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Abstract  
GIS professionals seem to assume that better data leads to better decisions. Is this true? An 

analysis to determine the effects of data quality on the quality of decisions reveals relations 

that are useful to consider before blindly investing in data quality improvement.  

This article analyzes data quality and how it influences the quality of a decision with an 

example of environmental engineering decisions. It shows that the uncertainty in aspects, 

which are poorly known, e.g., the necessary security levels, dominate the uncertainty of the 

decision. Efforts to collect more or better date to improve the data quality of the data stored in 

the GIS would not reduce uncertainty in the decision significantly. This result seems to be 

consistent with results from other studies for this very large class of decisions and it appears 

to be further generalizable and useful to investigated other decision situations. 

1 Introduction 
It is difficult to answer questions about the accuracy of results from spatial analysis. For 

scientific papers, it is sufficient to indicate the strength of the correlation to demonstrate 

which factors influence which outcomes, but if the results of spatial analysis are used to make 

political decisions or to design constructions, more pressing demands for the quality of the 

results are coming forward and the GI professional must, sometimes publicly, explain the 

certainty of her results. It is equally difficult, in a time of tight budgets, to justify the high cost 

of accurate data collection with the need in decision situations. 

A critique of GIS could argue that all observations and other data in a GIS must 

necessarily have some error (Frank 2007b) and lead in combination with other erroneous data 

to unreliable results. The negative statement “Garbage in, garbage out” is often used to 

demean the speed of electronic calculation; it assumes a contrapositive of “good data, good 

results” based on a commonsense belief that the quality of the input data influences positively 

the quality of the result. This positive folk belief is used to justify projects to improve the 

quality of some data, e.g., higher precision for cadastral boundary points, assuming that such 
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efforts will improve the decision following from the data. Is this hypothesis confirmed by 

observations? There is contrasting evidence that even bad data are useful to help with 

decisions. Experience demonstrates daily that all sorts of spatial information systems with 

imprecise and incomplete information are beneficial. We are currently confronted with the 

public success of Google Earth, which is not diminished by the unknown and varying quality 

of the data. I have argued before (Frank 2007b) that (good) data quality means ‘good’ enough 

for this decision; this will be substantiated in this article. 

A quest for a description on how input data quality affects the error and accuracy of 

results from GIS was an important goal already in the original NCGIA program (NCGIA 

1989) and its first research initiative (Goodchild et al. 1989). Much detailed, but not 

conclusive research followed (Goodchild et al. 1998; Heuvelink 1998a; Heuvelink 1998b; Shi 

et al. 2002; Shi et al. 2003; Frank et al. 2004b; Frank et al. 2004a; Karssenberg et al. 2005; 

Wu et al. 2005). The equally important research in ontology for geographic information, 

primarily focusing on the ontology of space, later on geographic space-time, progressed in the 

philosophical tradition of perfect knowledge of the world (Frank et al. 1991) but not on 

ontological foundations for data quality. In related articles (Frank 2007b; Frank to appear 

2007b) an ontology of perfect knowledge is contrasted with a novel ontology of imperfect 

knowledge. The set of realistic commitments for imperfect knowledge of the physical reality 

give the rational methodology to assess the quality of data and their influence on qualities of 

decisions used here. The present article demonstrates that the novel combination of analyzing 

at the same time ontological and data quality issues is producing practical advice for 

designing GIS, an argument initially made in a conference contribution (Frank 2007a). The 

example used is the design of a bridge over a small stream, specifically the clearance under 

the bridge to assure that all the rainwater falling upstream can flow through and no flooding 

will occur. For engineering design, levels of acceptable risk and who bears it, are fixed by 

established practice and standards; Agumya and Hunter provided previously a valuable 

discussion of risk resulting from uncertainty in geographic data and how to deal with (2002). 

The article uses the result from the articles on tiered ontology (Frank 2001b; Frank 

2003a) and on ontologies for imperfect data (Frank 2007b). In particular: 

• point observations are properties observable at a point in space-time, 

• objects are formed as regions with uniform values for some property, and 

• objects have attributes that are summary descriptions, typically integrals of some 

property over the region of the object. 
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The treatment concentrates—similar to the referenced paper (Frank 2007b)—on physical 

properties and attributes; an extension to socially constructed reality must wait till the 

corresponding extension of the ontology of imperfection has been achieved. 

Boin and Hunter’s observation that GIS data is often used to produce other data, which 

makes assessment of the effects of data quality difficult (Boin et al. 2007) is a partial 

explanation why methods for error propagation (Heuvelink et al. 2006) are not widely used. 

Goodchild (2006) points to the academic nature of data quality discussions. Perhaps Frank’s 

ontological clarification (Frank 2007b) defines their “elusive” end user as the user of GIS data 

who makes a decision that leads to material action in reality. This definition of use and end 

user of GIS data is used here and allows to overcome the empirically observed difficulty. The 

next section gives some background to the concept of information quality. Section 3 then 

gives a detailed description how an engineering design decision is made and introduces an 

example problem, which is used in section 4 to analyze the effects of data quality on the 

decision. Section 5 concludes with an argument for an improved statistical approach to 

decision making and some suggestions for more research.  

2 Information Quality 
The goal of human activities is to improve ones situation and—following the Golden Rule—

to improve the ‘condition humaine’ in general. This is part of a Greco-Judaic tradition to 

control the world and use it (Genesis 1, 28). Information became central for the development 

of economy in the past few centuries. The industrial revolution in the 18th and 19th century 

improved the efficiency of the production of goods for human consumption and allowed an 

unprecedented increase in population; it combined improvements in government, taxation, 

and markets together with technical improvements in manufacturing (North 1981). North 

identifies a second economic revolution when scientific methods are used to produce 

systematically new knowledge to further advance technology and management (North 2005). 

This is evident in the current debate on directing universities to produce ‘socially useful and 

responsible knowledge’ combined with high levels of funding for universities but it is equally 

true for the new internet businesses. Information is today a production factor, comparable to 

the classical production factors of land, capital, and labor (Ricardo 1817; reprint 1996; Marx 

1867; translated reprint 1992; Frank to appear 2007a). 

Because information is now a production factor, efforts to include “knowledge” in the 

accounting of large companies are under way (Schneider 1999). O’Hara and Shadbolt discuss 

methods to value information in a business administration tradition (O'Hara et al. 2001). The 

problem of measuring quantity and quality of information has not been solved in general yet. 

Easily observable and countable substitutes (number of patents, number of scientific 

publications, etc.), which are expected to be proportional to the actual knowledge, are widely 
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used and the usefulness of an ontological foundation demonstrated (O'Hara et al. 2001). I 

have suggested a method to measure the quantity of pragmatic (useful) information (Frank 

2001a; Frank 2003b), but the approach is currently viable on a micro level only.  

What do we mean when we say that information is of high quality? Before the computer 

age, one would have said ‘the information is from reliable sources’, qualifying the 

information only indirectly by its source. Quality of information is a concept only emerging in 

the 80’s. Scientists—especially astronomers and surveyors—commented on the quality of 

observations in the 18th century; surveyors have generalized this approach to evaluate the 

precision of observations and led to the data quality discussion in GIS (Chrisman 1985; 

Robinson et al. 1985; Frank 1990). In today’s information economy, quality of information 

becomes important for business and production. Engineers need to know the sources for data 

they can trust. This trust in the quality of data used is traditionally established through 

accumulating experience over extended periods. In today’s global economy, experience has to 

be replaced by rules (Dueck 2006) to allow faster evolution. Business processes using data go 

astray if the inputs are wrong and this gives an alternative approach to the question of data 

quality (Wand et al. 1996). The loss for U.S. businesses due to data quality problems is 

estimated as $600 billion for 2002, which is about 5% of GDP (Eckerson 2006). 

3 Reasoning in Environmental Decision Making 
This article uses a case as a running example to demonstrate the approach before progressing 

to a generalization. I investigate the arguments related to a decision, because the importance 

of data quality for decisions can only be understood in an ‘end-to-end’ analysis. This design 

of a bridge over a small stream provides a realistic, but necessarily much simplified, example 

from an environmental project. Essentially the same example can be found in many text 

books, e.g., by Keller (2007), which demonstrates that this is indeed a prototypical design 

decision.  
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Figure 1: The situation: a bridge over a small stream 

 

Figure 2: Cross section of opening under bridge 

3.1 Example design problem 
Protection against flooding has become increasingly important; an engineer must check that 

bridges crossing a river leaving enough clearance for the water to flow under the bridge even 

after heavy rainfall. If the clearance under the bridge does not leave a sufficient cross section 

for water to flow, water is backed up and leads to flooding upstream. The engineer is required 

to compare the maximum flow D possible to pass under the bridge against the assumed 

maximum quantity Q of water flowing in the stream after a heavy rainfall. If the maximum 

flow D under the bridge is more than the quantity Q of water following a heavy rainfall, then 

the area upstream is safe of floods from water backing up upstream from the bridge. 

Engineers compute the two quantities D and Q separately, combining three different 

models:  

• to estimate the maximum intensity of rainfall to be expected,  

• to compute runoff after such a rainfall, and  

• to calculate the quantity of water flowing through a channel.  

“The standard engineering practice for quantifying the risk of flooding 
requires that a design storm be selected, that a hydrologic model be used 
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to calculate the peak flow runoff generated by the design storm, and that a 
hydraulic model be used to calculate the maximum height of water at a 
particular location.” (Topanga 2006) 

3.2 Assessment of Situation and Selection of Model 
It has been observed that most engineering decisions can be brought to the form D-Q>O, 

(Schneider 1999; Frank 2007a), which leads to a statistical test for D-Q. Crucial for the design 

and the use of data is the appropriate formalized model—the translation of reality in a model. 

What are the objects interacting? What are the relevant properties and how do they interact? 

What is the event that endangers lives and could damage properties? What is the mechanism 

that causes it? In this case, the risk of flooding caused by heavy rain is identified and the 

water quantity after rainfall and the maximum flow under the bridge are the relevant 

quantities to compare. Formulae are derived from the model and link these quantities to 

observable values, which are stored in a GIS and used in the decision. 

3.3 Accepted Risk 
Engineering design decisions, like other decisions in life, are never 100% free of risk; 

engineers can construct systems with an arbitrary small risk of failure at a corresponding 

price. The lower the accepted residual risk the higher the price of the construction. The 

difficulty in the public debate is (a) to quantify the risk and the expected damage and (b) the 

non-correspondence between the persons benefiting from the reduced cost of the 

construction—typically the owners—and the person, suffering the eventual damages—

typically the public. In a political process the lawmaker fixes a required level of security 

against damage the construction must fulfill. An economic optimum is achieved if the 

different system with which we interact provides the same marginal security level, i.e., the 

cost of reducing the risk is for every subsystem similar (Schneider 2000)  

The risk of flooding is expressed as a recurrence interval. A probability that a flood 

occurs is fixed as the accepted risk, for example, 1% but traditionally expressed as 100 year 

recurrence interval. If a flood endangers very sensitive areas where human life may be lost a 

smaller risk is ordered by law or building codes, if the area that would be flooded contains 

only minor, or no buildings, a higher risk, e.g., a 30 years recurrence interval (~3% 

probability) is acceptable. It is worth noting that a 100 year recurrence interval does not mean 

that such an event will occur every 100 years, or only once in 100 years.  

Engineers do not attempt to predict precisely the future: “Our interest is not in the 

impossible task of predicting the date of a storm event that exceeds the design capacity of a 

practice or structure. Rather, we need to know the likelihood of occurrence (probability) of an 

event with a specified intensity and duration. This is called its return period or frequency of 

occurrence” (Huggins 2006). 
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3.4 Design storm 
The largest storm that occurs at most once in the selected recurrence interval is obtained from 

tabulations of past events. This gives the “design storm” for which the bridge and other 

constructions are designed. The design storm gives the rainfall intensity with which the 

designed clearance of the bridge must cope.  

The rain intensity i50 for a recurrence period of 50 years at a given location is found in a 

table as, for example, 5mm/hour. This means that the probability of a rainfall of a fixed 

minimal duration more intense then 5mm/hour will occur in any year with the probability 

1/50 (USDAForestService 2006). It does not mean that it will occur only in 50 years. The 

probability that such an event occurs before is 64% (Widmoser 1976). (For the sake of 

brevity, I have left out a discussion of the dependency of the rainfall intensity on the length of 

a rain and the determination of the relevant duration). Rainfall intensity for different 

recurrence intervals are tabulated. Statistics of observations at a number of points over a long 

period of time are condensed to the tables engineers use. The recurrence interval is a way to 

describe the probability for a rainfall of a certain intensity to occur, the longer the interval, the 

larger is the exceptional rainfall. 

3.5 Runoff calculation 
With the determined rainfall intensity, the peak runoff is calculated using the so-called 

rational formula (ems-i 2006):  

Q = 
3600

1
CiA    (Eq. 1) 

where: 

Q - peak flow (m3/s). 
C - dimensionless runoff coefficient. 
i - rainfall intensity (m3/s, mm/hr). 
A - catchment area (m3/s, ha). 

The runoff coefficient models the infiltration into the ground, which reduces the overland 

flow. Infiltration rates are highly correlated with the land use and are tabulated for 

engineering use as runoff coefficients (McCuen 1989). Todini (1988) gives a survey of the 

history and more details about rainfall runoff modeling.  

The rainfall intensity is the value for the design storm (numerous simplifications are 

again necessary to keep the example short). For the runoff calculation the watershed must be 

identified as an object and its area computed; the watershed boundary is derived from terrain 

height observations, from which terrain aspect (i.e., the direction of maximal descent) follow. 

The determination of the watershed is performed in a raster or TIN model of the terrain, 

interpolated from available observations (Frank et al. 1986); Fisher and Tate (2006) discuss 

the effects of errors in elevation data on derived data, e.g., watersheds. 
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3.6 Maximum flow under bridge 
An approach to calculate the maximum flow under a bridge uses Manning’s formula: 

Discharge = Area * Velocity.  
The velocity is calculated as 

V = 1/n ( R 2/3 )(S1/2 )  
and thus 

D = A x V = 1/n A5/3 p-2/3 S1/2   (Eq. 2) 
where: 

A = channel cross-sectional area 
D = Discharge 
V = average flow velocity (meters/second) 
n = roughness coefficient  
S = channel slope  
R = hydraulic radius (meters) = A/P 
P = wetted perimeter 

(Keller et al. 2007) 

The factors in this formula are obtained from observation, e.g., terrain height differences 

gives the channel slope, the hydraulic radius is obtained from measurements of the channel 

cross section, the roughness coefficient is estimated from observation of the channel 

properties and then looked up in tabulation of data obtained from experiments.  

3.7 Decision whether design is acceptable 
A design of a stream cross section under a bridge is acceptable if D > Q; for the assumed 

situation, the engineer calculated D as D = 90 m3/s and Q = 80 m3/s; this design satisfies D > 

Q. According to standard practice, this design is considered safe at the assumed level (in this 

case a 50 year recurrence interval for the design storm). The next section discusses how much 

this decision is influenced by imperfection in the data. 

4 Influence of Data Quality 
The engineering decisions depend on the quality of the input data. Engineering practice uses 

security factors to increase loads and to reduce bearing capacity to account for imperfections 

in the model and the data (Schneider 2000). These factors accumulate experience with the 

practice that results from a technology level and the available data sources.  

The GIS contributes data to engineering decisions and the attention in the GIS 

community has been mostly on the quality of environmental data, assuming that better GIS 

data would lead to better decisions. The detailed assessment of this assumption by de Bruin 

(2001) showed that improvements in the measurements contribute little to less expensive 

designs and are therefore not economically justified.  
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4.1 Selection of Model 
Abstracting the complex reality to a formalizable model is the crucial step in engineering and 

other decisions. What is to be included as relevant influence? What can be left out? It seems 

that most errors in engineering leading to accidents are caused by selection of an 

inappropriate model and leaving out relevant factors. This step is, however, not directly 

influenced by data quality. An indirect influence may result from lack of data available and 

forcing the use of less appropriate data and models. This is why metadata, i.e., data describing 

the data, is so important. The use of data from the web, often optimistically described, and of 

which is effectively less known than about data the decision maker has collected herself 

increases the danger of errors in the data selection. 

Several types of errors can be hidden in the model selected. In the example case, the 

maximum runoff could be due to snow melting in spring and not due to rainfall or a retention 

basin could have been constructed upstream. In both cases a different model is required, 

considering snow melting or retention effects. The classification of the situation gives the 

model and the formulae used, which in turn lists the objects to identify and the properties of 

them relevant for the decision.  

4.2 Properties Observed 
The attributes relevant for object formation (Frank 2003a; Frank 2007b) and the properties of 

objects necessary for the decision follow from the model and the selected formulae 

(Achatschitz 2006). If values for these properties are not available, engineers use observations 

that are available and strongly correlated with the quantities required. For example, the 

infiltration coefficient is derived from land use, the roughness coefficient is not measured, but 

the visual appearance of the channel is sufficient indication to give ranges for the value to use 

(Table 1). 

 Values 
Smooth, open stream channels with 
gravel bottoms 

around 0.035-0.055. 

Very winding, vegetated, or rocky 
channels 

around 0.055 to 0.075 

Smooth earth or rock 
channels 

0.020 to 0.035 

Table 1: Roughness coefficient n (Keller et al. 2007). 

4.3 Incompleteness of the Data  
Engineering decisions require data about a very specific part of the world; the lack of data for 

other areas does not affect the decision. Data collected about past states of the world are fine 

for engineering decisions, because engineering is based on (physics and chemical) natural 

laws, which are valid independent of time (Feynman 1998). Problems arise if social forces 

affect input factors; for example urbanization increases the runoff coefficient. 
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4.4 Level of Detail  
The observations of continuous variables like terrain height and infiltration coefficient or 

rainfall intensity are available only at some sampling points; values between these points are 

interpolated. For example the values for a 50 year rain tabulated for the counties in South 

Carolina varies from 6.65 to 8.9 inches for 24 hours (Purvis et al. 1988), which indicates that 

the variations are smooth and interpolation justified and not much increasing the error already 

present in the data. 

4.5 Object formation  
The abstraction to a model cuts from the continuous world determined objects: rainfall events, 

watershed, areas of similar land use/land cover, a stream with a channel. Each of these objects 

is based on a property that changes rapidly at the boundary of the object and is uniform 

inside; the object formation is influenced by errors in these observations (Frank 2007b). The 

relevant object properties are then computed for the object region from other observed 

properties again influenced by error. The watershed is derived from height observations 

typically in a regular raster (Digital Elevation Model Digital Terrain Model), where the error 

in height results in errors of the height observation and the sampling density (Fisher et al. 

2006).  

After forming the watershed, the interesting quantities are the integral of the rainfall 

intensity multiplied by the runoff coefficient (rational formula):  

∫ ⋅=
A

R daacaiq  )()(   (Eq. 3) 

This can be simplified for small areas where rain intensity is assumed constant and the runoff 

coefficients are assumed uniform for regions of uniform land cover. The runoff coefficient is 

tabulated for land cover classes; regions of uniform land cover are formed (for example as in 

Figure 1) and the product of area times local runoff coefficient is summed: 

∑ ⋅⋅⋅=
A

R aacikq )( .  (Eq. 4) 

4.6 Observation Error  
The observation error and its influence on the quantities computed for a function 

),,( wvufr =  is well known. Under the assumption that observation error for u, v, w is 

random distributed with the standard deviations σu, σv, σw respectively and uncorrelated, the 

standard deviation for the error on r is given by the formula for error propagation: 
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If the error is described by a percent error (sigma/value) then error propagation for 

product formulae become (Physicslabs 2006): 
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a = b · c  with  , , bσσ a and cσ  gives 
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4.6.1 Error on design storm 
The design storm for a 50 year recurrence period is at this location i50 = 12 m3/s. This converts 

to a percentage or (σi/i); the mean maximum annual flow for this river assumed to be 10 m3/s 

with a σ of 2 m3/s, which gives for a 2% probability (z=2.05)  

i50 = i + 2.05 · σi  
i = i50 – 2.05 · σi  = 12 – 2.05 · 2 = 10 m2/sec.  

Note that the value for i to be used now is 8 m3/s, i.e., less than the value used before; the 

difference is the security margin. The desired security level of 2% will be reintroduced later.  

 

Figure 3: The 50 year recurrence means v > 2.05 · σ 

4.6.2 Error on maximum runoff 
Runoff is calculated with the rational formula AiCkQ ⋅⋅⋅= . The rainfall intensity is taken 

from a table that is based on statistics from past rain events measured at locations in the 

region; the value for the area of interest is interpolated. The error in these tables is difficult to 

assess, but as observations increase, new tables are computed; comparing older tables with 

newer values gives some indication on the probable error (Purvis et al. (1988)give a short and 

drastic account) where an increase by a factor up to 3 for rainfall intensity is documented for 

new tables appearing 1953. I use here pi = 20%. 

The error on the runoff coefficient c is estimated as pC = 25%, equivalent to 1/4 of the 

interval of the tabulated values. The error on the area—resulting from determination of the 

watershed—as is assumed as Ap  = 5%. This gives the total error on the value for Q  pQ = 

56%. 
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4.6.3 Error on maximum flow under bridge 
The calculation for the maximum flow uses the formula:  

D = 1/n (A5/3) (p-2/3)  S 1/2   (Eq. 7) 
by error propagation we obtain: 
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The errors for the geometric term area a, wetted perimeter p and slope s are assessed to 2% 

each and uncorrelated. The roughness coefficient is less precisely determined and changes 

over time through growth of water plants; it is estimated as a quarter the tabulated interval, 

i.e., 10%. 
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 (Eq. 9) 

One observes that in both cases (Eq. 6 and Eq. 8) the error in the result is dominated by 

the largest error term, which is the error associated with the estimated rain intensity and the 

roughness of the channel. As a rule of thumb, an error that is less than one tenth of the largest 

error does not influence and can be ignored in the computation. As a consequence 

improvements in the quality of data have effects only for terms with large errors.  

4.7 Influence of Imperfections in the Calculation 
One must also check for imperfection introduced in the calculations. Engineers calculate 

exactly with the values obtained and the decision is based on a comparison desired vs. 

obtained and is again sharp. Typically 3 significant digits are used to make sure that rounding 

errors in the calculation do not influence the result (in these examples only 2 digits are given 

not to make the assumed values appear more meaningful than they are). This approach 

guarantees that for ordinary design errors, round off error does not influence the result. 

Calculating with more digits would —for ordinary cases—not improve the decision. 

4.8  Error in the Decision 
It is standard practice in engineering, to design structures such that the necessary resistance 

(strength) is more than the load R > S or R – S > 0. In this case, this translates to a 



Analysis of dependence on decision quality #4286               A. Frank                      Draft         04.05.07 13 

comparison of the amount of water D that may flow under the bridge with the assumed 

maximal rainfall Q. If D > Q  the design is approved, if D < Q then it is rejected.  

If we want to analyze the influence of data quality on the decision, we must test D – Q > 

0 with a statistical test. Selecting a level of probability of 98%, which corresponds to the 50 

year recurrence interval, we obtain the test value: 

05.2''
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 (Eq. 10) 

The calculation uses the assumed values for D and Q and the standard deviations (a 

simplification using the error percentage as above is not possible). Standard engineering tests 

compare values, which include security margins and factors to allow for the recurrence 

period. The maximum flow under the bridge is underestimated to be safe and the design storm 

is for a 50 year recurrence period (2% probability). If we use a statistical test, then these 

security margins have to be removed first: 
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The security factor is assumed to 2.05 for a 98% security level (for simplicity assumed 

normal distribution). The security factors reduced the maximum flow D passing under the 

bridge and increased the maximum flow after a rain storm. This gives 
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 (Eq. 12) 

This design is safe at the desired level. The above calculations indicate, despite very 

substantial simplification that are necessary to keep the example short enough for a single 

journal article, that the safety margins are probably not equally distributed and a less 

expensive design with equal safety margins for each partial model might be achievable. 

Schneider investigated the design of a load bearing beam and comes to similar conclusions 

(Schneider 1999; Schneider 2000). This indicates an area for research for engineering science 

and statistics.  

The calculations show clearly that the uncertainty in the data from the GIS does not 

significantly contribute to the uncertainty in the decision The area of the watershed has 

minimal influence; if the areas for different land covers are extracted to compute the runoff 

coefficient for the watershed with different runoff coefficient for different areas (Eq. 4) then 

another (usually small) improvement results. More influence results from the imperfection in 
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the rainfall intensity—which could also be stored in a GIS—and improvement of such data 

could improve the decision. The analysis has shown that a differentiated consideration is 

necessary and a general drive to improve all data is not justified. 

4.9 Improve the Quality of the Decision 
The calculation of error propagation shows which observation influences the quality of the 

result substantially; if a decision has important economic effects then one may decide to 

collect better data. If, for example, the runoff coefficient for the watershed seems high and a 

much less expensive bridge design would be feasible, if the runoff coefficient would be 

known with more precision, then actual rainfall events can be observed and the relation 

between rainfall intensity and runoff quantity is established and compared with the computed 

values. Such observations calibrate the model and give an empirical observation of the 

product of runoff coefficient times watershed area—errors in both of these terms are 

corrected. Such additional observations are usually costly, introduce their own data quality 

problems, and are only done if considerable cost savings in the construction may result from 

better data. The same argument applies also to efforts to improve the quality of the decision. 

Above I assumed uncorrelated observations, which may be unjustified. For example, 

regarding the runoff coefficient, some observations indicate that it might be variable and 

approach for intense rain ~ 1.0, i.e., its value may be correlated with the rain intensity (Haupt 

2000). A refinement with more precise data must assure that the selected model is detailed 

enough and does not ignore effects that are relevant if the data are more precise. 

5 Conclusion  
The example analyzed here is typical for engineering decision process; the design of a bridge, 

a building, a road all follow this pattern, leading to the comparison of two figures: expected 

event vs. resistance of the design. If the object designed is small or the decision of little 

consequence, then many shortcuts are taken, based on ‘rules of thumb’ and experience. 

Different kinds of engineering decisions require different statistical treatment, given that the 

distribution of the events considered are different; often occurring are Poisson or Gumbel 

distribution. The focus of this paper was on the generic principle and normal distribution was 

assumed for simplicity everywhere without falsifying the general message of the paper. 

An engineering decision process is unlike a scientific argument or a legal argument 

(Lehmann et al. 2006) a probability argument: an engineer designs and builds structures that 

have the intended function and achieve the intended goals nearly always; it is technically 

impossible to build “100% safe” systems, because neither the actions of the human operators 

nor the environmental situation is completely predictable. Engineers strive for an economic 

optimum in the design: The system designed should work nearly always and the effect of 
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failures less costly than preventive measures to avoid them. The “state of the art” of 

engineering consists of rules of thumb, tables in which current knowledge derived from past 

experience is structured for use in design.  

One could conclude that measurement precision is not important in engineering. The 

influence of errors in the measurement on the decision varies depending on the design 

problem. To assess the strength of a bridge under load, very accurate (better than 1/10 mm) 

observations of the deflection under known loads are necessary and useful because the models 

are very precise and the deflections small. For runoff calculation, accurate position 

information on the watershed boundary are not contributing much because the other factors 

(e.g., runoff coefficient) cannot be determined accurately everywhere and the model used is 

highly simplified. Experienced engineers know what observations with which precision are 

necessary. Problems arise when data collected for one application are used for another one, 

which is the typical GIS situation increasing further with interoperability.  

The result of such engineering calculation include a number of parameters that are 

selected based on subjective judgments, experience, etc. Some engineer will include more 

factors, consider aspects others would not think of (e.g., the possibility of a fire occurring 

before a heavy rainfall and the influence of burned areas after a forest fire on the runoff 

coefficient). It is not surprising that different experts arrive at different predictions: 

“in a 1985 DPW .. estimated the peak flow at the mouth of Topanga 
Canyon at 15,200 cfs for a 100 year event, while only six years later they 
estimated the peak flow to be 20,600 cfs for a 50 year event.” (Topanga 
2006) 

As far as possible, building codes fix judgments and engineers must use these 

assumptions and can replace them with their own better judgment only in very special cases. 

This is especially true for designs that could endanger the lives of others where the public 

fixes acceptable levels of risk (e.g., for fire protection). It is economically optimal to achieve 

everywhere similar marginal levels of protection compared to the cost of achieving this level 

of security; the building codes fix the security relevant design parameters (e.g., 50 year flood, 

assumed loads for bridges, etc.) and represent an effective assessment of a complex situation, 

developed over time. Even documented risk aversion (Wikipedia 2007) may be a rational 

development to compensate for the usually ignored high social cost of large accidents. The 

question how engineering and legal decisions combine remains open; this affects GIS as data 

quality decisions for GIS are often closely related to liability. From a legal perspective, 

security factors are sharp and have no error; if a design is checked in court, no tolerances 

apply. The example shows that a comprehensive assessment of the security level of the 

decision D - Q > 0 is underestimated if the quantities for D and Q are computed with 

individual security margins Schneider (2000); this is a challenge for engineering research.  
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GIS data is typically used to produce other data and it is difficult to observe directly the 

effects of data quality on decisions. The novel contribution in this article is to compare the 

effects of error and uncertainty in the inputs for a decision to construct a building not the 

production of data or a decision to acquire more data. de Bruin et al (2001) investigated 

whether efforts to improve the data would result in reduced cost to carry out a building project 

or not. Their result is comparable but their discussion is only indirectly related to the building 

decision. Improving the data qualities does not usually pay off. 

It is sometimes argued by data providers that they have to provide the highest possible 

data quality because the data could be used for other purposes and they could be held liable. 

Cases tried in court are rare. In a 2006 decision the House of Lords (the highest court in the 

UK) argues very convincingly against such a liability (Lords 2006). In this case the provider 

of a chemical water analysis produced for agricultural use of the water did not observe 

variables that were years later determined crucial for the use of the same water for human 

consumption; this led to health problems and loss of life, but the court decided that the 

original data collector was not reliable for the later, not foreseen and not intended use of the 

water for human consumption (Attaran 2006). 

Geographic data used for engineering or administrative decision making is usually 

collected with proper levels of quality to make the intended decisions. Over time and with 

experience an optimum is reached between the cost of improved data quality through more 

efforts when collecting the data and the cost of correcting errors in the decisions due to errors 

in the data. If geographic data is used for purposes it was not originally intended, for example 

using administrative data for environmental planning, the particulars of the quality of the data 

for this decision must be considered carefully.  

The article shows a method, with which one can, firstly, reconstruct the likely quality of 

the data collected considering the original decision process and then, secondly, compute the 

influence of imperfection in the data on the intended decision. 

It may surprise, that data of unknown quality—even data with noticeable low quality—

can be used to make decisions. Most decisions are very tolerant against error in the input and 

human decision makers are very experienced to cope with imperfections in the data. For 

example, Google Earth is widely used and has attracted attention in media beyond what was 

ever possible for GIS—despite a very limited offer of data and very variable quality of the 

data. One might conclude that availability of data is more important than quality of the data, 

which is not surprising, as it is a logical truism. The framework presented here may 

eventually be used to search automatically for data of suitable quality for a decision and 

advise or warn users about the uncertainties in the result on which they base their decision.  
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Future work should clarify of the risk remaining; especially the differentiation in first and 

second kind of errors (α- and β- error) in statistical hypothesis testing. Last, but not least, 

remains the extension to make the method displayed here to apply to decision in the social or 

legal realm. This will require methods to assess the quality of semantic classifications and 

how it is used. 
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