
The Universe of Discourse Rational GUI

Design with Visible Context

Andrew U. Frank

TU Wien, Department of Geoinformation
Gusshausstrasse 27-29/E127.1
A-1040 Vienna, Austria
frank@geoinfo.tuwien.ac.at

for course �Haskell practice� SS 09
possibly journal article for �visual languages�
GZ 4753, words 3671, svn 3818

1 Introduction

Design of a Graphical User Interface is mostly limited to a description of oper-
ations for the user and information provided to the user. Coherence is at best
achieved by guidelines. The many possible sequences of actions of users and their
information needs are not considered in the design and are, therefore, often re-
sulting in errors. Translation to program code is again di�cult and e�ectively
many of the artefacts of coding becomes confusingly visible to the user. The
resulting code is hard to read and expensive to maintain.

Evers, Achten, and Kuper (2005) have pointed out that the current di�-
culties of coding GUI result from graphics API interfaces that are too low in
the level of abstraction. They show that the low level of abstraction in the API
can be recognized as single design decisions result in repeated and distribut-
ed code, with the potential to inconsistency and problems while changing the
code. The optimal structure for a functional API for graphics is an open research
question; the wxHaskell team has for intermediate level of abstraction to allow
experimentation to �nd the �correct� abstractions. TV [], Fruit [], and wxGener-
ic [] are current experiments using wxHaskell; Fudget (Hallgren et al. 1995) are
older proposals. Lindstroem (2008) and others have identi�ed composability as
a crucial property of conceptual GUI elements in Fudgets (Hallgren et al. 1995).
Di�erent proposals address di�erent types of interactions. The very impressive
TV [Elliot] approach uses a pipe concept to connect GUI units using arrows [],
leading to a GUI style which combines the input and output of units, which
provide data processing and graphical representation; inputs by the user prop-
agate: the program reacts to user actions. This style of reactive GUI follows

1



Shneiderman's principle of immediate feedback to user actions (Shneiderman
1997). Elliot uses it mostly to create graphical (artistic) processes. I try here to
show how a similar approach can be used in an administrative application.

The interaction of a user with a program can be compared with a conversa-
tion between humans (Nardi 1993). The analogy produces a rational framework
for the design of a GUI. The analogy with conversations stresses the importance
of �reactiv�: the immediate reaction of my partner in a conversation even if it
is only a silent nod with head is crucial. Novel is here primarily the explic-
it introduction of a universe of discourse for the conversation. The explicitly
represented Universe of Discourse (UoD) is where the user's input is deposited,
detected by the program and the reactions of the program and the reactions of
the program result in changes of the UoD, which are then posted to the screen.
The categorical viewpoint used leads to a formal de�nition of transparency of a
GUI, which I think is novel and useful. The resulting code is better structured
and smaller than previous programs (at least for the test case).

The contribution is structured as follows: section 2 explores the analogy
between human conversation and human computer interaction and introduces
the universe of discourse (UoD). Section 3 formalizes the idea, investigating
primarily mappings, using mathematical category theory. Section 4 introduces
the case study and section 5 discusses the resulting code.

2 Conversations

2.1 Conversational Implicature and Relevance Theory

Grice in his seminal work on conversational implicatures gave maxims of conver-
sation to stress the necessary cooperation between speaker and listener (Grice
1989). His maxims presuppose an agreement between speakers about the code
used to express meaning. Sperber and Wilson's relevance theory (2004) expand-
ing on Grice's �principle of relevance� argues that the context, including common
sense knowledge, clari�es the encoding in vocabulary terms. In actual conver-
sations the participants adjust their terminology rapidly to a small set of terms
with meaning �xed for the duration of the conversation and possibly future
conversations between the same partners.

A person in a conversation picks up the terms with the meaning used by the
other. Many experiments with children have demonstrated well developed abili-
ties of humans to acquire new words and meaning for a reviewer see (Tomasello
2003). In adult conversation one may encounter explicit statements like �Oh,
I see, you mean a person if you say PAX�, to con�rm an agreement on ter-
minology. Teaching consists to a large degree of transferring terminology with
intended meaning to the students; conversations with (public) agencies feel of-
ten rigid when the partner in the conversation insists on his terminology and is
not willing to adapt to mine.

The meaning of the terminology in a conversation is communicated with im-
plicit reference to the context of the conversation. The context of a conversation

2



is crucial for understanding. The approach followed here is to make the context
of the conversation between human and computer explicit in the program and
visible for the user and the programmer.

The experience with �rst Apple Macintosh and later Windows often shows
that programs that can be seen and explored, i.e., where the context is visible
at all times, can be used without explicit learning and reading of user manuals.
Features that are not visible require expensive learning e�orts. It is important
that the context of a conversation is limited and therewith limiting the inter-
pretation of the words used to refer to objects. The restriction to the context
makes it possible that the structures expressed syntactically and semantically
in the utterances are mapable despite initial discordances in the meanings.

2.2 What Is the Shared Context of a Human Computer
Interaction?

In analogy to natural conversations I see the human and the computer as having
a conversation with a shared context. The shared context consists of the objects
that can be referenced in the conversation and the operation applicable to change
them or to change the relations between them. The interface screen must show
the current state of objects and the operations applicable; the now standard
�desktop view� with menus demonstrates the success of this rule, but the rigidity
of the computer program forces all adaptations on the user. The context must
be limited to �real world objects� already meaningful to the user and not forcing
her to learn about internal aspects of the program. It should not include aspects
internal to the program, but not a re�ection of real world facts.

3 The Transparent GUI

A user manipulates a dataset in a computer through an interface. The dataset
stands for some computer external reality, perhaps a model of a complex process,
but perhaps as mundane as a letter, later printed. This will be termed model.
The intention of the user is (Figure 1) to see and change the model she perceives
by function p and changes with actions a.

The user is forced to act through the GUI program (Figure 2). Thus the
intended functions p and a are:

p = q · f
a = c · b.
A GUI is well-designed if it gives the user the impression that she manipu-

lates directly the objects of interest. This means the GUI is transparent to the
user and the user can concentrate on his work and is not disturbed by artifacts
of the GUI.

The user intends action a to change state of the model m0 to state m1
m1 = o m0.
The user intension

3



Figure 1: The user's intention is to manipulate a
model of some part of reality

Figure 2: The user is forced to manipulate
the model through the GUI

Figure 3:

4



Figure 4:

Figure 5: The UoD represents the shared, interpreted context

becomes
This gives the Transparency Condition, which is formally de�ned as com-

mutativity in Figure 4: A GUI (a = c · b, p = f · q) is transparent if:
m1 = o (mo)
no = (c · b) m
n1 = o' (no)
m1 = (f · q) n1
m1 = (f · q · o · c · b) mo.
or
o = f · q · o · c · b.

3.1 The Internal Representation of Context

The model is usually more extensive than what the present user focuses on in
the conversation. The objects and operation currently in focus will be termed
Universe of Discourse of the conversation (UoD). This UoD is the part of the
model that is in focus during the interaction. The computer makes the context
visible to the user on the screen (or other HCI device) and expects user inputs
regarding the object and operation from the user (Figure 5).

Comparing Figure 5 with Figure 2 indicates where di�culties in the pro-
gramming of the interaction occurs: Figure 2 shows the ordinary situation; the
program manages the relation between the visible screen and the stored model.
Actions of the user must be interpreted to determine which operations to apply
to the model; this interpretation may fail. For example with a click on the screen
the user intends to select one object he sees on the screen but the program may
�nd other (non-visible ones) in the model. Which one is meant by the user?

5



Figure 2 shows how the introduction of a UoD breaks the relation f between
objects visible to the user and the model in two relations g and h, reducing a
complex relation to two simpler functions.

3.2 Analysis of the Function Involved

The function f is the composition of g and h
f = g · h
and likewise
c = e · d.

3.2.1 Mapping Model UoD

The user selects some subset from the model she is interested in and this subset
is mapped to the UoD; this mapping can be for example a SQL statement. The
UoD maintains the identi�cation links between entities in the UoD and in the
model.

3.2.2 Mapping UoD to Screen

g is the function that translates the stored UoD to a visible screen. It may have
additional parameters for style, user preferences, etc., which must be constant
for a conversation. g is a function, as the state of UoD determine what is shown
on the screen.

g: UoD → screen
The screen is seen as a unit with many di�erent states; parts of the screen

are not considered individually.
p = e · f = e · g · h
a = d · g = d · k · l

3.2.3 Mapping Screen to Human Mind

The human �exibility and potential to learn allow this mapping to became a
function from screen state to interpreted model.

3.2.4 Mapping Human to Action

The user selects an action o to change the interpreted model. The immediate
feedback as this change can be observed will, over time, help her to learn what
the actions produce and adapt to the interpretation of objects and operations
shown on the screen by the program.

3.2.5 Mapping Action to UoD

This is the most di�cult problem: interpreting the actions the user intends and
communicates. Action consists of operations and objects operated on. Two forms

6



Figure 6: The mappings in a GUI using the UoD approach

for commands are possible �rst verb (operation) then object (e.g., �open my-
�le.txt�) or �rst selection of the object and then the operation (e.g., �my�le.txt
open�). The selection of operations determines what objects (and how many)
must be selected. Alternatively, the selection of an object determines the oper-
ations possible. In either caFse the possible selections are limited to the UoD.
If the user intends other objects as targets for objects, it is �rst necessary to
bring them into the UoD.

3.2.6 Mapping to UoD Model

The UoD must only o�er operations possible to execute in the model.

3.3 Conclusion

The programmer is asked to provide the 4 mappings g, h, k, l , which are listed
above; They must be functions to achieve that the GUI appears transparent to
the user as she has the illusion of directly manipulating the model visible on the
screen.

F
Transparent GUI can be read as a diagram of mappings (Figure 5) and
o = g · h · o · k ·l.
f = g · h
c = e · d
The complex relation c, which is the mapping from screen action to compu-

tation is broken into g · h, which can be restricted to functions. The restrictions
are communicated to the user by visible feedback. Programming is divide into
two parts, namely one of managing the screen (g and k) and one of changing
the state of UoD (h and l).

4 Case Study: managing a shared repository of

documents

Applications where the user manipulates a coherent and compact model are
easy to program, even without an explicit concept of UoD (e.g., a �le manager
for local �les). The application that brings together data from three di�erent

7



Figure 7: The UoD uni�es the data from di�erent sources

sources: A team with each person having a computer, which is not always con-
nected needs to organize a shared repository for documents. There was already a
database with a description of dockets and their numbers (GZ) �rst only used as
an entry in the archive of paper �les accumulated over years. To extend this for
computer �les, a version management system (SVN) was installed on a mirrored
disk attached to a server and regularly copied to external storage.

In this system information on dockets are in three places: the database with
GZ numbers and descriptors, the folders on individual computers and the shared
repository. User operations on these three locations must be coordinated and a
single GUI was desirable. This means, the user sees a uni�ed model with which
she interacts; the UoD shows this model (Figure 7).

The database for docket numbers (GZ) serves to �nd documents for a variety
of keywords and allows also to enter the state of a docket (e.g., paper draft, paper
submitted, etc.).

The convention for folder names is that they start with the GZ number
followed by whatever name is meaningful for this user (e.g., one user may add
the name of the original creator whereas I do not want to have my name in
all folder names). The user keeps all GZ folders in a work directory on their
personal computer. Folder names (except for the leading GZ number) do not
necessarily agree on di�erent computers.

5 Design and CodingF

5.1 UoD

5.1.1 Data

The user focuses at once one docket, for which the information is:

• GZ (docket number)

• Descriptor (descriptive text for the docket content)

• Name of SVN folder

• Name of local folder

The wider context of

8



• GZ database connection

• Local work directory

• SVN connection

Is shown as �preferences�.

5.1.2 Operations

The UoD includes the operations to get information or to change something and
get feedback:

get :: gz → info
�nd :: keywords → info
new gz :: descriptor → info with new gz
change : changed descriptor → info
change-preferences : preferences → preferences
The following operations do not give the user feedback in the UoD, but some

con�rmation about details of executing the operation.
checkout :: ..
update ::
insert ::
comitt ::
In the module UoD.hs Figure 8de�nition for operation tokens, button (or

menu) text and tooltips are entered together with the data type de�nitions.
The generation of the alphanumeric GUI is then automatic using wxGen. The
operations for change-preferences, preferences in a separate window are

Edit preferences
Save/commit
Missing:

• Description of semantics of operations

• List of possible error conditions.

Open questions:

1. How to have more in�uence on the appearance of the data presented
through wxGen?

2. How to deal with graphical presentations?

3. How to have the descriptions of the UoD closer to or merged with a de-
scription or semantics?

4. How to enter constraints on data? WxGen o�ers some facilities that need
to be explored.

5. How to build a fully generic GUI to interact with the preference? Currently
the data description for preferences must be imported.

9



Figure 9

5.2 The Static Appearance of the GUI

The GUI has a window with a title and some instructions at the top. Then the
�elds of the UoD, the buttons for the operations and a �eld for posting details
of operations (Figure 8).

[�gure missing]
The de�nition of variables for the preferences and the UoD are also necessary.
Question:
How much of this code can be generalized and reused? Di�erent applications

would only require di�erent text entries, describing the application only.

5.3 The Dynamic GUI

The actions are started by pressing an action button after having �lled the
corresponding �eld in the UoD. This is a �data entry then action� paradigm.

Question.

1. Can a �return� in an entry �eld start an action? How to add this to the
generated UoD entry?

2. If a button is pressed and no data entered then show a dialog data entry
panel. This would give an �operation then data entry� paradigm.

Processing an action starts with the entry from read and the UoD variable up-
dated. Then a case statement separates the actions to call the pertinent actions
on the database, the SVN repository or the work directory. The operations called
are speci�c for the applications and do not contain GUI aspects; they are not
of interest here. The operations update the UoD variable if appropriate. After
the speci�c operations have completed, the screen is updated.

In this application, all values functionally depend on the GZ. It is therefore
appropriate to retrieve from each of the three sources the particulars and show
them in the UoD. The only special case is the search for GZ given a list of
keywords. The result from the SQL query is entered into a list and the user
selects with double click. Then the UoD is updated with the selected GZ. The list
remains visible and another item could be selected to correct the �rst selection.

Questions:

1. Could a description of the operations as functions with parameters be used
to produce the code for actions?

2. Add an error treatment using the moved transformer ErrorT.

5.4 Part_of Relation

Many UoD contain objects at multiple hierarchical level; for example the opera-
tions discussed in the case are focused on folders, but the add command takes a

10



Figure 10: The folder consists of �les a part_of relation

�le and adds it to the versioned part of the folder. Part_of Relations are visible
in the ontology:

[�gure missing]
In order to refer to part_of an object (here called subobjects), which is nec-

essary for operations where an argument is a sub-object; the GUI must provide
a tool to select subobjects. This is typically a selection from a list. It is therefore
possible to translate part_of relation systematically to the GUI.

5.5 Error Handling

Interactive programs may fail for a variety of reasons and it is important to
inform the user about the reason for failing and possible actions for correction.
Remember, however, that interfaces where no failures are possible are even bet-
ter and code that prevents user errors is desirable. Errors are detected at one
point in the code and information to the user are produced where the screen is
handled.

The simplest error handling approach su�cient for the present purpose is to
have the application routines signal failure with a descriptive text and adding a
handler for such exceptions at the GUI. At the place the error is detected a call
to fail �error string� is included (in monadic �do� code). The handler is simply
taking the error string and shows it in the display window.

Open questions:

1. How to deal with DB errors? Is another error data type used?

2. Should exceptions be used to deal with the sub-operations (i.e., selection
of sub-objects, in the example �les as parts of the folder)?

5.5.1 Reactive Computing

The use of a GUI brings the GUI for an administrative process closer to the ex-
amples given for reactive GUI design. Despite the appearance of the GUI similar
to a form to enter data, the logic is not one of data entry and the corresponding
tools are not appropriate (e.g., wxGeneric). Data entry in forms is a special
case of a GUI, but the application considered here is not subsumed under this.
The following test shows this. In a �forms� application there is typically a pair
of buttons, ok and cancel, which start processing after the data are entered.

11



Figure 11:

Entering the user preferences id such a �forms� part in the case study, but the
major interface start processing when the user enters a GZ number or a keyword
and units return, presses a button of a list.

Conceptually the GUI can be reduced to deposit the changed data and the
desired operations in the UoD and the application process is executing the
operations and applies updates the UoD. The GUI then propagates the updated
UoD data to the screen (Figure 11). Questions:

1. Is this feasible even for the selections from list for aggregates

2. Does this give a structure that leads to generalization?

5.5.2 Conclusion

The introduction of a stored UoD to which all interactions refer has streamlined
the code. Most of the code is generic and reusable for a new application. The
next test will be with an application using a graphic interface to see whether
the same overall structures and code can be used.

References

Evers, S., P. Achten and J. Kuper (2004). A Functional Programming Tech-
nique for Forms in Graphical User Interfaces. Implementation and Application
of Functional Languages 16th International Workshop, IFL 2004, Lübeck, Ger-
many, Springer.

Grice, P. (1989). Studies in the Way of Words. Cambridge, Mass., Harvard
University Press.

Hallgren, T. and M. Carlsson (1995). Programming with Fudgets. Advanced
Functional Programming. J. Jeuring and E. Meijer. Berlin, Springer-Verlag.
Lecture Notes in Computer Science 925: 137-182.

Shneiderman, B. (1997). Designing the User Interface - Strategies for E�ec-
tive Human-Computer Interaction. Reading, MA, Addison-Wesley.

Sperber, D. and D. Wilson (2004). Relevance Theory. Handbook of Prag-
matics. G. Ward and L. Horn. Oxford, Blackwell: 607-632.

Tomasello, M. (2003). Constructing a Language: A Usage-Based Theory of
Language Acquisition. Cambridge, Massachusetts, and London, England, Har-
vard University Press.

12


