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Abstract. The 'industry-strength' data models are complex to use and tend to ob-

scure the fundamental issues. Going back to the original proposal of Chen for En-

tities and Relationships, I describe here a reduced data model with Objects and 

Relations. It is mathematically well founded in the category of relations and has 

been implemented to demonstrate that it is viable. An example how this is used to 

structure data and load data is shown. 

1 Introduction 

Numerous groups investigate how to structure data for use in Geographic 
Information Systems (GIS); they use tools prepared for 'real life' applica-
tions using the tried and trusted methods of the past—mostly object con-
cepts based on languages like C++ or Java and the relational data model. 
Design is typically using UML despite the known lack of formal defini-
tion. These methods and tools are useful to build GIS applications but they 
are not appropriate as foundations for GIScience research. Shortcomings 
have been identified years ago, but convincing solutions are still missing 
(Dijkstra 1976). This paper addresses the fundamental question of structur-
ing data for permanent storage and proposes a reduction of data models to 
Objects and Relations with 6 operations. Building the program to store and 
retrieve the data for a graph shows that the reduction is viable and has pre-
served the essence.  

Current GIScience research focuses—among other things—on  
• adding support for temporal data and processes to the GIS (Langran 

1992); 
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• drive the design of a geographic application from an ontological per-
spective (Fonseca and Egenhofer 1999) and incorporating the results of 
the 'GIS ontology discussion' (Mark, Smith et al. 2000; Frank 2003); 

• integrating data from different sources (Nyerges 1989; Bishr 1998); 
• use an agent oriented design and construct agent based simulations 

(Ferber 1998; Bittner 2001; Raubal 2001); 
• improve usability by connecting the user interface design with the onto-

logical analysis (Achatschitz 2005). 
For these and other similar research efforts, the construction of a reposi-

tory for the data used in the application code is very time consuming. The 
performance orientation of the 'industry-strength' systems impose restric-
tions and limitations, and—last but not least—the theoretical bases on 
which these industry systems are built are in conflict with the research 
goals. It is hard to build new tools if the machinery to build them is impos-
ing assumptions that we try to overcome! 

Over the past years we have built many programs to store the data nec-
essary for experiments in handling spatial data. We learned to reduce the 
data model to a minimum, which gives maximum flexibility and the least 
restrictions. This paper describes a usable set of functions for storage and 
retrieval of data for experimentation with advanced concepts of geographic 
data handling, especially research focused on temporal data, ontology, and 
integration. It achieves: 
• programs are structured around objects, 
• a data structure and the data collection can be changed and extended, 
• modules describing an object type can be freely combined. 

A number of limitations in programming languages had to be overcome 
to translate a clean design founded in a mathematical theory into executa-
ble code that validates the design. The code is now ready for use by others 
and made available from our CVS repository 
(gi07.geoinfo.tuwien.ac.at/CVSroot/RelDB). 

Before starting with a new design, I review in section 2 the achieve-
ments in Computer Science that are used for GIS, explain their rationale 
and the shortcomings relevant for GIS. Section 3 then restricts the various 
concepts employed to two fundamental ones: objects and binary relations. 
Section 4 explains the bundling of data description and object code. Sec-
tion 5 gives examples with code and the concluding section touches on 
some of the limitations of the current code compared to full object-
orientation or database concepts; it describes directions for future work as 
well. 
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2 Issues with the Current Technology 

The current technology used to build applications that manage large col-
lections of geographic data, gives the stability and the performance neces-
sary for the GI industry, but the resulting systems are complex to install 
and manage. The flexibility to fulfill novel requirements or to adapt to 
changing situations is limited and numerous restrictions apply. New theo-
retical foundations, especially the development of the theory of program-
ming languages, allow new approaches and we must rethink our design 
choices (Chen 2006). In this section I argue for the specific choices behind 
the reported solution. 

2.1 Database concept 

To consider the data as a resource of an organization was a first step to-
wards the information age in the 1970s. Data management became a cen-
tral task and generalized database management software developed. The 
three schema model separates the stable description of the data stored from 
the often changing application programs. Unfortunately, the ability to de-
scribe the data in the schema is limited and many important aspects of data 
descriptions are dispersed in the application programs.  

Computer science research investigates how the data descriptions can be 
embedded with the data using the XML language (Ceri, Fraternali et al. 
2000); ontology languages try to include more from the data description 
(Dieckmann 2003) but seem to lack abilities to describe processes.  

2.2 Relational data model 

Codd invented the relational data model to facilitate the management of 
administrative data, specifically data that was ordinary represented on pa-
per as tables. The relational data model was very successful because it 
gave a formal base to the intuitive and widely used concept of tables; Codd 
defined a small number of operations on tables that are closed and 'rela-
tionally complete' (Codd 1982). For applications, the SQL query language 
presented a human readable interface. The relational data model is 'value 
based', which means that all operations compare just values and there is no 
concept of objects in the formal model. 

Härder observed already 20 years ago that geographic data, similar to 
data from CAD and other applications that relate to space and time, require 
for their representation multiple tables, connected by common values of 
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their identifiers (Härder 1986). The representation of a graph—which is at 
the core of most spatial applications, e.g., transportation, cadastral data—
can become easily inconsistent by changing the names of nodes and not 
maintaining the corresponding edge data (Figure 1): 

 
Name X Y 
A 0.7 1.3 
B 1.5 2.2 
C 2.9 2.0 
D 2.8 0.9 

  

Fig. 1. A graph with 2 tables for nodes and segments 

Codd himself has seen this limitation and suggested the use of substitutes 
(i.e., identifiers) to establish the relations between tuples (rows) of tables 
(Codd 1979). It is possible to store geographic data under the relational 
data model but code to maintain the data consistent is necessary. 

It was found that structuring data in relational tables leads to anomalies 
in updates. Redundancy can be hidden within the tables and leads to incon-
sistencies when changes are applied. Dependencies between values within 
a tuple (row of a table) must be avoided and some multi-column tables 
must be broken in smaller tables to eliminate such dependencies. It was not 
possible to give a small set of rules to identify all harmful dependencies 
and to normalize a set of relational tables. 

2.3 Object-orientation 

The structuring of design and code centering on objects and operations ap-
plicable to them is the dominant paradigm of software engineering the past 
20 years. Code for objects and their interactions as operations can hide the 
internals of an object (so-called encapsulation). Inheritance of object be-
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havior into subclasses gives extensibility (Borning 1977). Object-
orientation was welcomed in the GIS community to help with the analysis 
of the complex structure of geographic reality (Egenhofer and Frank 1987; 
Worboys, Hearnshaw et al. 1990).  

Programming languages offer methods to structure data into objects for 
processing, but different languages have selected slightly different ap-
proaches (Cardelli and Wegner 1985); the controversy, regarding contra- 
vs. co-variance has not yielded a usable and implementable solution 
(Lämmel and Meijer 2005). Particular difficulties arise with multiple in-
heritance, i.e., cases where an object is a specialization of two (parent) 
classes, which is important for geographic data (Frank 1988; Frank and 
Timpf 1994) (Figure 2) but convincing solutions to model the difference in 
meaning of concepts like boat-house and house-boat are missing (Goguen 
and Harrell 2006). I use here a class-bounded (parametric) concept of 
polymorphism because the difficulties with subtyping polymorphism seem 
insurmountable (Abadi and Cardelli 1996; Lämmel and Meijer 2005). 

Water Courses

Highway Waterway Stream Lake 

Transportation 

 
Fig. 2. A Waterway inherits properties from the transportation system and the wa-
ter bodies 

2.4 Object-oriented databases 

An impedance mismatch was observed between data handling in an appli-
cation program written in an imperative language, which is organized 'a 
piece of data at a time', and the relational database, which operates on 
whole relations. Object-oriented databases (OODB) combine database 
concepts with the object-orientation in data structuring (Atkinson, Bancil-
hon et al. 1989; Lindsay, Stonebraker et al. 1989). 

Practically, the subtle differences between variants of object-oriented 
concepts in programming languages and databases led to difficulties with 
structuring application data: only the concepts available in both the OODB 
and the object-orientation programming languages could be used; most 
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OODB systems are tied to specific object-oriented languages. This makes 
the integration of data that is organized under different OODBMS very dif-
ficult. The tight coupling of the object concept in the application program 
and the long term view of the database seems to be fundamentally different 
and impedes evolution of a database over time.  

Mapping the data structure from the program view to a simple structure 
maintained by the data storage system on secondary (disk) storage seems 
to be the answer. The object-relational approach combines a relational da-
tabase with an object-oriented programming language (Stonebraker, Rowe 
et al. 1990), but simpler solutions, going directly to storage emerge (e.g., 
db4o, objectStore).  

2.5 Desired solution 

Current GIS applications use an improved, but not theory based, "object-
relational" database for storage of data. For experimentation with programs 
that handle spatial data I felt the following aspects important: 
• combination of object description in the schema with the operations to 

handle the object instances (the data); 
• binary relations to avoid dependencies;  
• composability of object definitions; 
• object orientation, with multiple inheritance using parametric polymor-

phism; 
• focus on long-term secondary storage and direct connection to object-

orientation structure of programming language; 
• formal, mathematically sound framework. 
 
The next section describes how these goals were achieved. The suggested 
solution is designed for experimentation and leaves out a number of ques-
tions important for processing large amounts of data. 

3 Concepts to retain 

The desired solution should rather contain less than more concepts and the 
concepts should be simpler and more generally applicable, more oriented 
towards the user or the world ontology. The basic concepts, Entities and 
Relationship, to structure data but also the conceptualization of the world 
was described by Peter Chen in a landmark paper (Chen 1976).  
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3.1 Types and instances 

The world contains individuals and we structure our concepts of the world 
in entities, things that are thought to exist independently. The representa-
tion of these entities we will call instances. The discussion of data models 
concentrates on collections of similar instances, which in programming are 
called types (Cardelli 1997). 

3.2 Objects 

Objects represent entities that have permanence in time. The difference to 
the relational data model is that  
1. the values and operations applicable to an object may change; but also  
2. two objects may coincide in their values but are still distinct objects.  
The term ‘object’ is generally used both to describe object types or classes 
and object instances, which are specific objects, representing individuals; 
compare the class ‘dog’ and my dog ‘Fido’, which is an individual. Object 
classes can be seen as algebras, with domains and operations (Ehrich, 
Gogolla et al. 1989; Loeckx, Ehrich et al. 1996). 

3.3 Relations 

Object (instances) are related to values. A city has a name, a coordinate to 
describe its position, and the name of the state it is in. These can be de-
scribed formally as functions from the object instance to the values (Ship-
man 1981), but this is not general enough. For example a person can have 
several children, the mapping from person to children is therefore not a 
function but a relation. Relations have an advantage over functions as they 
have always a converse: a city is related to the state it is in, the converse 
relations relates the state to the cities it contains (some functions have in-
verses, but not all of them!). 

Relations can be used to store two different aspects, namely (1) the val-
ues associated with an object and (2) a relationship to another object. An 
example for the first is the name of the city; an example for the second is 
the state the city is in, which is usually not stored as a name, but as the 
identifier of an object of type state. This use of relations to store relation-
ships between objects solves the problem of maintaining the representation 
of a graph and other geometric data structures. 



8      Andrew U. Frank 

4 Description of the solution 

A first step towards simplification and flexibility is to select a modern 
Functional Programming (FP) language (Peyton Jones, Hughes et al. 
1999), because FP languages are closely connected to the mathematics of 
computers (Asperti and Longo 1991; Walters 1991). The resulting concep-
tual simplicity is demonstrated by the restriction to two concepts and 6 
functions to manipulate the data.  

4.1 Objects map to identifiers 

As already suggested by Codd (Codd 1979) the objects are represented in 
the long term data storage as identifiers, which are permanent and never 
reused. When creating a new object in the database, only a new identifier 
is assigned to it.  

Representing objects by identifiers, not data fields, is arguably the most 
radical decision here, which is sensible only in an environment where data 
is primarily stored on secondary (disk) storage. Giving up the combination 
of data storage and object representation, cuts away many of the complexi-
ties of object management. 

4.2 Materialized (stored) relations 

The data associated with the objects are stored in binary relation. Breaking 
all data into binary relations from object identifier to value removes all po-
tential for anomalies and gives automatically the highest level of normali-
zation. 

That operations on relational tables could compose is a major strength 
of the relational data model and must be preserved. Operations on relations 
must have inputs and results that are sets of values, not just single values. 
Thus operations can compose, i.e., the result of one operation can be the 
input for the next one. A n isomorphic mapping, called the power trans-
pose (Bird and de Moor 1997, 108), is necessary because the category of 
relations cannot be directly implemented. The power transpose maps from 
relations to functions over the powerset, which can be implemented. 

4.3 Bundles of functionality are modules 

Bundles of functionality, e.g., support for graphs, ownership cadastre, or 
agents moving, etc. must be designed and coded separately. They are rep-
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resented by modules, which are independently compilable units and care 
will be necessary to keep their dependencies minimal. In particular, the 
data structure and the related operations must be included in the same 
module, allowing different applications to use different combinations of 
bundles.  

4.4 Operations for data handling 

To store data, the operation is assert, which adds a new entry to a relation. 
The operation change takes a function that is applied to the currently sto-
red value and the result is then stored (this can be used to set a value to v 
by passing the function const v). The function delete will delete the corre-
sponding entries. 

To retrieve two base functions are sufficient: 
to: given a set of identifiers and a relation label, find the values related 

to the identifiers. 
from: given a set of values and a relation label, find the identifiers re-

lated to the values. (Note: to and from are not inverse to each other but 
from = to.conv!) For the special case of searching in functions (which are a 
special kind of relations) with a single value and expecting a single result, 
specialized forms of to and from are given as to' and from'. To and from are 
total functions—they produce always a result, but to' and from' can fail and 
produce then a descriptive error message.  

5 Example: How to Use RelDB 

This section shows code for storing and retrieving data describing a simple 
graph: the entities are NODE and EDGE; there are relations from NODE 
to the value of its number and to the value of its coordinate. EDGE has its 
length as a value and two relations to the points where it starts and where it 
ends. The ER diagram in Figure 3 shows that there are five relations, 3 to 
values (ellipses) and 2 between entities (diamonds).  
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Node Edge 

Start node

End node

Int V2f     Float

Nr Coord  Length

 
  
 Fig. 3. The ER diagram in the original style (Chen 1976) 

The coordinates are formatted as type V2f (Vector with x and y coordinates 
represented as floats), the number is an integer (Int), the length of the edge 
is a Float. There are five functions, which will be represented as relations: 
coord :: PointID-> V2f 
nr :: PointID -> Number 
startNode :: EdgeID -> PointID 
endNode ::EdgeID -> PointID 
length :: EdgeID -> Float. 

5.1 Definition of relations 

The five relations are defined each in 3 lines of code. Consider the relation 
from the node to the coordinate value: Define a type for the relation label 
and define a value of it. This creates two entries in the namespace of the 
module, for example ID2Coord and id2coord. These will be used as the re-
lation label; for convenience it is also used to contain a descriptive string 
that is used when printing the relation. 
newtype ID2Coord = ID2Coord String 
id2coord = ID2Coord "coordinates of points" 
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A function id2c to add this relation to the empty database is declaring the 
type of the values, namely V2f:  
id2c = HCons (id2coord, zero::RelVal V2f)  

This must be repeated for the 4 other relations: for the number, for the two 
relation edge to node and finally for the length: 
newtype ID2Nr = ID2Nr String  
id2nr = ID2Nr "identification of nodes" 
id2n = HCons (id2nr, zero::RelVal Nr) 
 
newtype ID2StartNode = ID2StartNode String 
id2startnode = ID2StartNode "start node of edge" 
id2s = HCons (id2startnode, zero:: RelID) 
 
newtype ID2EndNode = ID2EndNode String  
id2endnode = ID2EndNode "end node of edge" 
id2e = HCons (id2endnode, zero:: RelID) 
 
newtype ID2EdgeLength = ID2EdgeLength String  
id2edgelength = ID2EdgeLength "length of edge" 
id2d = HCons (id2edgelength, 
         zero:: RelVal Float)  

5.2 Construction of database (schema) 

The database is constructed by adding these relations to the empty data-
base (emptydb1 exported from the generic database module). A database 
with support for node with number and coordinates would be: 
pointdb1 = id2c (id2n emptydb1). 

Remember: the constructs id2n, id2c are functions that can be applied or 
composed (with "."). To construct a database for graphs is: 
graphdb1 = (id2c . id2n . id2s . id2e) emptydb1 

or equivalently using the already existing pointdb1, which may already 
contain data: 
graphdb1 = (id2s . id2e) pointdb1. 

5.3 Handling object data 

5.3.1 Points 

Assuming that the data describing the points is in a file as a sequence of 
pairs consisting of number and coordinate values. A single entry describ-
ing a point looks as follows: (3, V2f 4.1 2.9).  



12      Andrew U. Frank 

The function loadNode takes a pair of number and coordinate as input. It 
creates first a new object and gets the identifier into the variable i. Then it 
asserts that this identifier i has for the relation id2nr the value of n (the 
node number from the input) and then asserts that this identifier i has for 
the relation id2coord the value of p (the coordinate from the input).  
loadNode (n, p) = do    i <- createM    nodeT   
                        assertM  id2nr i n 
                        assertM  id2coord i p  

To load a series of points, stored in list fh, to the pointdb1 is achieved with: 
pointdb2 = (mapM loadNode fh) *** pointdb1. 

To find for a given point number the corresponding identifier, we use the 
function from' that is specialized for cases where we expect only a single 
value as a result (as intended, the function from point number to identifier 
is an isomorphism):  
identifyByNr db nr = 
          from' "identifyNr: not found" db id2nr 

where the message is printed if for this point number no point is found in 
the data. The function to retrieve the point coordinate from a given identi-
fier is very similar: 
pos  db i = to' "position i pl in loadFreihaus" 
                                 db  id2coord i. 

5.3.2 Edges 

Loading an edge is somewhat more involved: Assume that the external file 
contains pairs of numbers of the start and end points for each edge. The re-
lations between the edges and the nodes however are based on identifiers; 
it is necessary to find the identifier with identifyByNr to enter in the rela-
tion. To compute for an edge the length from start to end, we have to re-
trieve the position of the two nodes using pos. A function dist' to compute 
the distance between to coordinate pairs exists and is extended (over-
loaded) with a new instance, such that it computes the distance between to 
points given by their identifier (in the context of the current data): 

 
instance  (FromTos a ID2Coord V2f)                
             =>  Vec2x ID (State a Float) where              
    dist' a b = State $ \s -> 
            let      ap = pos s a  
                     bp = pos s b 
            in ( (dist' ap bp), s)  

Combining these support functions to form a single loadEdge function: 
loadEdge (s, e)  =  
 do   i <- createM edgeT 
              si <- identifyNrM s         
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              se <- identifyNrM e  
              assertM id2startnode i si 
              assertM id2endnode i se 
              (c :: Float) <- dist' si se 
              assertM id2edgelength i c. 

It takes a pair of node numbers as input and creates first an edge with an 
identifiers. Then it retrieves the identifiers for the start (si) and the end no-
de (se). It asserts that these are the values for the id2startnode and the 
id2endnode relations respectively. Then the distance between the two no-
des (given by their identifiers) is computed and the result asserted for the 
relation id2edgecost.  

6 Conclusion 

The complex issues of designing a database schema has been reduced to a 
very small number of essential concepts. Additional tools may be neces-
sary to achieve better performance, to install spatial access methods and to 
connect with a transaction management system, tasks left for future re-
search. The goal was to identify what is essential, and to separate it from 
the desirable aspects. I have found it necessary to provide more than a 'pa-
per and pencil' analysis but to implement the result and to show how it can 
be done in a running program.  
• The restriction to binary relations simplifies the query language to 2 

commands, one to find the related terms to an entry (to) and the other to 
find the identifiers related to a value (from), which is using the converse 
of the relation.  

• Application programming in a functional programming language using 
the monadic style is straightforward. 

• Modularization such that the schema information and the code to oper-
ate on an object class can be bundled and an application can use multi-
ple of these bundles without interference. 

A number of questions remain open for future work: 
• Should the identifiers be typed?  
• Consistency constraints: if we know that a relation is a function, where 

is the best place to enforce this restriction? 
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