI as abstract algebras, which are mapped together using morphisms. The achieved 
results have to be more advanced by testing different hypothesis. This idea has been implemented for time lifting of issues related to 
moving objects in this paper and the mentioned approaches are used for hypothesis of integrating static and dynamic point in 
polygon analysis into a unique algorithm. The conclusions out coming from this work certify validity of these approaches for point 
in polygon analysis for moving objects. The results will be generalized to the rest, as further steps of this research. 
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1. INTRODUCTION 

Time is inherently linked to geospatial concepts (Egenhofer and 
Mark 1995). However, existing commercial geospatial 
information systems (GISs) still have shortcomings handling 
time. In this situation, GI theory must show how to deal with 
temporal aspects—including changing values, processes, etc. 
(Frank, 2005). Then GI theory is directed toward formalizing 
time utilization on the basis of mathematical and computer 
sciences that are implemented into GISs. This formalization is 
carried out by definition of spatial and temporal concepts, 
operators, and processes in GI as abstract algebras that are 
mapped together using morphisms. Morphisms from non-
temporal to temporal domains are usually mentioned as time 
lifting in recent researches.  
This idea could be applied for time lifting of moving objects 
related issues. Moving objects are entities in a solid geometry 
space that are substituted with points, so they are mentioned as 
moving points, too. Hence time lifting has to be applied for 
analyses carried out on domain of static point sets to moving 
point sets. Point in polygon analysis is one of the basic analyses 
on point sets that are proposed to be time lifted in this paper. 
The paper is composed of seven sections. Section 2 describes 
some basic issues about time utilization in GISs. In Section 3, 
the methodology of the paper is introduced that deals with how 
to time lift operations and analyses and also how they could be 
implemented. Moving points and algebraic definitions of their 
point in polygon analysis are illustrated in Sections 4 and 5, 
respectively. Section 6 represents the results of paper as a case 
study of a point in polygon analysis for a test set of moving 
points. Finally, Section 7 provides conclusions and future work. 
 

2. TIME IN GIS 

The decision whether a moving object is inside a polygon or not 
is a function of time. This is an important and instructive 
example problem to discuss a general method to deal with 
temporal data in GIS. Recently, some efforts have been done in 
the GI community to handle temporal dimension of our space 
effectively both in our theoretical and commercial approaches. 
Despite many efforts and researches carried out dealing with 
the temporal domain of GI science, some deficiencies are 
observable as follows: 
 

• Considering time as a discrete or partial continuous 
property of our world while our unique physical 
reality is governed by differentiable laws (Frank, 
2003).  

• Underestimation of different behaviours of models 
that are used in GIS (e.g., network, object, and field) 
that resulted in development of some temporal 
context-based viewpoints that can not be generalized 
(Frank, 2005). 

 
All these issues could somehow be interpreted as dominance of 
analytical treatments that are affected by the limitation of our 
computer systems (e.g., its discrete and limited numerical 
system) and lack of a comprehensive temporal ontology. The 
proposed solution is dealing with an algebraic treatment of 
different models in GIS independently and provides a basis for 
their integration, towards development of a generalized and 
implementable temporal ontology.  
The mentioned solution is considered in some researches as the 
basic form ontology illustrated for space (SNAP) and time 
(SPAN) by Grenon and Smith (2004) and multi-tier ontology 
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presented by Frank (2003). Besides that, introduction of 
mathematical and algebraic approaches on the basis of category 
theory and utilization of functional programming environments 
(Herring et al., 1990) (which allow variables stand for 
functions) has provided some promising future for temporal 
GIS. 
 

3. METHODOLOGY 

One of the fundamental concepts on the basis of the proposed 
advancements for incorporation of time in GIS analyses is 
lifting them from the domain of values to the domain of 
changing values (Frank, 2005). It is possible using mediums for 
these domains that could support the lifting. Categories provide 
the required medium. They are defined in category theory that 
is a branch of mathematics. 
A category is a collection of primitive element types, a set of 
operations upon those types, and an operator algebra that is 
capable of expressing the interaction between operators and 
elements (Herring et al., 1990).  
 
A categorical viewpoint demonstrates that semantics of 
operations are independent of the representations they are 
applied to (Frank, 2005). Category theory gives us a very high 
level abstract viewpoint: instead of discussing the properties of 
individual objects, we directly address the properties of the 
operations. This corresponds to the interest in geography, where 
the discussion concentrates on processes that occur in space, not 
on the collection of locations and properties of spatial objects 
(Frank, 2005). These properties enable us to have a function 
between two categories with the same internal structure. 
A functor, or more properly morphism, is the process that 
associates elements and operations from one category to 
another that preserves the operator algebra (Herring et al., 
1990). 
 
 

  
Figure 1.  A category with its elements (Karimipour, et al., 

2005) 
 

Static and dynamic GIS domains have the same internal 
structure and the only difference between them is their 
dimensions. Since category theory concentrates on the 
processes instead of properties of objects, it seems an 
appropriate candidate to associate static and dynamic GIS 
domains and their objects and processes. From this viewpoint, 
the time lifting is a functor from a static category to a dynamic 
one. 
The categories used here for time lifting are field categories that 
consist of fields as their objects and field homomorphism as 
their morphism. Given two groups (G, +, *) and (H, ++, **), a 
group homomorphism from G to H is a function h: G → H such 
that for all u and v in G it holds that: 

>  h(u + v) = h(u) ++ h(v)     (1) 
>  h(u * v) = h(u) ** h(v). 
 
 
The identities and inverses are mapped through this function. 
One of the objects of these categories used here is field over 
rational numbers. A rational number is a ratio of two integers 
usually written as a/b where b is not zero. The set of all rational 
numbers is denoted by Q that is a dense subset of real numbers 
and totally ordered. Being a dense subset means that between 
any two rationals, there sits another one (in fact infinitely many 
other ones). So float numerical system of computers is 
substituted with the rational numerical system. Using the 
rational numbers we could get rid of round off error and dealing 
with our operations as continuous ones.  
On the other hand, regarding the above-mentioned definition of 
functors, they are functions that have other functions as 
argument and achievement of such concepts is not part of the 
core structure of common programming languages such as C++. 
Implementation of both functors and rational numerical system 
is possible using a functional programming language. In a 
functional programming language every thing is a function that 
can accept a function as an input and produce a function as an 
output, too. Haskell is one of the functional programming 
languages that support our requirements (Haskell website). 
The infinitely defined the Integer type in Haskell provides us an 
infinite rational number system. In this system time is defined 
as an infinite rational number (2). 
 
 
>  Type Time =Ratio Integer.    (2) 
 
 
The changing version of any value is defined as a function from 
time to the value (3).  
 
 
>  type Changing v = Time -> v.   (3) 
 
 
Then a rational changing value is defined as (4) 
 
 
>  Changing (Ratio Integer).    (4) 
 
 
The functors for time lifting are defined as lift0, lift1, lift2 and 
lift3 to lift operators with zero, one, two, and three parameters 
functions, respectively (5).  
 
 
>  lift0 a            = \ t → a t 
>  lift1 op a       = \ t → op (a t)   (5) 
>  lift2 op a b    = \ t → op (a t) (b t) 
>  lift3 op a b c = \ t → op (a t) (b t) (c t). 
 
 
These functors add time to input functions as parameter t. 
Lifting for operators with more arguments can be done in a 
similar way. 
Some of the objects in a category are simple operators that can 
be lifted using the above-mentioned lifting process. Having 
these lifted operators, the functions that used them will be lifted 
automatically. In other words, this process is lifting simple 
operators of a category instead of functions that used them.  
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4. MOVING OBJECTS 

Moving objects are entities in a solid geometry space and it is 
important for applications that keep track of cars, aircraft, or 
similar objects (Frank and Gruenbacher, 2001). These objects 
are substituted with points and are also mentioned as moving 
points. 
Various operators are used for moving object operators 
according to the kinds of moving object and the application 
areas adopted (Ryu and Ahn, 2001). Seeking the position of a 
moving object at specific time, obtaining the distance between 
moving points at specific time, specifying the region where a 
moving point lies in it at specific time and obtaining the time 
when a moving object has a minimum or maximum value are 
some of the most major instances of them. 
Movement of moving objects can be divided to coordinate 
elements. With no loss of generality, we focus on 2D moving 
objects. In this case, a moving object has two coordinate 
elements that are functions of time.  
Points, edges, and polygons are defined in Haskell code as 
algebraic data types (6): 
 
 
>  data Point a = Point a a 
>  data Edge a = Edge (Point a) (Point a)   (6) 
>  data Polygon a = Polygon [Edge a]. 
 
 
The first statement represents a parametric 2D point. The 
second statement defines a straight line segment with its start at 
end points. The last statement depicts a polygon as a list of 
edges that construct the polygon boundary. 
Then, basic operations for point data type are defined into class 
points (7). 
 
 
>  class Points p s where 
>     x, y :: p s→  s 
>     xy :: s → s → p s    (7) 
>     (+) :: p s → p s → p s 
>     (-) :: p s → p s → p s. 
 
 
This class contains operations for extracting x and y 
coordinates, a point constructor, plus and minus operators. The 
class Points is overloaded for point data type in both static (8) 
and moving (9) modes. For moving points overloading just the 
plus and minus operators are required to be overwritten: 
 
 
>  instance Point a where 
>     x      (Point x1 y1) = x1 
>     y      (Point x1 y1) = y1    (8) 
>     xy    x1 y1             = Point x1 y1 
>    (+)   (Point x1 y1) (Point x2 y2) = Point (x1 + x2) (y1 + y2) 
>    (-)    (Point x1 y1) (Point x2 y2) = Point (x1 - x2)   (y1 - y2). 
 
 
>  instance Changing Point a where 
>     (+) = lift2(+)     (9) 
>     (-) = lift2(-). 
 
 
These operators are counterpart of static plus and minus 
operators. In addition, the similar operator symbols (that is + 
and -) are used for static and dynamic numbers and points 
through use of polymorphism mechanism means that a simple 
function can be applied to a variety of argument types. 

x, y and xy operators are independent on type of point and can 
be used for both static and dynamic points. The other basic 
operations such as equality and ordering of points is defined 
and lifted similarly. 
This simple lifted operation can be integrated for 
implementation of further complicated analyses and this 
sequence can be continued. 
One of the simplest analyses carried out in point sets for 
delineation of their basic geometrical boundary is point in 
polygon analysis that is lifted in next section. 
 
5. IMPLEMENTATION OF POINT IN POLYGON 

ANALYSIS FOR MOVING POINTS 

Point in polygon analysis is one of the most frequently used 
queries in GIS. Given a map and a query point q specified by its 
coordinates, point in polygon analysis finds the region of the 
map containing q. A map, of course, is nothing more than a 
subdivision of the plane into regions. 
Different algorithms are provided for point in polygon analysis 
with different complexities and performances (Berg et al., 
2000).  
Point in polygon analysis is implemented here following one of 
the simplest algorithms based on counting the number of 
intersections between an arbitrary ray passing from the target 
point and a region boundary (Figure 1). If the number of 
intersections is odd, the point is inside the region (Burrough and 
McDonnell, 1998). In case that the point lays exactly on the 
same y value of a node of polygon is excluded here. 
 
 

 
Figure 1. Point in polygon algorithm 

 
At this point, implementation of static and moving point in 
polygon analysis is carried out by constructing the static 
algorithm discussed. The implemented algorithm is capable of 
operating on both static and moving points as they are both 
overloaded for basic operators. 
In implemented algorithm, the intersecting ray from a point is 
limited to a horizontal ray. Finding intersections of a region 
with a horizontal line is reduced to filtering edges of the region 
boundary. 
The intersection for a horizontal line (y=a) and one straight 
edge is defined here as checking the incidence of start (s) and 
end (e) points in different sides of the horizontal line (10). 
 
 
>  (ys<a<ye) or (ye<a<ys).    (10) 
 
 
The Haskell code for this conditional inequality is represented 
in isEdgeIntersected function (11).  
 



 

>  isEdgeIntersected :: Point a → Edge a → Bool 
>  isEdgeIntersected point edge =   (11) 
        isNumBetween (y (startNode edge)) (y (endNode edge)) (y point). 
 
 
Also, the above-mentioned filtering is implemented into the 
isPointInPolygon function that proceeds by counting process 
and checking for oddness (12). 
 
 
>  isPointInPolygon :: Point a → Polygon a→ Bool 
>  isPointInPolygon point polygon =   (12) 
        odd (length (filter (isEdgeIntersected point)  polygon. 
 
 
The pointInPolygons function maps the previous function over 
a list of polygons (13). 
 
 
>  pointInPolygon :: Point a -> [Polygon a] -> [Polygon a] (13) 
>  pointInPolygon pt pls = filter (isPointInPolygon pt) pls. 
 
 
Finally, the pointsInPolygons function generalizes our functions 
for mapping pointInPolygons over a list of moving points (14).  
 
 
>  pointsInPolygons :: [Point a] -> [Polygon a] -> [[Polygon a]] 
>  pointsInPolygons pts pls = map (pointInPolygon' pls) pts where 
        pointInPolygon' pls pts = pointInPolygon pts pls.  (14) 
 

6. CASE STUDY 

The implemented point in polygon analysis is used for a case 
study consisting of a set of static regions denoted as polygons 
(Figure 2) and a collection of five moving points over these 
regions (15).  
 
 
>  tPt1, tPt2, tPt3, tPt4, tPt5 :: Point (Changing (Ratio Integer)) 
>  tPt1 = Point  (\t ->   50 * t - 500)    (\t ->   15 * t + 200) 
>  tPt2 = Point  (\t -> (-50)* t + 600)  (\t ->   30 * t - 400) 
>  tPt3 = Point  (\t -> (-10)* t - 200)   (\t ->   65 * t - 700) (15) 
>  tPt4 = Point  (\t ->   35 * t - 20 )     (\t -> (-40)* t + 800) 
>  tPt5 = Point  (\t ->   10 * t  - 300)   (\t ->   40 * t - 200) 
>  tPoints = [tPt1, tPt2, tPt3, tPt4, tPt5]. 
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Figure 2.  The study area 

The dynamic point in polygon analysis is defined here as (16): 
 
 
>  PinP = pointsInPolygons tPoints Polygons.  (16) 
 
 
PinP is a function with one time parameter. In other words, 
PinP t returns list of the regions where the moving points are in 
them for instance t. The results of using the PinP for these 
moving points for three different instances are shown in Table 1 
and Figure 3. 
 
 

Point ID t=0 t=10 t=20 
(-500,200) (0,350) (500,500) 1 4 5 3 
(600,-400) (100,-100) (-400,200) 2 9 7 4 
(-200,-700) (-300,-50) (-400,600) 3 10 6 1 
(-20,800) (330,400) (680,0) 4 2 3 8 

(-300,-200) (-200,200) (-100,600) 5 6 7 5 
 

Table 1.  Results of point in polygon analysis for tPoints for 
three instances (for each point in each instance, its coordinate 
and number of polygon where the point lies in it is specified) 

 
7. CONCLUSIONS AND FUTURE WORKS 

Handling time in GISs is proposed as an essential advancement 
to GI science and technology. GI theory recommends 
approaches based on mathematics and computer sciences. What 
is carried out in this research is testing the hypothesis using the 
concepts of category theory for integrating non-temporal and 
temporal point in polygon process. The achieved results and 
implementation certified this. However, still some questions 
remain about the level of complexities that would arise in more 
complex processes.  
Using the formalization of time lifting provided by GI theory 
and the high level of abstraction of functional programming 
languages enabled us to implement the desired algorithm 
effectively. The developed codes in this paper are about ten 
times shorter that their similar codes in other programming 
environments and they are more comprehensible too. In 
addition, the implementation of functors and considered 
reduction of round off error have been achieved using such a 
programming language.  
Time lifting that is a kind of functors has been used for 
including time in GIS analysis with less change in static version 
of them. Prerequisite of this discussion is algebraic view to GIS. 
In this way, using higher order languages such as Haskell that 
can interact with functional variables is essential. 
The sample that has been represented in this paper was point in 
polygon analysis for moving objects.  
Using this concept for more complicated analysis and also 
integration of these dynamic analyses with other applications 
that need dynamic analyses as prerequisite are considered for 
future works. 
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Figure 3.  Results of point in polygon analysis for tPoints for   

(a) PinP  0     (b) PinP 10     (c) PinP 20 
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