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ABSTRACT 
Object representation and reasoning in vector based geographic 
information systems (GIS) is based on Euclidean geometry. 
Euclidean geometry is built upon Euclid�s first postulate, stating 
that two points uniquely determine a line. This postulate makes 
geometric constructions unambiguous and thereby provides the 
foundation for consistent geometric reasoning. It holds for exact 
coordinate points and lines, but is violated, if points and lines are 
allowed to have extension. As an example for a point that has 
extension consider a point feature that represents the city of 
Vienna in a small scale GIS map representation. Geometric 
constructions with such a point feature easily produce 
inconsistencies in the data. The present paper addresses the issue 
of consistency by formalizing Euclid�s first postulate for 
geometric primitives that have extension. 
We identify a list of six consequences from introducing extension:  
These are �new qualities� that are not present in exact geometric 
reasoning, but must be taken into account when formalizing 
Euclid�s first postulate for extended primitives. One important 
consequence is the positional tolerance of the incidence relation 
(�on�-relation). As another consequence, equality of geometric 
primitives becomes a matter of degree. To account for this fact, 
we propose a formalization of Euclid�s first postulate in 
Łukasiewicz t-norm fuzzy logic. A model of the proposed 
formalization is given in the projective plane with elliptic metric. 
This is not a restriction, since the elliptic metric is locally 
Euclidean. We introduce graduated geometric reasoning with 
Rational Pavelka Logic as a means of approximating and 
propagating positional tolerance through the steps of a geometric 
construction process. Since the axioms (postulates) of geometry 
built upon one another, the proposed formalization of Euclid�s 
first postulate provides one building block of a geometric calculus 
that accounts for positional tolerance in a consistent way.  
The novel contribution of the paper is to define geometric 
reasoning with extended primitives as a calculus that propagates 
positional tolerance. Also new is the axiomatic approach to 
positional uncertainty and the associated consistency issue. 

1. INTRODUCTION 
In vector based geographic information systems (GIS) object 
representation is based on Euclidean geometry. Euclidean 
geometry relies on the idea that points are infinitely small. Points 
are the indivisible building blocks of geometric reasoning. In 
conflict with this idea is the fact that points in GIS map 
representations often represent geographic entities that in reality 
have extension. As an example, Figure 1 sketches two 

representations of the city of Vienna in different levels of detail 
(see Appendix): In Figure 1a, Vienna is represented by a single 
coordinate point, whereas in Figure 1b, its extended character is 
visible. A geometric construction that operates with the point 
representation of Vienna disregards its true extension, and 
consequently disregards the extension of the output. Existing 
heuristic solutions do not provide control over the behavior of a 
geometric construction w.r.t. extension. When plugged together, 
heuristics produce exceptions which must be treated separately. 
The present paper poses the question if it is possible to formalize 
geometric reasoning with points and lines that have extension in a 
consistent way.  

We approach the issue of consistency by adopting an axiomatic 
standpoint of geometry. The paper provides a first step towards an 
answer of the above question by addressing the most fundamental 
axiom of all classical geometries, namely Euclid�s first postulate. 
Euclid�s first postulate states that the line determined by two 
points is unique. It makes geometric constructions unambiguous 
and thereby lays the foundation for consistent geometric 
reasoning.  

It was shown in [23] positional tolerance plays a key role in 
geometric reasoning with extended primitives. An operator that 
connects two points with extension by a line with extension is 
either not practically useful in GIS, or introduces ambiguity into 
Euclid�s first postulate: There is no law of nature telling the 
�right� way of connecting Vienna with Munich by a linear entity. 
Despite this lack of principle, the generated ambiguities are not 
arbitrary: Based on some general assumptions on the nature of 
extended objects in a GIS context, we show that it is possible to 
derive a location constraint for the output object of a geometric 
construction. Since location constraints provide a certain amount 
of tolerance in positioning an object, we call the resulting 
ambiguity �positional tolerance�, and the respective formalism 
�tolerance geometry�. The notion of �tolerance geometry� was 
proposed by F.S. Roberts for any geometry whose primitives are 
obtained by �substituting closeness for identity� ([17], p.68). 

As a consequence of introducing extension, six �new qualities� 
emerge in connection with Euclid�s first postulate: positional 
tolerance of incidence, graduation of equality of points and of 
lines, significance of size and distance, granularity, and weak 
transitivity of equality. We provide a formalization of Euclid�s 
first postulate for extended primitives that accounts for these �new 
qualities�. One way to define a graduated version of the equality 
relation is to define a reasonable fuzzy extension. The proposed 
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formalization of Euclid�s first postulate extends the Boolean 
formalization by translating it into fuzzy logic, and adapting it to 
fit the granularity component. Due to its metric properties, we 
choose Łukasiewicz t-norm fuzzy logic. We provide a model of 
the proposed fuzzy formalization in the projective plane with the 
elliptic metric. Since the elliptic plane is locally Euclidean, the 
proposed model is an approximation for Euclidean reasoning.   

As a means of approximating and propagating positional 
tolerance, we introduce graduated geometric reasoning with 
Rational Pavelka Logic. Rational Pavelka Logic builds upon 
Łukasiewicz fuzzy logic, and allows for deriving a degree of 
equality of extended lines from Euclid�s first postulate.  

The remainder of the paper is structured as follows: Section 2 
gives a review of related work. Section 3 discusses general 
assumptions on points and lines with extension, and provides a 
formal interpretation in the projective plane with elliptic metric. 
We derive a list of six �new qualities� that result from introducing 
extended primitives into Euclid�s first postulate. Section 4 
develops formal interpretations of the incidence and equality 
relations for extended primitives that are based on the six new 
qualities. Section 5 gives a fuzzification of Euclid�s first postulate 
in Łukasiewicz logic. Section 6 introduces approximate geometric 
reasoning with Rational Pavelka Logic, and exemplifies its 
application to the fuzzified Euclid�s first postulate and tolerance 
propagation. Section 7 concludes with a summary of contributions 
and a discussion of further work. 

2. RELATED WORK 
Extended objects may be interpreted as location constraints. The 
issue of geometric reasoning with extended objects can be seen as 
a special case of geometric reasoning with positional tolerance. In 
the field of GIS, the concept of epsilon-tolerance has been used 
extensively. One of the oldest references addressing this topic 
dates back to 1966: J. Perkal [13] introduced the concept of 
epsilon-bands for empirical curves. Other references are, e.g., 
Pullar [16] and Christman et. al. [3], who address the problem of 
spurious objects and numerical inconsistencies caused by digital 
arithmetic. An example of a recent reference is E. Clementini [4], 
who gives a model for GIS line features that have extension. 
Clementini�s model is built upon the model for regions with broad 
boundaries and allows for deriving topological relations between 
�uncertain lines�, but does not discuss geometrical operations. The 
different approaches improved on a multitude of practical 
problems like e.g. coincidence of points, line crossing, conflation, 
or data integration. Yet, a closed and consistent solution for 
geometric operations is still missing. The present work addresses 
the issue of consistency by adopting an axiomatic approach which 
extends the classical axioms of exact Euclidean geometry. This 
has three advantages: First, it is structurally close to exact 
geometry. Second, consistency of the calculus can be investigated 
with the tools of mathematical logic. Third, it allows for logical 
deduction and theorem proving. 

In 1973, F.S. Roberts [17] developed an axiomatic �tolerance 
geometry� to describe the indistinguishability of stimuli in visual 
perception. His work is based on Tarski�s axiomatization of 
elementary geometry [21] for the simplest case of one-
dimensional finite point sets. Positional tolerance is introduced by 
replacing the primitive relation of betweenness by the notion of  
ε -betwenness, which tolerates fixed but arbitrary positional 

errors smaller then ε . In 1980 M. Katz extended Robert�s work to 
variable tolerance thresholds and infinite one-dimensional point 
sets [11]. Based on Goguen�s logic of inexactness [8] Katz 
introduces graduated equality and betweenness relations. Instead 
of using Tarski�s axiomatization of elementary geometry, the 
present approach is based on (a small part of) the axiomatization 
given by D. Hilbert [10]. While Tarski uses points as the only sort 
of objects, Hilbert follows the traditional approach of a two-sorted 
formulation based on points and lines. This is advantageous for 
GIS applications, where lines with positional tolerance are often 
initially given and not derived from points with positional 
tolerance.  

In his 1989 doctoral thesis called �fuzzy geometry� [15] T. Poston 
lays the foundations for a mathematics that is based on ε -points 
with crisp, i.e. non-graduated, thresholds. Several of the formal 
concepts used in the present paper are graduated versions of 
concepts introduced by Poston. Numerous axiomatic approaches 
exist, that aim at restoring exact geometry from primitives that 
have extension. The best known of these approaches is A. 
Tarski�s Geometry of Solids [20]. A comprehensive overview of 
such �point-free geometries� is given in [6]. In the GIS 
community B. Bennett�s �Region Based Geometry� [1] is of 
particular relevance. In contrast to these approaches, the present 
work aims at approximating the behavior of exact geometry with 
extended primitives.  

In GIS, fuzzy set theory is used to describe geographic entities 
with unsharp boundaries (cf. e.g. [5]). As opposed to this, the 
present paper addresses crisp entities and uses mathematical t-
norm fuzzy logic [9] to fuzzify geometric reasoning. 

3. EXTENDED GEOMETRIC PRIMITIVES 
Axiomatic geometry is an abstract logical theory, and as such is 
specified by a set of axioms. A model of a logical theory is an 
interpretation of its primitives in another domain, such that the 
axioms are satisfied. For example, the Cartesian model of 
Euclidean geometry provides an interpretation of the geometric 
primitives point, line, equality, incidence, congruency, etc. in the 
real plane , which is the domain of the interpretation. It can be 
shown that the Cartesian interpretation satisfies the Euclidean 
axioms. As a first step towards a geometric theory of extended 
points and lines, the present paper is concerned with only one 
axiom, namely Euclid�s first postulate, which is a part of all 
classical geometries, in particular of Euclidean and projective 
geometry. It uses the primitive objects point and line, and the 
primitive relations equality and incidence. 

2!

In subsection 3.1 we propose an interpretation of the geometric 
primitives point and line, which captures an intuitive meaning of 
�point with extension� and �line with extension� from a GIS 
perspective. Subsections 3.2 - 3.7 investigate the primitive 
relations equality and incidence for �points with extension� and 
�lines with extension� w.r.t. Euclid�s first postulate: Six �new 
qualities� are identified that must be taken into account when 
defining an appropriate interpretation of equality and incidence. 
These new qualities are the following:  

1) Incidence of �points and lines with extension� has 
positional tolerance (subsection 3.2). 
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2) Equality of �lines with extension� is graduated 
(subsection 3.3). 

3) Equality of �points with extension� is graduated 
(subsection 3.4). 

4) Size and distance matter (subsection 3.5). 
5) Extension introduces granularity (subsection 3.6). 
6) Graduated equality is weakly transitive (subsection 3.7). 

3.1 Points and Lines with Extension 
In the present paper we are concerned with geographic entities 
that have extension in space, and whose GIS representations are 
intended to be used as primitive objects of a geometric 
construction. We refer to such entities as �points with extension� 
and �lines with extension�. This subsection gives a formal 
definition of these notions. 
We confine our considerations to two dimensional object 
representations with sharp (�crisp�) boundaries: For such objects, 
the indeterminacy of the object�s boundary is negligible compared 
to its extension in space. Examples are parcels of land, buildings, 
countries, most lakes, roads, or streams. We do not consider point 
measurements like GPS coordinate points, which might have 
relevant measurement inaccuracy. We also do not consider 
objects with vague boundaries like mountains or pollution 
plumes.  
We differentiate between an actual GIS object representation (e.g. 
in a user data set), and a potential representation as an extended 
object in an underlying metric space (e.g. in a reference data set). 
As shown in the introduction using the example of Vienna, the 
actual GIS object representation can be punctual, while 
potentially the objects� extension can be displayed, e.g. in a 
different level of detail. In other words, a metric space exists, 
where the object�s extension can be represented.  
For object representation in GIS it is common to use either 
Cartesian coordinates or homogeneous coordinates. 
Homogeneous coordinates are coordinates for the projective 
plane. The present paper uses the spherical model of the 
projective plane  as an interpretation domain for defining 
�point with extension� and �line with extension�. Before doing so, 
we give some preliminary definitions (cf. [2]): 

2P"

Definition 1. The spherical model of the projective plane is 
defined as the three dimensional real unit sphere 

{ }2 3: |p p= ∈ =!S" 1  where antipodal points,  and p+ p−  are 

identified, i.e. 2 2:=P" S"± . The elements of  are called 

projective points. Projective lines are the great circles of , 
where antipodal points are identified.  

2P"
2S"

Definition 2. The elliptic metric on is defined by 2P"

 2: [0, 2], ( , ) : Arccosp q p qε π ε→ =P" ⋅ , (1) 

where  denotes the standard inner 

product in .  
1 1 2 2 3 3p q p q p q p q⋅ = + +

3!
The elliptic metric is a metric distance and the canonical metric in 
the projective plane. The elliptic distance between two projective 

points is the acute angle between corresponding -points on the 
unit sphere. Projective lines are isomorphic to a circle, and 
consequently are unbounded, but have finite length. Since 
antipodal points are identified, the elliptic length of an exact line 
is

3!

π , and the maximal elliptic distance of any two points is 2π . 
Locally, i.e. for small distances, the elliptic distance approximates 
the Euclidean distance. Every non-zero scaling of ε  is also a 

metric distance on , and is also called an elliptic metric [2]. In 
the present paper, we use the elliptic metric

2P"
(2 )π ε⋅ . Here, the 

maximum distance of any two points is 1. We call the projective 
plane, endowed with the elliptic metric (2 )π ε⋅ , the elliptic 
plane.  
With the terms �point with extension� and �line with extension� 
we refer to an augmentation of the elliptic interpretation of 
projective geometry: A projective point in the elliptic plane can 
be viewed as a point on (one hemisphere of) the unit sphere. We 
can �add extension� to the point by considering a topological 
neighborhood of the point. Here, the topology used is the 
topology induced by the elliptic metric. Using the duality of 
projective points and lines, we can �add extension� to a projective 
line by considering a topological neighborhood of its dual 
projective point: In the spherical model of the projective plane, 
the dual projective point of a projective line is perpendicular to 
the great circle representing the projective line. It represents the 
line�s parameters. In the homogeneous plane, these parameters 
can be interpreted as �parallel distance� and direction of the 
projective line. In other words, an extended elliptic line consists 
of projective lines whose parameters vary continuously. 

Definition 3. An extended elliptic point is a non-empty bounded 
and regular closed subset of the elliptic plane. An extended 
elliptic line is a set of projective lines in the elliptic plane whose 
corresponding set of dual projective points is an extended elliptic 
point. 
The reason for not using the Euclidean plane as an interpretation 
domain is that the Euclidean plane does not provide a canonical 
metric distance between Euclidean lines. Using parallel distance 
and direction as parameters is possible, but is not compatible with 
the Euclidean distance between Euclidean points.  
In the remainder of the paper we use the term ´exact point (line)´ 
to denote a projective point (line), and the term ´extended point 
(line)´ to denote an extended elliptic point (line). With the term 
point (line), written in italic, we denote a variable of the logical 
theory, without assigning a specific interpretation. 

3.2 Incidence of Extended Points and Lines 
has Positional Tolerance 
In the last subsection, we gave an interpretation of the geometric 
primitives point and line that adds extension to the usual elliptic 
interpretation. The present subsection shows that an appropriate 
interpretation of the primitive relation of incidence should 
incorporate positional tolerance.  
As an illustration, Figure 2 (see Appendix) sketches three typical 
geographic scenarios, where two extended objects can be 
classified as incident: Figure 2a shows a floating water mill that is 
installed in a stream. The polygon representing the mill can be 
interpreted as an extended point; the stream can be interpreted as 
(a segment of) an extended line. The polygon representing the 
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mill overlaps with the polygon representing the stream. Figure 2b 
shows tracks of a city railway, and a station building, whose 
representation overlaps with the railway tracks. Figure 2c shows a 
marina on the banks of a stream. If the marina is aggregated to a 
single polygon, it overlaps the polygon representing the stream. 
These examples suggest that incidence of extended objects should 
be modeled by the overlap relation.  

In exact geometry, incidence of a point and a line determines the 
position of the point up to one dimension along the line. The 
overlap relation does not determine the position of the extended 
point up to one dimension, but allows for some positional 
tolerance in both dimensions.  
In the present paper we simplify the formalizing task by limiting 
the scope of the incidence relation: instead of considering an 
overlap relation, we model incidence by the subset relation. In 
other words, an extended line can not be incident with a point that 
is �larger� than itself. In Figure 2, only example (a) of the floating 
water mill complies with this interpretation. In the sequel, we say 
�P is incident with Q�, if the extended point P is a subset of the 
extended line Q. 

3.3 Equality of Extended Lines is Graduated 
In the exact model of geometry, Euclid�s first postulate 
guarantees that two distinct exact points   and q  uniquely 
determine an exact line. This is not the case for extended points 
and lines, where incidence is interpreted by the subset relation: 
Figure 3a (see Appendix) illustrates that if two distinct extended 
points 

p

P  and Q  are incident with two extended lines  and 
, then  and  are not necessarily equal in the sense of set 

equality. In other words, Euclid�s first postulate does not apply if 
the primitive relation of equality is interpreted by set equality. To 
restore the validity of Euclid�s first postulate, the interpretation of 
equality must be redefined.  

1L

2L 1L 2L

P and Q do not uniquely determine an extended line. Yet, if two 
lines  and  are incident with P and Q, they are �closer 
together�, i.e. �more equal� than arbitrary extended lines that are 
not constrained by incidence with P and Q. The further P and Q 
move apart from each other, the closer, i.e. �more equal�,  and 

become. One way to model this fact is to allow for degrees of 
equality of extended lines. Graduated equality should be an 
inverse distance measure. 

1L 2L

1L

2L

3.4 Equality of Extended Points is Graduated 
Graduated equality of extended lines compels graduated equality 
of extended points. As an example, Figure 3b sketches a situation 
where two extended lines L and  intersect in an extended 
point

1L

1P . Another extended line  is close to , i.e.  and  
are �very equal�. The extended point 

2L 1L 1L 2L

2P  lies in the set-
intersection of  and . Consequently, 2L L 2P  is closer to 1P  than 
most arbitrary extended points who are not constrained by , , 
and . In other words, the �more equal� and  are, the 
�more equal� are 

L 1L

2L 1L 2L

1P  and 2P . We model this fact by allowing for 
degrees of equality of extended points. Again, graduated equality 
should be an inverse distance measure. 

3.5 Size and Distance matter 
In exact coordinate geometry, points and lines have discrete size 
and distance: A point or line has (infinitely small) size if it exists, 
and no size, if it does not exist. Two exact points or lines have 
distance, if they are distinct, and have no distance, if they are 
equal1. In case points and lines have extension, size and distance 
are measured continuously, and are real-valued. Their values 
influence the degree of equality of two extended points or lines.  

As an example, Figure 4 (see Appendix) shows two extended 
points P and Q, and an extended line L that is incident with P and 
Q. The arrows indicate the two degrees of freedom that are 
induced by the incidence relation, namely direction (Figure 4a) 
and �parallel distance� (Figure 4b). Using the example of the 
directional parameter, Figure 4c illustrates that the positional 
tolerance of L increases with the size of L. Consequently, the 
(minimal possible) degree of equality of two incident extended 
lines decreases with their sizes. Similarly it can be seen that it 
increases with increasing sizes of P and Q. Figure 4d shows that 
the (minimal possible) degree of equality of two incident 
extended lines decreases with the distance of P and Q. 

3.6 Extension Introduces Granularity 
In exact coordinate geometry, distance is measured discretely. As 
a consequence, two distinct coordinate points   and  
determine a coordinate line uniquely, even if  and q  are 
arbitrarily close to one another. This is not necessarily the case for 
distinct extended points 

p q
p

P  and Q . To see this, imagine that the 
extended points P and Q in Figure 3a move closer together: If  P  
and  are �very close� to one another and the extended line   
is �too broad�, then it may happen that 

Q L
P  and   behave like 

one single point with respect to . 
Q

L

Figure 5a (see Appendix) illustrates this case: Despite the fact that 
P and Q are distinct extended points that are both incident with L, 
they do not specify any directional constraint for L. 
Consequently, the difference between the directional parameters 
of two incident lines may assume its maximum (90°), like it is the 
case for L and L´ in Figure 5a. Since we measure graduated 
equality of extended lines inverse to distance, and since the 
distance between extended lines depends on the two parameters 
parallel distance and direction, L and L´ in Figure 5a have 
maximum distance. In other words, their degree of equality is 
zero, even though they are distinct and incident with P and Q.  

The above observation can be interpreted as granularity. Note 
that in this context grain size is not constant, but depends on the 
sizes of the involved extended objects. 

3.7 Graduated Equality is Weakly Transitive  
As stated in subsections 3.3 and 3.4, it is reasonable to assume 
that graduated equality is inverse to distance. As a consequence, 
graduated equality is not transitive in the classical sense: Figure 
5b sketches three equidistant extended lines ,  and . Since 
the pairs , and ,  are equidistant, they should be 

1L 2L 3L

1L 2L 2L 3L

                                                                 
1 This is the discrete metric Δ , defined by , if ( , ) 1p qΔ = p q≠ , 

and ( , ) 0p qΔ = , if p q= . 

4 



---- DRAFT ---- 

assigned the same degree of equality λ . Yet, we must not 
conclude that  and  are equal to degree1L 3L λ , since they have 
larger distance.  

Yet, we can not afford to drop transitivity completely (cf. [25]): 
In the setting of Euclid�s first postulate shown in Figure 6a (see 
Appendix), the only relation between the extended lines and 

 is established by the fact that both are incident with P and Q. 
This can be interpreted as a weak form of transitivity. To see this, 
define  

1L

2L

 ( , ): { | , , }p qPQ l p P q Q p q= ∈ ∈ ≠ , (2) 

where  is the unique exact line connecting the exact points p 

and q (Figure 6b). Assume that  is equal to  
( , )p ql

1L PQ  with degree 1λ  

(Figure 6c), that PQ  is equal to  with degree2L 2λ  (Figure 6d), 
and that  is equal to  with degree1L 2L μ . The equality degree μ  
is in general larger than the equality degree of two arbitrary 
extended lines, since arbitrary extended lines can have maximum 
distance (zero equality). In contrast to this, μ  depends on P and 
Q, and consequently on 1λ  and 2λ .  We will show in subsection 
4.2.4 how this relationship can be formalized.  
The phenomenon is a graduated version of the Poincaré paradox 
[7], which is named after the famous French mathematician and 
theoretical physicist Henri Poincaré. Poincaré repeatedly pointed 
out that equality of sensations and measurements are in many 
cases intransitive (cf. e.g. [14]).  

4. EQUALITY AND INCIDENCE OF 
EXTENDED POINTS AND LINES 
Subsection 3.1 gave an interpretation of the primitive objects 
point and line that adds extension to the usual elliptic 
interpretation. In the present section, we develop interpretations 
of the primitive relations equality and incidence for extended 
points and lines based on the six �new qualities� identified in 
subsections 3.2 - 3.7.  

4.1 Incidence of Extended Points and Lines 
As stated in subsection 3.2, it is reasonable to interpret incidence 
of extended points and lines by the subset relation. 

Definition 4: The incidence relation between an extended point P 
and an extended line L is defined by 

 ( )( , ) :   {0,1},on P L P L= ⊆ ∈  (3) 

where the subset relation  refers to P and L as subsets of the 
elliptic plane.  

⊆

The incidence relation (3) is a Boolean relation, assuming either 
the truth value 1 (true) or the truth value 0 (false). Since a 
Boolean relation is a special case of a graduated relation, i.e. since 

, we will be able to use relation {0,1} [0,1]⊂ (3) as part of a fuzzy 
theory later on.  

4.2 Equality of Extended Points and Lines 
As stated in subsections 3.3 and 3.4, it is reasonable to interpret 
equality of extended points (lines) by a graduated relation that is 
inverse proportional to their distance. We represent graduated 
equality as a logical predicate in Łukasiewicz fuzzy logic, since 
Łukasiewicz fuzzy logic bears a strong connection to metric 
distance. Subsection 4.2.1 briefly introduces the operators and 
some properties of Łukasiewicz logic, which we will use in the 
present section and in sections 5 and 6. Subsections 4.2.2 - 4.2.4 
establish the connection with metric distance and show how to 
account for weak transitivity introduced in subsection 3.7. 
Subsection 4.2.5 derives a set of boundary conditions that are 
necessary to incorporate granularity (cf. section 3.6). Finally, 
subsection 4.2.6. defines an interpretation of equality of extended 
points that complies with these granularity conditions. 

4.2.1 Łukasiewicz Logic 
Łukasiewicz logic is one of the three fundamental t-norm fuzzy 
logics. In t-norm fuzzy logics, a triangular norm (t-norm) plays 
the role of a graduated conjunction operator. A t-norm is a binary 
operation   that is commutative, associative, non-
decreasing, and has 1 as its unit element [9]. The Łukasiewicz t-
norm 

2: [0,1] [0,1]∗ →

⊗ , its residuated implication  → , and the corresponding 
negation ¬  are given by 

 { }max 1,0x y x y⊗ = + − , (4) 

 
1            for     
1  for   

x y
x y

x y x y
≤⎧

→ = ⎨ − + >⎩
, (5) 

 ( ) ( )1x x¬ = − , (6) 

respectively. In section 6.2, we will need the following 
equivalences: 

 [ ] 1    x y x→ = ⇔ ≤ y , (7) 

 ( ) (1    1x z y z x y)⎡ ⊗ → ⎤ = ⇔ ⎡ → → ⎤ =⎣ ⎦ ⎣ ⎦ . (8) 

4.2.2 Pseudometric Distance 
A pseudometric distance, or pseudometric, is a map 

2:d M +→ !  from a domain M  into the positive real numbers 
(including zero), which is minimal, symmetric, and satisfies the 
triangle inequality: 

  (9) ( , ) 0 d x x =

  (10) ( , ) ( , )d x y d y x=

 ( , ) ( , ) ( , ).d x y d y z d x z+ ≥  (11) 

d  is called a metric, if additionally separability holds:  

 ( , ) 0  .d x y x y= ⇔ =  (12) 

Well known examples of metric distances are the Euclidean 
distance, or the Manhattan distance. Another example is the 
elliptic metric for the projective plane defined in (1). 
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4.2.3 Fuzzy Equivalence Relations 
The concept of a pseudometric distance is dual to the concept of  
a Łukasiewicz fuzzy equivalence relation: A fuzzy equivalence 
relation w.r.t. the Łukasiewicz t-norm  is a fuzzy relation 

 on a domain 
⊗

2: [0e M → ,1] M , which is reflexive, symmetric 
and -transitive: ⊗

  (13) ( , ) 1e x x =

  (14) ( , ) ( , )e x y e y x=

  (15) ( , ) ( , ) ( , ).e x y e y z e x z⊗ ≤

e is called a fuzzy equality relation, if  additionally separability 
holds: 

  (16) ( , ) 1  .e x y x y= ⇔ =

If d is a pseudometric distance, then  

 { }( , ) : max 1 ( , ),0e x y d x y= −  (17) 

is a fuzzy equivalence relation w.r.t. [22]. In case the size of the 
domain 

⊗
M  is normalized to 1 , equation (17) simplifies to  

  (18) ( , ) : 1 ( , ).e x y d x y= −

In other words, given a metric distance d on a normalized domain, 
equation (18) defines a graduated equality relation e by simple 
Łukasiewicz negation. 

4.2.4 Approximate Fuzzy Equivalence Relations 
As stated in subsection 3.7, a graduated equality relation between 
extended points or lines should be modeled by a weak form of 
transitivity. G. Gerla [7] shows that weak transitivity can be 
formalized by adding to the classical transitivity axiom (14) a 
graduated transitivity measure :  : [0,trans M → 1]

 . (19) ( , ) ( , ) ( ) ( , )e x y e y z trans y e x z⊗ ⊗ ≤

Here, trans(y) is a lower bound to the degree of transitivity that is 
permitted by y, i.e. 

          . (20) ( ) inf{ ( , ) ( , ) ( , ) | , }trans y e x y e y z e x z x y M≤ ⊗ → ∈

A pair (e,trans) that is reflexive (13), symmetric (14), and weakly 
transitive (19) is called an approximate fuzzy -equivalence 
relation

⊗
2.  

The concept of an approximate fuzzy -equivalence relation is 
dual to the concept of a pointless pseudometric space 

⊗
( , )sδ  [7]:  

 ( , ) 0,x xδ =  (21) 

 ( , ) ( , ),x y y xδ δ=  (22) 

 ( , ) ( , ) ( ) ( , ).x y y z s y x zδ δ δ+ + ≥  (23) 

                                                                 
2 Gerla uses the name approximate similarity relation. In the 

present abstract we use the name approximate fuzzy equivalence 
relation to stress the connection with the Boolean equality 
relation used in Euclid�s first postulate.  

Here, : Mδ +→ !  is a (not necessarily metric) distance between 

sets, and :s M +→!  is a size measure. More specifically, ( )s y  
is an upper bound to the size of y. Inequality (23) is a weak form 
of the triangle inequality (5). It corresponds to the weak 
transitivity (19) of the approximate fuzzy ⊗ -equivalence 
relation . In case the size of the domain e M  is normalized to 1 , 

 and trans can be represented by  e

 ( , ) : 1 ( , ),e x y x yδ= −    (24) ( ) : 1 ( )trans y s y= −

[7]. In other words, given a pointless pseudometric ( , )sδ  for 
extended regions on a normalized domain, equations (24) define 
an approximate fuzzy ⊗ -equivalence relation (e,trans) by simple 
Łukasiewicz negation.  

The extended points in the elliptic plane define a pointless 
pseudometric space, if we define ( , )sδ  as follows:  

 { }( , ) : inf ( , ) | , ,P Q d p q p P q Qδ = ∈ ∈  (25) 

 { }( ) : sup ( , ) | , ,s P d p q p q P= ∈  (26) 

where [ ] 2: (2 ) : [0,1]d π ε= ⋅ →P  is the scaled elliptic metric 
defined in section 3.1. The extended lines in the elliptic plane 
define a pointless pseudometric space, if we define ( , )sδ  by  

 { }1 2 1 2 1 1 2 2( , ) : inf ( , ) | , ,L L d l l l L l Lδ ′ ′= ∈ ∈  (27) 

 { }1 2 1 2( ) : sup ( , ) | , ,s L d l l l l L′ ′= ∈  (28) 

where  denote the dual points of the projective lines . ', 'l m ,l m

4.2.5 Boundary Conditions for Granularity  
As discussed in section 3.6 granularity enters Euclid�s first 
postulate, if points and lines have extension: If two extended 
points P and Q are �too close� and the extended line L is �too 
broad�, then P and Q  behave like one single point w.r.t. the 
positional tolerance of L induced by the incidence relation. In 
other words, the degree of equality of P and Q depends not only 
on their distance - which we defined in (25) -, but also on their 
sizes (26) and on the size of L (28). For this reason we denote the 
graduated equality relation of P and Q w.r.t. L by , 
where L is included as an additional parameter.  

( , )[ ]e P Q L

Any interpretation of the graduated equality predicate  
 should satisfy the following three boundary 

conditions:  
( , )[ ]e P Q L

1. If ( ) ( , ) ( ) ( )s L P Q s P s Qδ≥ + + , then the positional tolerance 
of L is not constrained by the incidence relation (cf. Figure 
5a), i.e. P and Q are fully equal w.r.t. L: ( , )[ ] 1e P Q L = . 

2. If ( ) ( , ) ( ) ( )s L P Q s P s Qδ≤ + + , then the incidence relation 
imposes some constraint on the positional tolerance of L, but 
in general does not fix the location of L uniquely. The degree 
of equality of P  and Q  w.r.t. L should lie between zero and 
one: 0 ( , )[ ]e P Q L 1< .   <

3. If ( ) ( , ) ( ) ( )s L P Q s P s Qδ≤ + +  and , P p= Q q=  and L l=  
are exact, then ( ) ( ) ( ) 0s L s P s Q= = = . Consequently, P and 
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Q determine the location of L uniquely, and we measure the 
equality of P and Q by the discrete metric: ( , )[ ] 0e P Q L = .  

4.2.6 An Elliptic Model of Granulated Equality  
From the boundary conditions on granularity proposed in the 
forgoing subsection, we can derive an interpretation of granulated 
graduated equality in the elliptic plane. Unfortunately the 
derivation is too long for presentation in the present paper. 
Instead, it is available on the authors� website [24].  
Definition 5. The equality relation for extended points P, Q w.r.t. 
an extended line L, is defined by 

 ({ ) }( , )[ ] : (2 ) min Arcsin ( , )[ ] , 1e P Q L H P Q Lπ=  (29) 

where  

   (30) 
( , )[ ],    if   ( , ) ( ) ( ) 0,

( , )[ ] :
              ,   if   ( , ) ( ) ( ) 0,
h P Q L P Q s P s Q

H P Q L
P Q s P s Q

δ
δ

+ + ≠⎧
= ⎨ + + =⎩ ∞

and  

 
( )

( ) ( )
tan 4 ( )

( , )[ ] :
tan 4 ( , ) ( ) ( )

s L
h P Q L

P Q s P s Q
π

π δ
⎡ ⋅ ⎤⎣ ⎦=

⎡ ⋅ + +⎣ ⎤⎦
. (31) 

Here, ( , )P Qδ , ( )s P , ( )s Q  and ( )s L  are defined in (25),  (26) 
and (28).  

5. A FUZZIFICATION OF EUCLID�S 
FIRST POSTULATE 
In sections 3 and 4 we gave interpretations of the geometric 
primitives point, line, incidence, and equality, which add 
extension to the usual elliptic interpretation. The present section 
shows that the proposed interpretation satisfies an adapted version 
of Euclid�s first postulate. An adaptation is necessary, since  

1. the classical (exact) version of Euclid�s first postulate  
is formulated in Boolean logic, whereas the proposed 
interpretation uses fuzzy, i.e. multi-valued, relations.  

2. Adding extension to exact points and lines introduces 
size as an additional parameter, which enters Euclid�s 
first postulate in the form of the transitivity degree 
trans.  

To formulate a fuzzified version of Euclid�s first postulate, we 
first split the postulate  

              "Tw  (32) o distinct points determine a line uniquely."

in two subsentences: 

         "G  (33) iven two distinct points, at least one line exists 
 that passes through them. "

"If more than one line passes through two distinct points, 
 then these lines are equal." (34) 

A formalization in Boolean predicate logic reads as follows: 

 [ ] [ ]( , ) ( , )p q   l  on p l on q l¬ = → ∃ ∧ , (35) 

 
[ ] 1 1

2 2 1

( , )  ( , )  

             ( , )  ( , )   ( )

p q on p l on q l

on p l on q l l l

¬ = ∧ ∧⎡ ⎤⎣ ⎦
∧ ∧ →⎡ ⎤⎣ ⎦ 2=

 (36) 

Here, p,q stand for points, and  stand for lines. The Boolean 
predicates = and on refer to equality and incidence. 

1 2,l l
∃  denotes the 

existential quantifier, , ,¬ ∧ →  stand for Boolean negation, 
conjunction, and implication, respectively.  

A verbatim translation of (35) and (36) in the language of 
Łukasiewicz fuzzy logic yields 

 [ ]( , ) sup ( , ) ( , )
L

e P Q on P L on Q L¬ → ⊗ , (37) 

  (38) 1 1

2 2 1

( , )  ( , ) ( , )

              ( , ) ( , )   ( , ),

e P Q on P L on Q L

on P L on Q L e L L

¬ ⊗ ⊗⎡ ⎤⎣ ⎦
⊗ ⊗ →⎡ ⎤⎣ ⎦ 2

where P, Q denote points,  denote lines. The symbol e 
replaces the symbol = for equality, since = is usually reserved to 
denote Boolean equality, on denotes incidence. The Łukasiewicz 
conjunction 

1 2,L L

⊗ , negation ¬ , and implication →  have been 
introduced in section 4.2.1. The existential quantifier is replaced 
by the supremum operator sup [9]. 
The translated existence property (37) can be adopted as it is, 
since we define on as a Boolean relation (cf. Definition 4). The 
translated uniqueness property (38) must be adapted to the 
graduated and granulated version of equality given in  Definition 
5: We replace the term ( , )e P Q¬  on the left hand side of (38) by 
two terms, 1( , )[ ]e P Q L¬  and , one for each line, 

and , respectively. Since weak transitivity is used to relate 
the equality degrees of  and via P and Q, the transitivity 

measure 

2( , )[ ]e P Q L¬

1L 2L

1L 2L

( )trans PQ  must be added:  

1 2

1 1

2 2 1

( , )[ ]  ( , )[ ]  ( )

                          ( , )  ( , ) 

                         ( , )  ( , )   ( , ).

e P Q L e P Q L trans PQ

on P L on Q L

on P L on Q L e L L

⎡ ⎤¬ ⊗ ¬ ⊗⎣ ⎦
⊗ ⊗⎡ ⎤⎣ ⎦
⊗ ⊗ →⎡ ⎤⎣ ⎦ 2

 (39) 

It is possible to prove that the elliptic interpretations of incidence 
given by (3), graduated equality of extended lines given by (24) 
and (27), and granulated graduated equality of extended points 
given by (29) define a model of the proposed axioms (37) and 
(39). In other words, axioms (37) and (39) are satisfied with truth 
degree 1. Unfortunately, the length restriction of the present paper 
format does not allow for presenting it here. Instead, we provide 
the proof on the author�s website [24]. 

6. GRADUATED GEOMETRIC 
REASONING 
In this last section we address the question of how the adapted 
version of Euclid�s first postulate given in (37) and (39) can be 
used in practical applications. Section 6.1 introduces Rational 
Pavelka Logic (RPL) as a tool for approximate reasoning. Section 
6.2 shows how RPL can be used to propagate positional tolerance 
through the steps of a geometric construction.  
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6.1 Rational Pavelka Logic 
As stated in section 4.2, one reason for choosing Łukasiewicz 
logic is its strong connection to metric spaces. Another reason is 
that Łukasiewicz logic can be extended to allow for graduated 
deduction rules in the style of J. Pavelka ([9], [12]). The 
according logic is called Rational Pavelka Logic (RPL). In RPL, 
graduated deduction rules allow for inferring partially true 
conclusions from partially true assumptions. This is useful in our 
setting: We can interpret an equality of degree [0,1]λ ∈  of two 
extended lines and  as the truth degree of the proposition 
� and  are equal�. 

1L 2L

1L 2L

As the most important deduction rule, we address Modus Ponens 
(MP), which, in the classical case, is given by  

 ,: A A BMP  
B
→ . (40) 

MP says that if the formulas A and A B→  have truth degree 1, 
then formula B has truth degree 1. The Graduated Modus Ponens  
rule (GMP) of RPL is given by 

             
( ) ( )

( )
,  , ,  

:  
,  [ ]

A

A A B

A A B
GMP

B
λ λ

λ λ
→

→

→

⊗
A B . (41) 

Here, a pair ( , )XX λ  is called graduated formula: X is a syntactic 
formula, and  [0,1]Xλ ∈  is a truth degree. GMP says that if the 
formula A has truth degree Aλ , and if formula A B→  has truth 
degree A Bλ → , then formula B has at least truth degree 

A A Bλ λ →⊗ .  In other words, GMP derives a lower bound 
approximation of the real truth degree of B. A A Bλ λ →⊗  is called 
a deduced truth degree. 
In order to distinguish real and deduced truth degree, we denote 
the real truth degree of a syntactic formula B by BB λ= , and a 
deduced truth degree for B by Bλ . If a formula X is the result of 
repeated application of GMP, then its deduced truth degree Xλ  
can be interpreted as a proof of the fact that X XX λ λ= ≥ . In 
RPL, different proofs can yield different deduced truth degrees 
for the same formula X. Consequently, 0Xλ =  only means that 
no information on the truth degree of X can be deduced from the 
given facts.  

6.2 Euclid�s First Postulate and Graduated 
Modus Ponens 
If two extended points P and Q are incident with the extended 
lines  and , we can use GMP to derive a lower bound 
approximation for the equality of  and  from axiom 

1L 2L

1L 2L (39).  

Before doing the deduction, we simplify axiom (39): If P and Q 
are incident with  and , the Boolean incidence predicate 
defined in 

1L 2L
(3)  has truth value 1 for all instances:  

 ( ) ( ) ( ) ( )1 1 2 2, , , ,on P L on Q L on P L on Q L= = =

1 2( , )[ ]  ( , )[ ]  ( )  ( , )e P Q L e P Q L trans PQ e L L⎡ ⎤¬ ⊗ ¬ ⊗ →⎣ ⎦ 1 2 . (43) 

Using the equivalence (8) introduced in section 4.2.1, we can 
rewrite (43) as series of implications: 

2 1 1( ) ( , )[ ] ( , )[ ] ( , )trans PQ e P Q L e P Q L e L L2⎡ ⎤→ ¬ → ¬ →⎡ ⎤⎣ ⎦⎣ ⎦ . (44) 

If the sizes s(P), s(Q), and the set distance ( , )P Qδ  of P and Q are 
known, we can apply GMP successively to the graduated 

formulas ( )trans(PQ)( ),trans PQ  λ , ( )2e(P,Q)[L ]2e(P,Q)[L ], λ , 

( )1e(P,Q)[L ]1e(P,Q)[L ], λ , and (44). Here, the truth degree 

trans(PQ)λ  must be estimated from s(P) and s(Q). The truth 

degrees 
2e(P,Q)[L ]λ  and 

1e(P,Q)[L ]λ  can be calculated from 

formula (29). The truth degree of (44) equals 1: Since (44) is a 
simplified version of axiom (39), it is satisfied by the 
interpretations of point, line, incidence and equality introduced in 
sections 3.1, 4.1, and 4.2.6 (cf. section 5). 

The result of the deduction is the deduced truth degree 

 
1 2 1 2e(L ,L ) e(P,Q)[L ] e(P,Q)[L ] trans(PQ)λ λ λ λ= ⊗ ⊗ , (45) 

which is a lower bound approximation of the real truth degree 

1 21 2 e(L ,L )( , )e L L λ= , i.e. for the degree of equality of  and . 1L 2L

The approximation 
1 2e(L ,L )λ  is an inverse measure of the 

positional tolerance of a �connection� of P and Q. This can be 
seen as follows: If  and  have the same size1L 2L 0s , they can be 
interpreted as different positions (locations) of the same extended 
line. Since the real equality degree 1 2 1 2( , ) 1 ( , )e L L L Lδ= −  is 
inverse to the distance of , cf. 1 2,L L (24),  

 
1 2 1 2e(L ,L ) e(L ,L )1 ( ) 1 11 2 1 2(L ,L ) e L ,Lδ λ= − = − ≤ − λ  (46) 

holds for all extended lines  of size 1 2,L L 0s  that are incident 
with P and Q. In other words, 

1 2 1 2(L ,L ) e(L ,L ): 1δλ λ= −  is an upper 

bound approximation for the positional tolerance of an 0s -sized  
�connection� of P and Q. 

Axioms (37) and (39) for the adapted version of Euclid�s first 
postulate can be summarized as follows:  

                "Tw       (47) o distinct extended points determine an 
extended line up to positional tolerance."

In practical application, a warning can be given, if the 
approximated positional tolerance of a construction exceeds a 
predefined threshold.  In such a case, the real positional tolerance 
value does not necessarily exceed the threshold. In case exact 
knowledge about the involved objects is available, the exact 
positional tolerance can be calculated from exact shapes and 
locations. This can be done automatically, without user 
involvement. Only if the real positional tolerance value exceeds 
the threshold must the user be informed that the construction is 
ill-defined. 

1= . (42)

Since 1 is the unit of the t-norm, 1 1x⊗ =  holds for all [0,1]x∈ , 
and inserting (42) into (39) yields If no exact knowledge about shape and location is available, the 

procedure can be used to estimate whether a geometric 
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construction is (more or less) well defined. Such a situation may 
arise in the context of ubiquitous computing, where the ability to 
represent and query textual descriptions of spatial configurations 
becomes increasingly important. The lack of detailed information 
on geographical entities may be caused by a limited bandwidth of 
hand held devices or by incomplete information from a 
participatory database. 

7. CONCLUSIONS AND FUTURE WORK 
The paper discusses a special form of positional uncertainty in 
vector based GIS, namely positional tolerance that arises from 
geometric constructions with extended primitives. We propose a 
framework for approximating and propagating positional 
tolerance through the steps of a geometric construction. As a first 
step towards this goal, we address Euclid�s first postulate, which 
lays the foundation for consistent geometric reasoning in all 
classical geometries. We identified six qualities that are not 
present in the Boolean version of Euclid�s first postulate, but must 
be taken into account when introducing extension to the 
primitives. We proposed a formal interpretation of the geometric 
primitives points, line, incidence and equality, which incorporates 
an intuitive meaning of two dimensional extension. We proposed 
a fuzzification of the axioms of Euclid�s first postulate in 
Łukasiewicz logic, together with a proof on the author�s website, 
which shows that the proposed interpretations constitute a valid 
model of the fuzzified axioms. We introduced approximate 
geometric reasoning with Rational Pavelka logic as a means of 
propagating positional tolerance through the steps of a geometric 
construction. 

We currently implement the proposed elliptic model in the 
functional programming language HASKELL. Euclidean data is 
transformed into homogeneous coordinates. After calculating the 
equality values in the elliptic model, a local Euclidean 
approximation is visualized in the z=1 plane. After an initial 
testing phase with artificial data, real GIS data will be used to test 
for the practical applicability of the model. 
The current approach interprets incidence by the Boolean subset 
relation. In order to provide a more realistic interpretation, two 
extensions are necessary: In a first step, the Boolean subset 
relation should be replaced by the Boolean overlap relation. In a 
second step, a graduated incidence relation could be implemented 
that is inverse to the orthogonal distance of an extended point to 
an extended line.  
It is our objective to extend the proposed axiomatic calculus by 
further geometric primitives like, e.g., the betweenness relation, 
and the respective axioms.  
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10. APPENDIX 
 
 

 
Figure 1. Vienna, (a) represented by a coordinate point, and (b) 

represented as an extended geographic entity. 

 

 
Figure 2. Three examples of extended objects that are incident 

with an extended line.  

 

 
Figure 3. (a) Two extended points do not uniquely determine the 
location of an incident extended line. (b) Graduated equality of 
extended lines compels graduated equality of extended points. 

 

 
Figure 4.  Size and distance matter. 

 
Figure 5. (a) P and Q are indiscernible for L. (b) Graduated 

equality is not transitive in the classical sense. 

 

 

Figure 6. (a) and  are incident with P and Q. (b)-(d) 1L 2L PQ  
establishes a spatial relationship between  and . 1L 2L
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