
POINT IN POLYGON ANALYSIS FOR MOVING OBJECTS

F. Karimipour a, M. R. Delavar a*, A. U. Frank b, H. Rezayan a

a Dept. of Surveying and Geomatic Eng., Eng. Faculty, University of Tehran, Tehran, Iran

(fkarimipr, mdelavar, rezayan)@ut.ac.ir

b Dept. of Geo-Information E-127, Technische University Wien, Gusshausstr. 27-29, A-1040, Vienna, Austria
frank@geoinfo.tuwien.ac.at

KEY WORDS: Algorithms, Dynamic, GIS, Mathematics, Modelling

ABSTRACT:

The decision whether a moving object is inside a polygon or not is a function of time. This is an important and instructive example
problem to discuss a general method to deal with temporal data in GIS. Recently, some efforts have been done to handle temporal
dimension of our space effectively both in our theoretical and commercial approaches. However, existing commercial GISs have
only very limited support for it. In this situation, GI theory is investigating an appropriate solution through formalizing the
utilization of time on the basis of mathematical and computer sciences. This formalization is carried out by definition of spatial and
temporal concepts, operators, and processes in GI as abstract algebras, which are mapped together using morphisms. The achieved
results have to be more advanced by testing different hypothesis. This idea has been implemented for time lifting of issues related to
moving objects in this paper and the mentioned approaches are used for hypothesis of integrating static and dynamic point in
polygon analysis into a unique algorithm. The conclusions out coming from this work certify validity of these approaches for point
in polygon analysis for moving objects. The results will be generalized to the rest, as further steps of this research.

* Corresponding author

1. INTRODUCTION

Time is inherently linked to geospatial concepts (Egenhofer and
Mark 1995). However, existing commercial geospatial
information systems (GISs) still have shortcomings handling
time. In this situation, GI theory must show how to deal with
temporal aspects—including changing values, processes, etc.
(Frank, 2005). Then GI theory is directed toward formalizing
time utilization on the basis of mathematical and computer
sciences that are implemented into GISs. This formalization is
carried out by definition of spatial and temporal concepts,
operators, and processes in GI as abstract algebras that are
mapped together using morphisms. Morphisms from non-
temporal to temporal domains are usually mentioned as time
lifting in recent researches.
This idea could be applied for time lifting of moving objects
related issues. Moving objects are entities in a solid geometry
space that are substituted with points, so they are mentioned as
moving points, too. Hence time lifting has to be applied for
analyses carried out on domain of static point sets to moving
point sets. Point in polygon analysis is one of the basic analyses
on point sets that are proposed to be time lifted in this paper.
The paper is composed of seven sections. Section 2 describes
some basic issues about time utilization in GISs. In Section 3,
the methodology of the paper is introduced that deals with how
to time lift operations and analyses and also how they could be
implemented. Moving points and algebraic definitions of their
point in polygon analysis are illustrated in Sections 4 and 5,
respectively. Section 6 represents the results of paper as a case
study of a point in polygon analysis for a test set of moving
points. Finally, Section 7 provides conclusions and future work.

2. TIME IN GIS

The decision whether a moving object is inside a polygon or not
is a function of time. This is an important and instructive
example problem to discuss a general method to deal with
temporal data in GIS. Recently, some efforts have been done in
the GI community to handle temporal dimension of our space
effectively both in our theoretical and commercial approaches.
Despite many efforts and researches carried out dealing with
the temporal domain of GI science, some deficiencies are
observable as follows:

• Considering time as a discrete or partial continuous
property of our world while our unique physical
reality is governed by differentiable laws (Frank,
2003).

• Underestimation of different behaviours of models
that are used in GIS (e.g., network, object, and field)
that resulted in development of some temporal
context-based viewpoints that can not be generalized
(Frank, 2005).

All these issues could somehow be interpreted as dominance of
analytical treatments that are affected by the limitation of our
computer systems (e.g., its discrete and limited numerical
system) and lack of a comprehensive temporal ontology. The
proposed solution is dealing with an algebraic treatment of
different models in GIS independently and provides a basis for
their integration, towards development of a generalized and
implementable temporal ontology.
The mentioned solution is considered in some researches as the
basic form ontology illustrated for space (SNAP) and time
(SPAN) by Grenon and Smith (2004) and multi-tier ontology

gruber
Textfeld
Karimipour, Farid, M. R. Delavar, A. U. Frank, and H. Rezayan. "Point in Polygon Analysis for Moving Objects." Paper presented at the The 4th Workshop on Dynamic & Multi-Dimensional GIS, Glenmorgan, Wales, 5.-8.09.2005 2005.

presented by Frank (2003). Besides that, introduction of
mathematical and algebraic approaches on the basis of category
theory and utilization of functional programming environments
(Herring et al., 1990) (which allow variables stand for
functions) has provided some promising future for temporal
GIS.

3. METHODOLOGY

One of the fundamental concepts on the basis of the proposed
advancements for incorporation of time in GIS analyses is
lifting them from the domain of values to the domain of
changing values (Frank, 2005). It is possible using mediums for
these domains that could support the lifting. Categories provide
the required medium. They are defined in category theory that
is a branch of mathematics.
A category is a collection of primitive element types, a set of
operations upon those types, and an operator algebra that is
capable of expressing the interaction between operators and
elements (Herring et al., 1990).

A categorical viewpoint demonstrates that semantics of
operations are independent of the representations they are
applied to (Frank, 2005). Category theory gives us a very high
level abstract viewpoint: instead of discussing the properties of
individual objects, we directly address the properties of the
operations. This corresponds to the interest in geography, where
the discussion concentrates on processes that occur in space, not
on the collection of locations and properties of spatial objects
(Frank, 2005). These properties enable us to have a function
between two categories with the same internal structure.
A functor, or more properly morphism, is the process that
associates elements and operations from one category to
another that preserves the operator algebra (Herring et al.,
1990).

Figure 1. A category with its elements (Karimipour, et al.,

2005)

Static and dynamic GIS domains have the same internal
structure and the only difference between them is their
dimensions. Since category theory concentrates on the
processes instead of properties of objects, it seems an
appropriate candidate to associate static and dynamic GIS
domains and their objects and processes. From this viewpoint,
the time lifting is a functor from a static category to a dynamic
one.
The categories used here for time lifting are field categories that
consist of fields as their objects and field homomorphism as
their morphism. Given two groups (G, +, *) and (H, ++, **), a
group homomorphism from G to H is a function h: G → H such
that for all u and v in G it holds that:

> h(u + v) = h(u) ++ h(v) (1)
> h(u * v) = h(u) ** h(v).

The identities and inverses are mapped through this function.
One of the objects of these categories used here is field over
rational numbers. A rational number is a ratio of two integers
usually written as a/b where b is not zero. The set of all rational
numbers is denoted by Q that is a dense subset of real numbers
and totally ordered. Being a dense subset means that between
any two rationals, there sits another one (in fact infinitely many
other ones). So float numerical system of computers is
substituted with the rational numerical system. Using the
rational numbers we could get rid of round off error and dealing
with our operations as continuous ones.
On the other hand, regarding the above-mentioned definition of
functors, they are functions that have other functions as
argument and achievement of such concepts is not part of the
core structure of common programming languages such as C++.
Implementation of both functors and rational numerical system
is possible using a functional programming language. In a
functional programming language every thing is a function that
can accept a function as an input and produce a function as an
output, too. Haskell is one of the functional programming
languages that support our requirements (Haskell website).
The infinitely defined the Integer type in Haskell provides us an
infinite rational number system. In this system time is defined
as an infinite rational number (2).

> Type Time =Ratio Integer. (2)

The changing version of any value is defined as a function from
time to the value (3).

> type Changing v = Time -> v. (3)

Then a rational changing value is defined as (4)

> Changing (Ratio Integer). (4)

The functors for time lifting are defined as lift0, lift1, lift2 and
lift3 to lift operators with zero, one, two, and three parameters
functions, respectively (5).

> lift0 a = \ t → a t
> lift1 op a = \ t → op (a t) (5)
> lift2 op a b = \ t → op (a t) (b t)
> lift3 op a b c = \ t → op (a t) (b t) (c t).

These functors add time to input functions as parameter t.
Lifting for operators with more arguments can be done in a
similar way.
Some of the objects in a category are simple operators that can
be lifted using the above-mentioned lifting process. Having
these lifted operators, the functions that used them will be lifted
automatically. In other words, this process is lifting simple
operators of a category instead of functions that used them.

A

C

B

D

f1

f2 f4 f3

f5

4. MOVING OBJECTS

Moving objects are entities in a solid geometry space and it is
important for applications that keep track of cars, aircraft, or
similar objects (Frank and Gruenbacher, 2001). These objects
are substituted with points and are also mentioned as moving
points.
Various operators are used for moving object operators
according to the kinds of moving object and the application
areas adopted (Ryu and Ahn, 2001). Seeking the position of a
moving object at specific time, obtaining the distance between
moving points at specific time, specifying the region where a
moving point lies in it at specific time and obtaining the time
when a moving object has a minimum or maximum value are
some of the most major instances of them.
Movement of moving objects can be divided to coordinate
elements. With no loss of generality, we focus on 2D moving
objects. In this case, a moving object has two coordinate
elements that are functions of time.
Points, edges, and polygons are defined in Haskell code as
algebraic data types (6):

> data Point a = Point a a
> data Edge a = Edge (Point a) (Point a) (6)
> data Polygon a = Polygon [Edge a].

The first statement represents a parametric 2D point. The
second statement defines a straight line segment with its start at
end points. The last statement depicts a polygon as a list of
edges that construct the polygon boundary.
Then, basic operations for point data type are defined into class
points (7).

> class Points p s where
> x, y :: p s→ s
> xy :: s → s → p s (7)
> (+) :: p s → p s → p s
> (-) :: p s → p s → p s.

This class contains operations for extracting x and y
coordinates, a point constructor, plus and minus operators. The
class Points is overloaded for point data type in both static (8)
and moving (9) modes. For moving points overloading just the
plus and minus operators are required to be overwritten:

> instance Point a where
> x (Point x1 y1) = x1
> y (Point x1 y1) = y1 (8)
> xy x1 y1 = Point x1 y1
> (+) (Point x1 y1) (Point x2 y2) = Point (x1 + x2) (y1 + y2)
> (-) (Point x1 y1) (Point x2 y2) = Point (x1 - x2) (y1 - y2).

> instance Changing Point a where
> (+) = lift2(+) (9)
> (-) = lift2(-).

These operators are counterpart of static plus and minus
operators. In addition, the similar operator symbols (that is +
and -) are used for static and dynamic numbers and points
through use of polymorphism mechanism means that a simple
function can be applied to a variety of argument types.

x, y and xy operators are independent on type of point and can
be used for both static and dynamic points. The other basic
operations such as equality and ordering of points is defined
and lifted similarly.
This simple lifted operation can be integrated for
implementation of further complicated analyses and this
sequence can be continued.
One of the simplest analyses carried out in point sets for
delineation of their basic geometrical boundary is point in
polygon analysis that is lifted in next section.

5. IMPLEMENTATION OF POINT IN POLYGON

ANALYSIS FOR MOVING POINTS

Point in polygon analysis is one of the most frequently used
queries in GIS. Given a map and a query point q specified by its
coordinates, point in polygon analysis finds the region of the
map containing q. A map, of course, is nothing more than a
subdivision of the plane into regions.
Different algorithms are provided for point in polygon analysis
with different complexities and performances (Berg et al.,
2000).
Point in polygon analysis is implemented here following one of
the simplest algorithms based on counting the number of
intersections between an arbitrary ray passing from the target
point and a region boundary (Figure 1). If the number of
intersections is odd, the point is inside the region (Burrough and
McDonnell, 1998). In case that the point lays exactly on the
same y value of a node of polygon is excluded here.

Figure 1. Point in polygon algorithm

At this point, implementation of static and moving point in
polygon analysis is carried out by constructing the static
algorithm discussed. The implemented algorithm is capable of
operating on both static and moving points as they are both
overloaded for basic operators.
In implemented algorithm, the intersecting ray from a point is
limited to a horizontal ray. Finding intersections of a region
with a horizontal line is reduced to filtering edges of the region
boundary.
The intersection for a horizontal line (y=a) and one straight
edge is defined here as checking the incidence of start (s) and
end (e) points in different sides of the horizontal line (10).

> (ys<a<ye) or (ye<a<ys). (10)

The Haskell code for this conditional inequality is represented
in isEdgeIntersected function (11).

> isEdgeIntersected :: Point a → Edge a → Bool
> isEdgeIntersected point edge = (11)
 isNumBetween (y (startNode edge)) (y (endNode edge)) (y point).

Also, the above-mentioned filtering is implemented into the
isPointInPolygon function that proceeds by counting process
and checking for oddness (12).

> isPointInPolygon :: Point a → Polygon a→ Bool
> isPointInPolygon point polygon = (12)
 odd (length (filter (isEdgeIntersected point) polygon.

The pointInPolygons function maps the previous function over
a list of polygons (13).

> pointInPolygon :: Point a -> [Polygon a] -> [Polygon a] (13)
> pointInPolygon pt pls = filter (isPointInPolygon pt) pls.

Finally, the pointsInPolygons function generalizes our functions
for mapping pointInPolygons over a list of moving points (14).

> pointsInPolygons :: [Point a] -> [Polygon a] -> [[Polygon a]]
> pointsInPolygons pts pls = map (pointInPolygon' pls) pts where
 pointInPolygon' pls pts = pointInPolygon pts pls. (14)

6. CASE STUDY

The implemented point in polygon analysis is used for a case
study consisting of a set of static regions denoted as polygons
(Figure 2) and a collection of five moving points over these
regions (15).

> tPt1, tPt2, tPt3, tPt4, tPt5 :: Point (Changing (Ratio Integer))
> tPt1 = Point (\t -> 50 * t - 500) (\t -> 15 * t + 200)
> tPt2 = Point (\t -> (-50)* t + 600) (\t -> 30 * t - 400)
> tPt3 = Point (\t -> (-10)* t - 200) (\t -> 65 * t - 700) (15)
> tPt4 = Point (\t -> 35 * t - 20) (\t -> (-40)* t + 800)
> tPt5 = Point (\t -> 10 * t - 300) (\t -> 40 * t - 200)
> tPoints = [tPt1, tPt2, tPt3, tPt4, tPt5].

6

3

7 8

5

4

9

1

2

10

Figure 2. The study area

The dynamic point in polygon analysis is defined here as (16):

> PinP = pointsInPolygons tPoints Polygons. (16)

PinP is a function with one time parameter. In other words,
PinP t returns list of the regions where the moving points are in
them for instance t. The results of using the PinP for these
moving points for three different instances are shown in Table 1
and Figure 3.

Point ID t=0 t=10 t=20
(-500,200) (0,350) (500,500) 1 4 5 3
(600,-400) (100,-100) (-400,200) 2 9 7 4
(-200,-700) (-300,-50) (-400,600) 3 10 6 1
(-20,800) (330,400) (680,0) 4 2 3 8

(-300,-200) (-200,200) (-100,600) 5 6 7 5

Table 1. Results of point in polygon analysis for tPoints for
three instances (for each point in each instance, its coordinate
and number of polygon where the point lies in it is specified)

7. CONCLUSIONS AND FUTURE WORKS

Handling time in GISs is proposed as an essential advancement
to GI science and technology. GI theory recommends
approaches based on mathematics and computer sciences. What
is carried out in this research is testing the hypothesis using the
concepts of category theory for integrating non-temporal and
temporal point in polygon process. The achieved results and
implementation certified this. However, still some questions
remain about the level of complexities that would arise in more
complex processes.
Using the formalization of time lifting provided by GI theory
and the high level of abstraction of functional programming
languages enabled us to implement the desired algorithm
effectively. The developed codes in this paper are about ten
times shorter that their similar codes in other programming
environments and they are more comprehensible too. In
addition, the implementation of functors and considered
reduction of round off error have been achieved using such a
programming language.
Time lifting that is a kind of functors has been used for
including time in GIS analysis with less change in static version
of them. Prerequisite of this discussion is algebraic view to GIS.
In this way, using higher order languages such as Haskell that
can interact with functional variables is essential.
The sample that has been represented in this paper was point in
polygon analysis for moving objects.
Using this concept for more complicated analysis and also
integration of these dynamic analyses with other applications
that need dynamic analyses as prerequisite are considered for
future works.

!

!

!

!

!

6

3

7
8

5

4

9

1

2

10

1

2

3

4

5

(a)

!

!

!

!

!

6

3

7
8

5

4

9

1

2

10

1

23

4

5

(b)

!

!

!

!

!

6

3

7
8

5

4

9

1

2

10

1

2

3

4

5

(c)

Figure 3. Results of point in polygon analysis for tPoints for

(a) PinP 0 (b) PinP 10 (c) PinP 20

REFERENCES

Berg, M.D., M.V. Kreveld, M. Overmars and O. Schwarzkopf,
2000. "Point Location." In Computational Geometry:
Algorithms and Applications, Second Edition, Berlin: Springer-
Verlag, pp: 121-146.

Burrough, P., and R. McDonnell, 1998. Principles of
Geographical Information Systems, Edited by P. Burrough, M.
Goodchild, R. McDonnell, P. Switzer and M. Worboys, Spatial
Information Systems. Oxford: Oxford University Press.

Egenhofer, M.J., and D.M. Mark, 1995. Naïve Geography,
National Center for Geographic Information and Analysis.

Frank, A. U. and A. Gruenbacher, 2001. Temporal Data: 2nd
Order Concepts Lead to an Algebra for Spatio-Temporal
Objects. Paper presented at the Complex Reasoning on
Geographical Data, Cyprus, December 1st 2001.

Frank, A. U., 2003. "Ontology for Spatio-Temporal Databases."
In Spatiotemporal Databases: The Chorochronos Approach,
edited by Manolis Koubarakis, Timos Sellis and et al., Berlin:
Springer-Verlag, pp: 9-78.

Frank, A. U., Practical Geometry - Mathematics for
Geographic Information Systems, Oxford: Oxford University
Press, submitted 2005.

Grenon, P., and B. Smith, 2004. Snap and span: towards
dynamic spatial ontology, Spatial Cognition and Computation,
4, no.1, pp: 137-171.

Haskell website: www.haskell.org. (accessed May 2005)

Herring, J., M.J. Egenhofer and A.U. Frank, 1990. Using
Category Theory to Model GIS Applications, Paper presented at
the 4th International Symposium on Spatial Data Handling,
Zurich, Switzerland.

Karimipour, F, M.R. Delavar and A.U. Frank, 2005.
Applications of Category Theory for Dynamic GIS Analyses.
Accepted to be published in Proc. GIS Planet 2005, Estoril,
Portugal, May 30 - June 2.

Ryu, K.H., and Y.A. Ahn, 2001. Application of Moving Objects
and Spatiotemporal Reasoning. A TIMECENTER Technical
Report.

