One Step up the Abstraction Ladder:
Combining Algebras - From Functional Piecesto aWhole

Andrew U. Frank

Department of Geoinformation
Tedhnicd University Vienna
Gusdhausdr. 27-29, A-1040 Vienna, Austria
frank@geoinfo,tuwien.acat

Abstract. A fundamental scientific question today is how to construct complex
systems from simple parts. Science today seems mostly to analyze limited
pieces of the puzze; the combination of these pieces to form awhole is left for
later or others. The ladk of efficient methods to ded with the combination
problem is likely the main reason. How to combine individual results is a
dominant question in cognitive science or geography, where phenomena ae
studied from individuas and at different scdes, but the results cannot be
brought together. This paper proposes to use parameterized algebras much the
same way that we use functional abstradion (procedures in programming
langueges) to crede astrad building blocks which can be combined later.
Algebras group gperations (which are functional abstradions) and can be wm-
bined to construct more amplex algebras. Algebras operate therefore & a
higher level of abstradion. A table shows the paralels between procedural
abstradion and the &stradion by parameterized algebras. This paper shows
how algebras can be combined to form more cmplex pieces and compares the
steps to the combination of proceduresin programming. The novel contribution
isto parameterize dgebras and make them thus realy for reuse. The method is
first explained with the famili ar construction of vedor space ad then applied to
a larger example, namely the description of geometric operations for GIS, as
proposed in the arrent draft standard document 1SO 15046 Part 7: Spatial
Schema. It is shown how operations can be grouped, reused, and combined, and
useful larger systems built from the pieces. The paper compares the method to
combine dgebras — which are independent of an implementation — with the
current use of objed-orientation in programming languages (and in the UML
notation dten used for spedfication). The widely used ‘structural’ (or subset)
polymorphism is justified by implementation considerations, but not appro-
priate for theory development and abstrad spedfications for standardizaion.
Parametric polymorphism used for agebras avoids the @ntravariance of
function types (which its semanticdly confusing consequences). Algebraic
methods relate deanly to the mathematicd category theory and the method
trandates diredly to modern functional programming a Java.

Keywords. Spatia Algebras, Spatial Data Models, Category Theory,
Parameterization o Algebras

Frank, Andrew U. "One Step up the Abstraction Ladder: Combining Algebras
- from Functional Pieces to a Whole." In Spatial Information Theory - a

Theoretical Basis for GIS (International Conference Cosit'99, Stade,
Germany), edited by Christian Freksa and David M. Mark, 95-107. Berlin:

Springer-Verlag, 1999.

gruber
Textfeld
Frank, Andrew U. "One Step up the Abstraction Ladder: Combining Algebras - from Functional Pieces to a Whole." In Spatial Information Theory - a Theoretical Basis for GIS (International Conference Cosit'99, Stade, Germany), edited by Christian Freksa and David M. Mark, 95-107. Berlin: Springer-Verlag, 1999.

1 Introduction

A fundamental scientific question today is how to construct complex systems from
simple parts. Science is — at least in the form typicdly reported in the Geographic
Information Systems literature — very good at analyzing individual pieces of the
puzzle. The combination of these pieces to form awhole is left as “a simple eercise
for the reader” — and everybody knows from experience, that these smple exercises
arenct essy at al. The simple functionsin alarge system — and GIS are large systems
—are dl relatively easy to define (with some fudging at the seams) and formalization
methods are often available. When the pieces are put together, unexpeded inter-
adions occur, questions beaome posed which do not have an answer within the
previoudly studied limited context of the individual pieces and we seethat the pieces
do na fit together. This applies to software engineaing and standardizaion as much
as to aher areas of science it is a dominant question in cognitive science, where
phenomena ae studied individually and at different scdes; we seem to know alot of
individual details, but we have difficulties to fit these pieces together. It is an
important question in geography, where diff erent disciplinary approaches are used bu
all the results must be brought together applied to the same geographic locaion.

Functional abstradion is widely used. Named functions are aucial in mathematics
and procedures are the building Hocks of all programs. Procedures draw their power
from their parameterization, which allows to formulate general rules which can be
used in dfferent circumstances. A function square xcan be used in various contexts
with dfferent values for x. The same concept can be applied at a higher level of
abstradion. Algebras consist of several functions that can be named and have param-
eters. The parameters do not stand for concrete values as in procedures, but — a step
more @strad — for types. They can be wmbined and the type parameters duly
replaced by the adual parameters, much the same way as in the gplicaion o
functions. Table 1 demonstrates the parall el's between the two concepts.

Table 1. Comparison d procedural and algebraic abstradion.

Procedural Abstraction Algebraic Abstraction

objea operation (procedure, Algebra (abstrad data types)
function, method)

components a sequence of operations several operations operating

on the same sorts

applied to values sorts (types)

use cdl instantiation

formal formal parametersfor values | formal parametersfor sorts

parameters

adua values representable data types

parameters

combination cdl of procedure within use & a sub-algebrawithin
another abstradion another algebra

Category theory [2, 3, 14, 23] abstrads from individual values to sets of values
(types, domains). Algebras group operations which are gplied to the same data types.
Axioms in the dgebra define the properties (behavior) of these operations. Algebras
are naturally parameterized in the types of the arguments the operations in the dgebra
take. An algebra can be compared to a procedural abstradion: it has a name, a set of
parameters, which stand for types, and a set of operations on these types. Param-
eterized algebras can be reused and combined through instantiation. Algebras are
instantiated, when for ead carier a @ncrete data type is provided and adual
implementation gven for the operations; thisis comparable to the cdl of a procedure
or function (Table 1).

Terminology here is extremely confusing, as the different disciplinary traditions of
algebra, caegory theory, theoreticd computer science programming languages
(functional, objed-oriented) use @nflicting termindlogy. Glossng ower justified
differences, | dedded to continue to use the best-known terms (mostly with a pro-
gramming langueges badkground). The notion operation will be used for function or
method Type will be used for what is otherwise cdled sort, set of values, or carier.

Functions can be used to build more cmplex functions, where the parameters are
replaced by the parameters from the encompassng functions, which will be even-
tualy replacal by adual values when the program is exeauted. The same gplies to
algebras, where severa (sub)algebras are instantiated and combined to form a larger
algebra, which is ultimately instantiated with representable data types. The semantics
of an individual algebrais given by the aiioms for the operations and carried forward
to the combined algebra.

Thistechnique is generaly usable; it can be applied to cognitive science problems
or geography, where small (descriptive) models can be cnstructed as algebras, which
are later combined. It can be used in software engineaing and spedfication writing.
After an introduction of the concept of algebra in Sedion 2 the method will be
described with the cnstruction o vedor space from two dfferent algebras in
Sedion 3. Sedion 4will then apply the method to structure the aurrent proposal for a
standardization of the geometric operations used for GIS and CAD. Sedion 5briefly
sketches the gplication to a problem from cognitive science, namely the definitions
of relative spatial reference systems in natural languages. Sedion 6 discusses gener-
alization and polymorphism and Sedion 7 presents conclusions.

2 Algebra

Algebras capture the coordinated behavior of operations that are goplied to the same
objed. Numbers are numbers not becaise one can add them, but because the oper-
ations of addition, subtradion, comparison, etc. work in a spedfic pattern (in algebra
cdled ‘structure’). We have alvocaed the uses of multi-sorted algebras for the
spedfication d GIS at least since 1986 [10, 11]. A recent paper has presented a
family of geometric data models based on the theory of many sorted algebra [18].
Algebras sioud be built for maximal reuse, maximal cohesion, and minimal inter-
dependence These ae the same requirements — now on a structurally higher level —
demanded for procedures and objed clasesin programming [24].

An algebra consists of three parts: a type and a set of operations, the behavior of
which are defined with axioms. The most famili ar example of an algebra is numbers,

for example, the dgebra of integers (technicadly an Abelian Group). The operations
are adition (+) and subtracdion (-). There is a particular number zero (0), which has
spedal properties. The notation is widely used in the literature [13, 25]; it follows in
particular [8], small changes dress the similarity with the syntax of procedures in
languages like Pascd. After the keyword Algebra foll ows the name of the algebra and
the type parameters in parenthesis. The operations and constants are listed after the
keyword Operations. For each operation the name of the operation followed by *:’
and the list of argument types and the return type (the signature) is given. After the
keyword Axioms, the aioms describing the behavior of the operations are listed (‘*—'
indicaes a mmment, e.g., aname of an axiom). It is possble to abbreviate this format
and gve only the dgebra name with the type parameters and then alist of operations
included — this short format will be used in the examples given later in the paper. The
following example for the famili ar algebra of natural numbers sould help to under-
stand the syntax of the full format:

Algebra AbelianGroup (number)
Operations: +, - :: number -> number -> number
Negate:: number -> number

0:: number

Axioms: a+ b=b+ a -- comnutative law
(at+b)+c= a+(b+c)= atb+c -- asciativelaw
O+a=a+0=a -- existence of identity
a+ (negatea)= 0 -- existenceof inverse
a—b=a+ (negateh) -- definition of subtraction

Algebras can be used to describe other behavior than numbers, for example, the
properties of a stadk. In such cases, more than one type is used and the dgebra is
cdled multi-sorted or heterogeneous [5].

Algebra Stack (stack of a, a)
Operations: push:: a-> stackof a-> stackof a -- constructor

empty :: stackof a -- constructor

pop :: stackof a-> stackof a -- observer

top:: stackofa-> a -- observer
Axioms: top(pushas)=a

pop (push as) = s
top (empty) = error

pop (empty) = error

An algebra does not describe what the objeds are, only how they behave. Algebras
give spedficaions and do na determine the implementation. Many different objeds
can behave acamrding to the same rules; within an algebra, one @anna diff erentiate
between them. The arrent objed-oriented debate, which is linked to the imple-
mentation o programming languages, equates objeds with operations and data
representation. The definition d operations (which forms an algebra) is merged with a
description d a representation o the types. This forsakes the parameterization o the
algebra (the free parameter is immediately bound to a particular representation) and
destroys the patential for reuse of the algebra for other representations.

2.1 Type Parameters

The type names in an agebra should be read similar to the parameter names in a
function: they are ‘formals standing for data types, the same way that a formal
parameter stands for a later supplied concrete value. The definitions above do na
state how the numbersin the dgebra of Abelian Groups should be represented: binary
numbers are as useful as numbers formed from Arabic or Roman numerals. The
power of the dgebraic abstradion is exadly this abstradion from a wncrete red-
ization (implementation).

The type names are only valid within the dgebra and have no meaning ouside the
scope of the dgebra description; this is $milar to the use of parameter names in
procedure descriptionsin programming;: the ainf (x, a, b) =... anding(x, b, @ = ...
are not related. Parameter names are often seleded to suggest an interpretation, but
thisisjust a hint for the reader, not a formal property. When agebras are combined,
the parameters are replacal; much the same way that parameters are replaced with the
adua valueswhen afunctionis cdled.

Types can be parameterized: The stadk constructed before is a stadk of integers, of
plates, of books, depending on what is pushed onit. This dependency between cariers
is expresed as a parameterizaion d the type. The example uses a parameterized
type, stack of a, where the type stack relates to another type a. This is smilar to the
template notion in C++ [22], which is not fully integrated into the language and
therefore difficult to use. Using the pushou construction from category theory, the
combination d algebras is mathematicdly well defined [8]. The type inference rules
for multi ple parameters were presented by [16].

2.2 Operations

Withou loss of generality but immense gain in notational clarity, operations are
restricted to (pure) functions [1]. Functions have input parameters, which are not
changed, and a single result (which can be a composition d several values); proce-
dures that change the parameters can be rewritten to conform to this format. Spedal
named constants (e.g., zero) are understood as functions without input and thus a
constant result. In this categoricd framework everything is afunction.

The list of the types of the input parameters followed by the type of the result is
cdled the signature of the operation. Operation names are ssaumed to be unique
within the mntext of discusson (which avoids the notationally confusing problem of
renaming oferations).

Operations can be separated in constructors, observers, and derived operations.
Derived operations serve & a a@nvenience and are just abbreviations for combi-
nations of other operations in the dgebra. For example, the operation subtradion (-)
can be defined in terms of negate: a — b = a + (negate b). Constructors are the
operations that are used to construct all the valuesin the carier; their result is aways
an objed of the (primary) carier of the dgebra. Observers take objeds from the
primary carrier and relate them to ather (probably aready defined) cariers. The
observers must be sufficient to dff erentiate between all valuesin the carier.

2.3 Axioms

Axioms describe the properties of the operations (the behavior of the operations).
Axioms written in a caegoricd (point-free fashion describe operations independent
of adual values (typicdly the function composition operation (.) and some nstant
functions (e.g., id, the function that does nothing; f (x) = x) from caegory theory are
used.

negate . negate = id

Variables ganding for variables in axioms are automaticaly prefixed with an ‘for
al’ quantor and have the types described by the signatures. Axioms often state the
existence of a value for which a property is asserted; such axioms are cdled non-
constructive. If the aioms are written in a restricted equational logic [8], it is often
possble to trandate the aioms to program code and exeaute them.

If aformal language is used to describe the axioms, the existence of a definition for
operations and the mnsistent use of types can be cecked. If the language is exe-
cutable, then the defined semantics may be compared with the intended one while
observing the result of operations. It is difficult to determine if a set of axioms is
sufficient; for pradica purposes, an axiom system, which describes each constructor
applicaion in terms of observers, is usually sufficient. In the dgebra of stad, two
observers are appli ed to two constructors, for atotal of four axioms.

3 Combination of Algebrasto Form New Algebras

To demonstrate the concept of combination of algebras, it is applied twice once to
extend a given algebra with new operations and second, combining two algebras to
construct the dgebra of the vedor space as explained in most text books of a course
in algebra. The underlying theory can befound in [8, 19].

3.1 Extension of an Algebra

The dgebrafor Abelian (commutative) groups is extended with multipli cation:
Algebra Fields (num)

Use AbelianGroup (hum) -- the parameter ‘number’ in the definition is replaced
with ‘num’

Operations: *, / redproc, 1

Axioms: a*b=b*a --comnutativity for multi plication
a*(b*c=(a*b)*c=a*b*c --aspciativity for multiplication
a*l=1*a=a --unity for multiplication
a*(redproca)=1 --exstence of multiplicativeinverse
a*(b+c)=a*b+a*c --distributive laws

(b+c)*a=b*a+c*a
a/lb=a* (redprocb) --derivation of division

3.2 Combination of Two Algebrasto Form Vedor Space

A vedor spaceis constructed from an Abelian group d vedors, i.e., a set of objeds,
for which a commutative adition (the regular vedor addition) and a zro element
(the null vedor) are defined. This Abelian group of vedors is combined with a field
of numbers, cdled scdars, in a new operation scdar multi plicaion (*$), which has a
signature of hum->vec>vec (and is therefore different from regular multiplication,
where dl types are the same: a -> a -> a). The following definitions come straight
from a standard text on vedors[21].

Algebra VedorSpae (veg scalar)

Use AbelianGroup (veq, Fields (num)

Operations: *$:: num-> vec-> vec

Axioms: for all a, b, c... lemscalar, x, y, z... elem of vec
a*$(x+y)=(@*$x)+ (a*$y)
@+ b)*$ x=(a*$x)+ (b *$x)
a*$(b*$x)=(a*b)*$x
[*$ x= X

In this algebra, additional operations can be defined: e.g., the inner (dot) product of
two vedors, vedorProduct. These have interesting geometric interpretations, which
allow the derivation of other operations, e.g., a test for orthogonality: orthogonal a b
= (dotProd a b) ==0 (Comment on ndation: ‘=" stands for definitional equal,
whereas '==" isused to describe alogicd test for equality).

3.3 ‘Use Interpreted as Substitution

The ‘use dause’ in the definition of an extended or combination algebra definition
means that the origina definition can be substituted, as in high schod algebra
(“substituting equals for equals’), including operation signatures and axioms, with the
formal parametersreplaced by the adual parameters given. Thisis corred because the
functions do na have side dfeds. As we have demanded that operation remes are
unique, norenaming of operationsis necessary.

4 Case Study: The Spedfication of Geometric Operations

Writing spedfications for the geometric operations in GIS or CAD systems is noto-
rioudly difficult. Formalizaion of geometry is a mathematicdly very complex
problem requiring contributions from severa fields of mathematics (topdogy,
algebra, etc.) that are difficult to combine. Therefore it presents a redistic, large pro-
blem to apply the method. Current efforts in the Open GIS Consortium [7] to write
spedfications for a wide variety of GIS operations and the pending proposal for an
SO standard to extend SQL with operations on geometric objeds demonstrates the
magnitude of the problem. The ISO draft document for geometric operations runs for
nealy 100 peges. The dfeds of the operations are described in natural language,
open to interpretation. Implementation will be difficult and differences in inter-
pretation will hinder interoperability.

The tods currently available for standard design and writing are not sufficient: the
formalization of the signatures of the operations using STEP/EXPRESS [15] or the
comparable UML methods [6] cover only a small set of the normative content of a
standard. An axiomatic method could be used to define behavior of operations [12],
but it has not been demonstrated how algebras could be cmmbined to construct large
systems with muilti ple subsets, defined for diff erent appli cations.

The standard should define useful subsets that can be implemented. From an
applicaion pant of view, subsets must be possble in three diff erent diredions:

1. Embedding space dimension: applicdion to geometry expressed with pdnts in
two-dimensional space ad points in threedimensional spaceshould be covered.

2. Objed dimension: applications which contain oljedsof 0, 1, 2 or 3 dmensions.

3. Interpalation type: applications that use only linea interpolation, or other, that use
more @mplex methods for objeds of one or two dmensions (choices not dedt
with in standard document).

There ae subtle dependencies between these choices.

* The objed dimension must be smaller (or equal) to the dimension of the
embedding space

 Interpolation methods are available for objeds of a dimension smaller than the
dimension d the embedding space (objeds with codimension 1 codimension =
dimension o embedding space minus dimension d objeq)

For this purpose programming languages provide no support, and tools like UML use
a diagrammatic language. The combination of algebras has the power to cover such
cases within an easy formalism that has a dean mathematica interpretation.

4.1 Geometric Operationsin GlSasAlgebras

The “padkages’ from the standard document are quickly trandated to algebras. Each
padkage becomes an algebra, operations sgnatures are expressed using the sortsin the
algebra (axioms given in the standard could be preserved). Unlike programming
languages, al operations are written as functions with al parameters listed. The
parameters are dl ‘read-only’ and only the result parameter (the last in the list) is
produced. Some of the major padkages, which consist of several sets of “stereotypes’,
have been subdvided to gain flexibility for combinations (to save space only
operation names in acordance with the proposed 1SO standard are given and the
signatures are left out).

Algebra GeometricObjeds (geomQbj, diredPos, length, int)
Operations: isSimple, isClosed, equal, intersed, union, intersedion, difference,
symmDifference distance, dimension
Algebra Boundaries (geomChjDimN, geomObjDim(N-1))
Operation: boundary
Algebra Distances (geomQhjM, geomChjN, lengthValue)
Operation: distance
Algebra Points (paint, diredPos, vedor)
Operations: position, point, bearing
Algebra Curves (curve, diredPos, vedor, length)

Operations: startPoint, endPoint, tangent, parameterization, curvelLength,
curvePointToPointLength
Algebra Segments (segment, direadPos)
Operation: segment
Algebra CurveConstructors (curve, segment)
Operation: curveMake
Algebra Surfaces (surface, lengthValue, areaValue, diredPos)
Operations: perimeter, area
Algebra Patches (patch, diredPos)
Operation: segment
Algebra SurfaceConstructors (surface, patch)
Operation: curveMake
Algebra Solids (solid, volumeValue, areaValue)
Operations: volume, area
Sipport:
Algebra VecSpace (Vedor, length)
Operations: dotProd, orthogonal, ...
Algebra Ve (Ve2, length)
Operations: ve, unitl, unit2,x2, y2
Algebra Vec3 (Vec3, length)
Operations: ved, unitl, unit2, unit3, x3, y3, Z3
Algebra DiredPos (diredPos, Vedor)
Operations: Vedor, diredPos

4.2 Useful Combinations

The minimal implementations must either contain the vedor algebra for two-dimen-
sional or threedimensional space This can be expressd as two agebras, consisting
of anumber of the support classs:

Algebra Srace2D (veg length, diredtPos)
Stbalgebras: Ve (veg length), VecSpae (veg diredPos), DiredPos (diredPos, veq
Algebra Sace3D (veg length, DiredPos)
Stbalgebras: Vec3 (veg length), VecSpae (veg direaPos), DiredPos (diredPos, veg

Note: The statement that for the vedor in these dgebras the operations of the
algebra Ve@2s or Vec3s must be available dictates, for example, that an operation
vedProd:: vec-> vec-> vecisposdblein Space3D but not in Spaceé?D.

Further algebras can be added, as their operations are required for the gplication
area A complete system to ded with Graphs, consisting d straight lines embedded in
threedimensional spaceis, for example:

Algebra Graphin3D (geomQhj1, geomChj0, segment, diredPos, veg lengthValue)
Stibalgebras: VecSpae3D (veg length, diredPos), Graph (geomQhj1,
geomOhj0, segment, diredPos, veg lengthValue)

Whereas a graph with curved lines between nodes in 2D requires ssgments and is
described as:

Algebra Graph (geomOhj1, geomChj0, segment, direaPos, Vedor, lengthValue)

Stbalgebras: VecSpae2D (veg length, diredPos), Graph (geomObj1,
geomOhj0, segment, diredPos, veg lengthValue),
CurveConstructor (geomChj1, segment), Curves (segment,
direcPos, veg length), Segments (segment, diredPos)

5 Case: Modeing Cognizant Agents

The example sketched here briefly considers modeling agents observing dstance and
diredionsin asimple world of point-like objeds and translates their observations on a
continuous gde into discrete expresson of relative position in the ‘world’ around
them (outputs like “from Peter's perspedive, the ball is in front of the dair’). The
focus of the study [9] was in the formalizaion d the relative spatial expresgons in
natural language and the corresponding reference frames [17]. In particular, formal
definitions for deictic, absolute, relative, etc. reference frames were dtempted, for
which nounequivocd definitions can be foundin the literature.

Coding such models in any language requires a few pages of code and the over-
view of the relations between the procedures is quickly lost. Insight into the inter-
adion between the modues is important for the assessment of the cognitive alequacy
of the proposed formalization. With combination of algebras, the interadion o the
modues can be epresed in a few lines. (The following description is diredly
extraded from code which demonstrates the system).

In afirst step, an algebra for rotation and trandation in two-dimensional space ad
an algebra to discretize ontinuous values to a qualitative scade were defined. These
were then combined to amodel, which all owed comparing the expeded error between
different types of qualitative diredion description.

Algebra Translation and Rotation (obj, angle, veq
Use VecSpace (veq
Operations: orientation, rotate, rotateTo, trandate, translateTo, trand ateRotate,
translateRotateTo
Algebra Discretize (quantitativeVal, qualitativeval)
Operations: discretize, undiscretize

The world is modeled as a database where named ohjeds with position in space
can be placal. The agent isa spedal kind d objed, which can doserve its own orien-
tation, see the other objeds in the world to buld its own set of knowledge, and
describe this knowledge from different perspedives:

Algebra World (world of obj, obyj, id, value)
Operations: putObj, getObj, thatHas, observer
Algebra Named (obj, name)
Operations: putName, getName
Algebra Positioned (obj, veq Uses VecSpae
Operations: putAt, isAt
Algebra Agent (agent, world, name, tex)
Operations: putOwnQOrientation, see describeWorld, egocentric,
absoluteAllocentric, intrinsic

These dgebras can be combined to a complex world in which multiple agents exist
and can olserve:

Algebra WorldwithAgents (world of things, things, id, name, veg tex)
Union things = furniture | agent athingiseither a pieceof furniture or an agent
Useworld (world of things, things, id, name), Agent (agent, world of things, name, text),
Positi on (things, veq, Named (things, name)

6 Generalization and Polymorphism

The deanliness of the combination of algebras is due to the cncentration onthe
intention and complete abstradion from implementation. In particular, generali zaion
of operations which can be applied to many types of objeds is achieved through
parameterizaion. This is different from the current objed-oriented debate, which is
mostly based on properties of current objed-oriented languages and has introduced
the concept of sub-type and inheritance These concepts are more linked to imple-
mentation and are not appropriate for the spedficaion and the design.

The UML notation uses ‘structural’ generalization, which defines types and sub-
types for these types. For example, Point is a subtype of GeometricObjed. The sub-
type is said to inherit the operations from the supertype, i.e., an operation ‘distance
which is applicable to GeometricObjed is, by inheritance, applicable to Point. The
problem with this subtype relation are the contravariant relations between the
parameters and the result type. An operation opl:: a-> b can be used for atypea (&
being a subtype of a) yielding aresult of b’ (b’ being a supertype, nat a subtype, of b).
For details of this formal consequence of subtyping see [1]. Different methods to
contain this ‘contravariance’ are used in current objed-oriented languages, UML
requires repeaed definitions. They are necessary whenever implementation (data
representation) dominates. Java separates representation aiented classes (with single
inheritance, which is gructural) from behavior oriented ‘interfaces’.

Algebraic combination uses parametric polymorphism. The use of an operation for
different types is defined by the type parameters which are instantiated for the type
parameters listed in their definition. Parametric polymorphism in a functional pro-
gramming language ae natura transformations [4] and avoid the contravariance
problem.

7 Conclusions

Procedural abstradion, the naming d methods to perform some adion, is a powerful
abstradion method, not only used in programming but throughout science The same
concept of encgpsulation can be applied to conceptually related sets of methods to be
performed on some objeds, yielding the mathematicd concept of algebra. The
semantics of the operations in an algebra ae given with axioms. Algebras can be
parameterized similarly to the parameters of procedures, and algebras can be reused
and combined to form more complex systems. Combination of parameterized algebras
uses a simple substitution semantics: the cmmbined algebra cntains all the operations
and axioms of the congtituting algebras, with the formal parameters duly replaced
with the adual ones.

Algebras capture the structure of the behavior of a set of related operations. Often
results of scientific reseach are expressed in ‘laws which relate operations. Param-
eterized algebras permit to combine such results. It can be applied in science to
combine the individual results of separate reseach efforts. It is a aucial method for
multi-disciplinary sciences, like cognitive science, where results of individual disci-
plinary contributions must be integrated. It is useful for sciences like geography;,
where phenomena are studied at various des, as it provides a framework in which

different effeds can be brought together. As the concept is smple, it can be used in
informal arguments aswell asin aformal description.

This nation captures very closely the notion d objed-orientation seen from a
spedficaion pant of view. The airent confusion with oljed-orientation and in
particular inheritance of operations is based on the implementation (data structure
centered) viewpoint present in commercial programming languages. The algebraic
paosition hes become possble through research in parameterization of algebras [8, 19]
and reseach in parameterized type inference systems [16]. Only lately the pro-
gramming languages have bemme avail able, which demonstrates the pradicd usa-
bility of the concept for software engineering [20]. Parameterization is a much less
confusing concept than the often-discussed inheritance based onsubtyping.

Acknowledgements

Werner Kuhn's comments contributed to focus the presentation. Fundng from the
European Commisson wunder the ESFRIT program for the projeds GIPSE and
COMMUTER suppated some of the work.

References

1. Abadi, M. and L. Cardelli, A Theory of Objeds. Monographs in Computer Science
Springer-Verlag, New York (1996).

2. Asgperti, A. and G. Longo, Categories, Types and Sructures - An Introduction to Category
Theory for the Working Computer Scientist. The MIT Press Cambridge, MA (1991).

3. Barr, M. and C. Wells, Category Theory for Computing Sience Prentice Hall, London
(1990).

4. Bird, R. and O. de Moore, Algebra of Programrring. PrenticeHall, London (1997)

5. Birkhoff, G. and J.D. Lipson, Heterogeneous Algebras. Journal of Combinatoria Theory
(1970) 8: 115-133.

6. Booch, G., J. Rumbaugh, and I. Jacbson, Unified Modeling Language Semarntics and
Notation Guide 1.0. Rational Software Corporation, San Jose, CA (197).

7. Buehler, K. and L. McKee (eds), The OpenGIS Guide - An Introduction to Interoperable
Geoprocessng. The OGIS Rojed Tedhnicd Committee of the Open GIS Consortium,
Wayland, MA (1996).

8. Ehrich, H.-D., M. Gogolla, and U.W. Liped, Algebraische Spezfikation abstrakter
Datentypen. Leitfaden und Monographien der Informatik, H.-J. Appelrath, et al. (eds). B.G.
Teubrer, Stuttgart (1989).

9. Frank, A.U., Formal Models for Cognition - Taxonomy of Spatial Location Description and
Frames of Reference In Spatial Cognition - An Interdisciplinary Approach to Representing
and Procesdng Foatial Knowledge, C. Freksa, C. Habel, and K.F. Wender (eds). Springer-
Verlag, Berlin (1998) 293-312.

10. Frank, A.U. and W. Kuhn. Cell Graph: A Provable Corred Method for the Sorage of
Geometry. In Second International Symposium on Satial Data Handling, Sedtle, WA,
1986, 411-436.

11 Frank, A.U. and W. Kuhn, A Spedfication Language for Interoperable GIS In
Interoperating Geographic Information Systems, M.F. Goodchild, et al. (eds). Kluwer,
Norwell, MA (1998).

12

13.

14.

15.

16.

17.

18.

19.

20.

21

22,

23.

24.

25.

Frank, A.U. and W. Kuhn, Spedfying Open GIS with Functional Languages. In Advances
in Spatial Databases (4th Int. Symposium on Large Spatial Databases, S$'95, in Portland,
USA), M.J. Egenhofer and J.R. Herring, (eds). 1995, Springer-Verlag, 184-195.

Guttag, J.V. and J.J. Horning, Larch: Languages and Tools for Formal Spedfication.
Springer-Verlag (1993).

Herring, J, M.J. Egenhofer, and A.U. Frank. Using Category Theory to Model GIS
Applications. In 4th International Symposium on Satial Data Handling, SDH'90, Zurich,
Switzerland, 1990, 820-829.

ISO, The EXPRESS Language Reference Manual, ISO TC 184, Technicd Report ISO/DIS
10303-11 (1992).

Jones, M.P., Qualified Types: Theory and Practice Ph.D. Thesis, Programming Reseach
Group, Oxford University. Cambridge University Press(1994).

Levinson, S.C., Frames of Reference and Molyneux's Question: Crosdinguistic Evidence
In Language and Sace, P. Bloom, et al. (eds), MIT Press Cambridge, MA. (1996) 109-
170.

Lin, F.-T., Many Sated Algebraic Data Models for GIS. 1JGIS (1998) 12(8) 765-788.
Loedkx, J.,, H.-D. Ehrich, and M. Wolf, Sedfication of Abstract Data Types. Wiley,
Teubrer (1996).

Peterson, J,, et al., Report on the functional programning language Haskdl, Version 13. In
http://haskdl .cs.yale.eduhaskel -report/haskdl -report.ntm - Research Report YALEU/-
DCS/RR1106. Yae University (1996).

Reinhardt, F. and H. Soeder, dtv-Atlas zur Mathematik: Grundlagen, Algebra und
Geometrie (Band 1). dtv, Muenchen (1991).

Stroustrup, B., The C++ Programming Language. 2nd edn. Addison-Wesley, Realing, MA
(2991).

Walters, R.F.C., Categories and Computer Science Cambridge Computer Science Texts,
Vol. 1. Cardaw Publications, Cambridge, UK (1991).

Wirth, N., Algorithms + Data Sructures = Programs. Prentice Hall, Englewood Cliffs, NJ
(1976).

Yeh, RT.-Y. and P.A.B. Ng, Modern Sdtware Engineeing: Foundations and Current
Perspedives. Van Nostrand Reinhold, New York (1990).

