
Abstract

Many agencies hold substantive data collections. The cost
of collecting the data is high, and the cost of maintaining
the data is even higher. There is an economic incentive to
share the data with other agencies. These agencies coop-
erate with other agencies and the sharing of data facili-
tates the business processes. These vast collections of data
are managed by federated database systems. The draw-
back of such systems is that they are insufficient to take
care of the different authority structures in the participat-
ing agencies. We propose an extended workflow, which
uses storable transaction scripts, so-called Update Propos-
als, and dedicated user roles to authorise proposed changes
of the underlying federated database by Update Proposals.
These Update Proposals are written in a vendor-indepen-
dent Transaction and Transformation Language. The stor-
able transaction scripts also implement a generalised form
of “long transactions”.

1 Introduction
Many agencies have acquired substantive data collections
over the last decades. In these agencies data collection and
maintenance is typically expensive. It is economically ad-
vantageous to share the data with other agencies without
unnecessary replication. Therefore agencies provide other
agencies access to their data and access data from other
agencies. This is the standard assumption of federated da-
tabases, and it becomes increasingly real with today’s net-
work technology of data sharing among independent agen-
cies.
An European project (COMMUTER) has studied the re-
quirements in three towns (Lille, Harburg and Bologna) and
found that sharing data in a federated database environ-
ment is hindered by the autonomy of each agency to per-
form updates: only few officers within the agency have per-
mission to update records. This is a legal requirement, and
we must provide technical means to build systems that ful-
fil this requirement. Other agencies can access the data,
but they must not change it. Updates by non-authorised
agents are sometimes necessary, sometimes very desirable.
An example is: An agency asks an outside company to pre-
pare a complex change (e.g., an engineering project), but

this outside company cannot legally change the database.
The problem is to achieve optimal workflow in this situa-
tion of cooperative work, regulated by legal roles of au-
thority.
A possible solution for this problem is the use of federated
database systems (FDBS) extended by a flexible transac-
tion mechanism, which respects the update authorities.
These database systems provide access to a set of pre-exist-
ing local databases management systems (LDBMS). The
main features of a FDBS are heterogeneity and autonomy.
Autonomy dictates that a LDBMS participating in a FDBS
should not be modified by the FDBS and has the right to
decide which types of internal information can be provided
to the FDBS and to execute queries and transactions ac-
cording to its own rules [8]. Due to autonomy there are two
types of transactions in the entire FDBS. These are local
transactions within a LDBMS and global transactions. Lo-
cal transactions are executed by the LDBMS without the
control of the FDBS. A global transaction, which accesses
data in more than one LDBMS, is submitted to the FDBS.
There it is decomposed into several sub-transactions and
executed by the different LDBMSs. Substantive research
has been conducted to resolve the problems that arise with
global transactions, like low concurrency, possibility of glo-
bal deadlocks or wasteful resource consumption. Refer to
Hwang [5], who proposes a very interesting solution to the
problem of concurrency control in a FDBS.
This paper, however, deals with the problem that the agen-
cies that maintain LDBMSs participating in a FDBS are
often restricted by rules defining update authorities. Up-
date authority in this context means that there may be
organisational restrictions to who may have the right to
update other LDBMSs participating in the FDBS. Typi-
cally, one or a few officers of an agency have to authorise
all updates to the database of the agency. How an FDBS-
system can be built around these restrictions is the topic of
this paper. It is concerned with interoperability of tasks
and workflow.
Legal restrictions regarding update authority can be dealt
with by splitting a transaction in two: in a first phase an
Update Proposal is prepared, which contains instructions
of what has to be changed. The authorising officer of the
agency then checks this Update Proposal and he authorises

Interoperability and Workflow: Multi-Agency Databases

Rudolf N. Müller and Andrew U. Frank
Department of Geoinformation
Technical University of Vienna

{mueller, frank}@geoinfo.tuwien.ac.at

gruber
Textfeld
Müller, R., and A.U. Frank. "Interoperability and Workflow: Multi-Agency Databases." Paper presented at the 6th Int. Conference on Distributed Multimedia Systems (DMS99), University of Aizu, Japan 1999.

the execution of this update, which is then performed as a
database transaction. This principle is more general and
can be used to solve the problem of so-called “long-run-
ning transactions”, i.e., transactions that will not be executed
immediately after creation, but remain uncommitted in the
system for a longer period of time [6, 1]. Update Proposals
are a way to extend FDBSs by means of authorised updates
to the FDBSs and to provide a way to handle long transac-
tions.
This paper is organised as follows. Section 2 gives several
motivating examples of the problem. Section 3 describes
the user roles in this global environment. Section 4 con-
tains the description of the architecture of the system. Sec-
tion 5 deals with the workflow of Update Proposals. Sec-
tion 6 describes the application of the workflow to the ex-
amples given in section 2. Section 7 discusses the aspect of
long-running transactions in the proposed system. Section
8 deals with the Transformation and Transaction Manage-
ment Language (TTML), which is used to provide system-
independence. Section 9 describes the use of metadata in
the proposed system on principle.

2 Motivating Examples
This section gives several examples of situations typically
encountered when dealing with a multi-agency environment
[11]. Please note that this list of examples is not exhaustive
and many more similar examples could be found.

2.1 Changes by Outside Agents
The situation addressed here is the distribution of an up-
date between two agents, one without, one with the author-
ity to update the database. This can occur in many situa-
tions and an example from public administration serves to
demonstrate the general problem:
An engineering company is preparing a plan for the con-
struction of a new street. The company prepares changes
to the cadastral database – small pieces of land are taken
away from adjoining parcels and added to the public road.
The engineering company does not have the authority to
change the FDBS, and submits the plans for approval to the
concerned authority. The cadastral authority checks the le-
gality of the proposed changes and after approval inserts
the changes in the database. Today this requires a
redigitizing of the submitted plans, which is slow and error
prone.

2.2 Conditional Validation
Update Proposals often rely on other Update Proposal as
pre-conditions.
For example: an outside agent submits plans for a new house.
The prospective landlord only recently bought the parcel
on which the house will be located. So the Update Pro-
posal containing the plans for the new house only may be

accepted into the FDBS if, and only if, an Update Proposal
changing the ownership of the concerned parcel was suc-
cessfully accepted into the FDBS.

2.3 Correction of Out-Dated or Incorrect Data
Often Update Proposal Makers encounter incorrect or out-
dated data in the FDBS. This data has to be updated not
only to allow an Update Proposal to be accepted into the
FDBS but to keep the FDBS as up-to-date as possible.
Now these corrections are often done on an informal basis,
as there are often no procedures defined to correct these
entries.

2.4 One Proposal Changes Several Databases
One of the most costly operations is to update data which is
either duplicated or distributed throughout the FDBS, i.e.
the entries of interest are either held at several LDBMSs to
make access to these entries easier, or several semantically
connected entries are located at different LDBMSs.
For example: an Update Proposal Maker intends to “de-
stroy” a house in the FDBS. Data concerning the house is
not only found in the cadastral database, but also in the
sewer and the electricity database. Once the house is torn
down not only the data concerning the house itself becomes
obsolete, but also the connections to the sewer and the elec-
tricity system. Therefore these connections in the FDBS
should be passivated as well.

2.5 Distribution of Changes to Other Agencies
Often data is purchased from an acknowledged data sup-
plier. This data is used by various clients as basis for their
own system, e.g. a road database may be used as basis for
an accident monitoring system, i.e. the data supplied is
“enriched” by the clients.
Changes to the data by the data supplier can be distributed
to the clients by sending Update Proposals to the clients,
which may accept them into their LDBMSs.
This situation becomes more difficult when a client discov-
ers that some data is out-dated. In this case not only the
data supplier has to be notified, but the other clients using
this data must be informed of the changes as well.

3 User Roles
To address the issues of distributed update in an environ-
ment with localised authority for update, one must care-
fully analyse the roles of the users; we differentiate between
[3]:

3.1 The Update Proposal Maker
The Update Proposal Maker needs to retrieve information
from the system, e.g. roads (road system, implemented in
GEO), canalisation (canalisation database, implemented in
ARC) or cadastral information. He is allowed to query or

browse the federated database.
The Update Proposal Maker first queries for the informa-
tion, which may be located in LDBMSs outside his agency.
Then he can modify the retrieved datasets, e.g. adding a
piece of road locally and sends his update request, i.e. the
Update Proposal to the authorised agent, i.e. the Validator.

3.2 The Validator
The Validator needs to check the proposals, which arrive
from the different agencies. He uses his professional knowl-
edge and the agency’s rules to accept or reject the proposed
changes to his LDBMS.
If the proposal is accepted, it is translated to the correspond-
ing data-manipulation-statements and submitted to the
FDBS. If not, the Validator has to send the Update Pro-
posal back to the Update Proposal Maker, together with an
explanation of what needs to be changed.

3.3 The Database Administrator
The Database Administrator is responsible for integrating
new LDBMSs into the general schema and for maintaining
this federated schema.

4 Architecture
This section describes the setup of a federated database
environment suited for the proposed workflow. Please note,
that this setup is rather general, as several forms of feder-

Fig. 1 The Physical Setup

ated or even shared databases can be used to implement
this particular workflow as long as a suitable form of meta-
data is provided. The only restrictions are that each tuple
that may be updated can be unmistakably identified in the
whole system and that there have to be clear distinctions
between the responsibilities of the Validators.

4.1 The Physical Setup
As there are many different systems, using different data-
formats, different data-structures, different Data Manipula-
tion Languages (DML) etc., a way to logically connect these
systems is needed. There has to be a way not only to con-
nect the different systems via a network, but also to estab-
lish a logical distinction between user sites and the LDBMSs
accessed by the users through the FDBS. Figure 1 shows
the physical setup of such a system.
The physical setup consists of several connected sites. These
sites each consist of a server, which holds its part of the
FDBS, i.e., a departmental database, and the user sites.
These user sites are used to retrieve and to manipulate data
from the FDBS.

4.2 The Logical Setup
In order to distinguish between the FDBS on the one hand
and the User Sites on the other, a logical separation of these
entities is desired. The logical setup is given in Figure 2.

4.2.1 User sites
The users of the FDBS-system are using these sites to re-
trieve needed data from the FDBS. User sites can be also
used to prepare Update Proposals.

4.2.2 Federated Database Sites
The LDBMSs are located on the federated database sites.
They appear as one large federated database to the clients.
Physically the federated database sites act as servers to the
client sites, with which they form a system that could work
independently as well. These systems may consist of dif-
ferent vendors’ products; e.g., Oracle, Adabas and Interbase
databases are joining in one federated database.
When the FDBS is set up or whenever a new database is
integrated into the FDBS, schema integration has to be per-
formed. The task of this schema integration is to identify
shared objects within the local databases and to provide a
form of mapping between objects located in different local
databases. This can be achieved by the use of metadata,
which describes the shared objects in an abstract way and
thus enables the system to identify objects within the whole
system. More detailed discussions of schema integration
can be found in [2, 10, 9, 4].
Another important aspect of the FDBS is the limited het-
erogeneity. This approach relies on identifiers for each en-
tity. It is necessary that each tuple that may be updated can

be unmistakably identified in the whole system. Another
restriction is that all attributes affected by an update must
exist in the proper format as well, e.g. it must not be pos-
sible to write characters into an integer attribute.
The federated database sites are also used to store the Up-
date Proposals, which are submitted to the system as stor-
able transaction scripts. After an Update Proposal is issued
to the multi-agency system, it is stored at the concerned
federated database sites. The Update Proposals are kept in
a transitory state until the whole Update Proposal is either
accepted or rejected by the Validators.

5 Workflow
The workflow within the multi-agency system is illustrated
in Figure 3.
The Proposal Maker has to query the FDBS for the desired
data. If he is permitted to extract the desired information,
he receives the referenced datasets. This data may be ex-
tracted from LDBMSs using different query language fa-
cilities; therefore it may be represented in different data
formats. So either the FDBS provides services that allow a
unified access to this data or it has to be imported into the
local system using appropriate tools.
The next step for the Proposal Maker is to build an Update
Proposal using his local tools. By doing so he locally up-

Fig. 2 The Logical Setup

dates the extracted data. The changes applied to the local
database are then represented in the vendor-independent
Transformation and Transaction Management Language
(TTML), i.e., a TTML script is generated. This generation
uses mapping information derived from a meta-database to
map the names of the updated objects to system-indepen-
dent logical names. By doing so independence from local
schema definition is achieved. The Update Proposal in
TTML is then stored in the system together with additional
information about which databases have to be changed, who
initiated the change, by whom it has to be authorised, etc.
Finally, the Update Proposal is sent to the sub-systems, i.e.
the corresponding federated database sites holding the con-
cerned LDBMSs. There it is stored in a transitory state,
awaiting further processing by the Validators.
Validators can query which Update Proposals are awaiting
validation and can deal with them individually, checking
them against the agency’s own documentation, which may
be stored in the Validator’s LDBMS, but is not available to
the FDBS or other documents. The Validator may accept
the Update Proposal after thorough examination of the pro-
posed changes. The Validator may browse the FDBS if this
is necessary. It is also possible that an Update Proposal
may be checked by several Validators working at different
agencies, i.e. different federated database sites. This can
be necessary when an Update Proposal is about to change
data that is used by several agencies and therefore stored in
different LDBMSs.
After acceptance the Update Proposal is translated into the
FDBS’s Data Manipulation Language (DML). Then the
resulting global transaction is executed by the FDBS. At
this stage the Update Proposal may be accepted by the le-
gal authorities, but it may still be rejected by the federated
database, because the Update Proposal may violate con-
straints in one or more parts of the FDBS. It is the respon-
sibility of the FDBS to guarantee that a global transaction’s
sub-transactions are committed and, if only one does not
commit, to roll back the whole global transaction and to
notify the Validator. In case of an error a description as
detailed as possible should be provided to both the Validator
and the Update Proposal Maker. If all sub-transactions com-
mit successfully, the Update Proposal is permanently stored
in a history database in order to keep track of the applied
changes to the FDBS.
If the Validator decides not to accept the Update Proposal
after thoroughly examining the proposed updates, because
he cannot permit them, it is sent back to the Update Pro-
posal Maker with an explanation. The Update Proposal
Maker may also receive detailed information why the Pro-

posal has not been accepted and thus be able to correct his
Update Proposal accordingly and re-send it.

6 Application of the Workflow
This section describes the application of the proposed
workflow to the motivating examples given in section 2.

6.1 Changes by Outside Agents
If an Update Proposal is submitted to one LDBMS, i.e. to
one Validator, by an outside agent the Validator has to vali-
date these changes and to eventually authorise them.
In case of the example given in section 2.1 this means that
the original data in the road database is directly manipu-
lated with data from another database and no digitising is
necessary.

6.2 Conditional Validation
The example given in section 2.2 can be described with a
list of pre-conditions: only if the cadastre database is
changed appropriately the new house may be inserted in
the FDBS. If a Validator encounters a situation like this he
can issue a Conditional Validation. This special form of
authorisation tells the FDBS that the Update Proposal may
only be applied if another Update Proposal was success-
fully applied to the FDBS, i.e. validated and authorised by
a Validator and successfully applied to the FDBS. There-
fore the Update Proposal keeps pending until all pre-con-
ditions are fulfilled.

6.3 Correction of Out-Dated or Incorrect Data
If an Update Proposal Maker or another user of the system
encounters out-dated or incorrect data, he submits an Up-
date Proposal to the concerned Validator.
As these faulty database entries are often detected while
preparing an Update Proposal, the Update Proposal will
most likely submit two Update Proposals: one that contains
his original changes and one to correct the FDBS. The lat-
ter is most likely a pre-condition for the first Update Pro-
posal and therefore a Conditional Validation for the first
Update Proposal is issued.

6.4 One Proposal Changes Several Databases
If an Update Proposal would influence several LDBMSs it
is divided into several Update Proposals, each containing
all the information for one LDBMS. The concerned
Validators validate these Update Proposals. If only one
Update Proposal is not applied to the FDBS, i.e. the
Validators’ LDBMSs, either because it is not authorised by
the concerned Validator or because it violates constraints

Fig. 3 TheWorkflow

in the LDBMSs all sub-transactions of this global transac-
tion have to be rolled back.

6.5 Distribution of Changes to Other Agencies
If a data supplier wishes to submit changes to its clients it
sends corresponding Update Proposal to all concerned
LDBMSs. If a client wants to change data in the global
data stock it submits an Update Proposal to the data sup-
plier without changing its own LDBMS. If the data sup-
plier authorises these changes they are sent to all concerned
clients.
In both scenarios problems may arise if due to the changes
to the supplied data enriched data becomes invalid. In the
given example of the accident monitoring system a road
bend may have some associated attributes describing acci-
dents at this specific point. If the bend is replaced by a
piece of straight road in the global data stock these attributes
become invalid. In this case manual correction of the en-
tries in the LDBMS may become necessary. Using the pro-
posed workflow it is at least possible to supply the Validator
with information on which entries become invalid. Never-
theless, the correction of the associated enriched data can-
not be fully automated.

7 Long-Running Transactions
As we have demonstrated Update Proposals are storable
transaction scripts, which may remain in the multi-agency
system for a longer period of time, sometimes even years.
For instance, it may take months for the Validators to come
to a decision whether to accept or to reject an Update Pro-
posal or a decision depends on court action, which can take
years to come to a final decision. During this time the up-
date transaction is already stored in the system and await-
ing further processing by the Validators. It is possible to
query the database for the existence of a yet unauthorised
Update Proposal. A Validator can also check Update Pro-
posals by studying their effects using a viewing tool. Up-
date proposals also fulfil the ACID-properties for transac-
tions:
* Atomicity: An Update Proposal is either completely ex-
ecuted or not at all, i.e. either all sub-transactions of the
LDBMSs are completed successfully or not by the FDBS.
* Consistency: As long as the underlying FDBS fulfils this
criterion, so do Update Proposals.
* Isolation: The results of an Update Proposal are not vis-
ible to other transactions until the whole Update Proposal,
i.e. all its sub-transactions, commits successfully. This is
only possible if the underlying FDBS guarantees isolation.
* Durability: In this approach durability can be guaranteed
if it is guaranteed by the underlying FDBS.
As long as the FDBS guarantees the ACID-properties, Up-
date Proposals can be treated as transactions. They can
even be characterised as a generalised form of long trans-

actions, i.e. a transaction that needs a longer period of time
to execute. Update proposals remain in the system for a
longer period, but their actual execution time is as long as
any global transaction in the FDBS. These Update Propos-
als can be viewed by the authorized personnel using appro-
priate viewing tools.

8 TTML
The intention of this section is to describe the TTML lan-
guage, which provides a way to achieve system indepen-
dence of updates to the federated database.

8.1 TTML Layer
Because TTML is used to represent updates of data in the
FDBS, which consists of several different LDBMSs, an
additional layer of abstraction is introduced.
The man-machine interface at the client site builds updates
and then automatically translates them to TTML using a
TTML generator. This means that the TTML generator has
to map the functions of the local client to an abstract de-
scription of these functions. This is achieved by mapping
the basic database functions to a system-independent ab-
stract equivalent. The basic database functions used are:
create, passivate and replace objects, create and passivate
associations and replace attributes.
After generation the resulting TTML scripts are sent to the
corresponding federate sites. After receiving a TTML script
the objects referenced in the TTML script have to be mapped
to the corresponding object names in the LDBMSs. In or-
der to do this metadata describing these objects is used.
The translated TTML script is then passed to the FDBS,
which executes the resulting transaction by splitting it into
several sub-transactions. These sub-transactions are then
executed in the corresponding LDBMSs.
TTML uses objects, associations and attributes as the small-
est units of representation. Using this form of representa-
tion TTML is capable of transporting data without any spe-
cial adaptations to the data’s semantic background. For
example, TTML is able to represent geometric data as well
as business data. The crucial point here is that the data
schema has to be thoroughly analysed in order to identify
these objects, associations and attributes semantically cor-
rect. The result of this analysis is then used to set up the
Meta-Database, which is used by TTML generator, the
TTML interpreters as well as by the FDBS.

8.2 Layout of TTML-Scripts
Each TTML-script consists of three parts:
* A TTML-header describing classes of objects, attributes
and associations connecting two objects.
* TTML-statements describing the actions that are to be
performed upon these objects, attributes and associations.
* TTML attached file: this part contains the data needed to

perform the TTML-statements.

8.3 TTML Header
The TTML header describes the data schema of the TTML
exchange. It defines the referenced objects, attributes and
associations, and relates them to unique identifiers within
the whole TTML script. Note that the names used to iden-
tify the updated objects are only synonyms, because the
same object may have different names and structures in dif-
ferent LDBMSs. The mapping logical to real names is done
through a set of metadata describing the names and struc-
tures of all accessible objects within the FDBS. For ex-
ample:
entity : class; ent_id 1; class_name Building
This statement describes the class “Building” and relates it
to the entity identifier “1”. In the same way associations
are being described. Additionally to their attribute identifi-
ers, attributes need entity identifiers in order to specify the
class or association they belong to.
This example and the examples in the following sections
are only schematic and do not comply with the correct syn-
tax of TTML. They are given to demonstrate the general
idea of TTML. Refer to [7] for the correct syntax.

8.4 TTML Statements
TTML statements describe which modifications are applied
to the objects, attributes and associations described by the
TTML header.
Objects can be created, passivated and replaced; values of
attributes can be replaced, and associations can be created
or passivated. Here too, object identifiers of newly created
objects are only substitutes for the identifiers created dur-
ing entering the transaction in the FDBS. For example:
Create_Object(Building DB,Building,01/01/98,10)
This statement creates a new instance of the class “Build-
ing” in the local database “Building DB”, sets its object
identifier to “10” and its creation date to “01/01/98”. Note
that the object identifier may differ from the class identi-
fier. An object identifier is used to identify an object,
whereas a class identifier is used to identify a class, from
which objects may be instantiated. The same goes for as-
sociations and attributes.

8.5 TTML Attached File
This file contains the data needed to perform the TTML
statements. It contains the values of the attributes, with
which the referenced objects have to be populated. The
distinction of actions (in the TTML statement script) and
data (in the TTML attached file) is used, because data can
also be imported using different data files, i.e. files de-
scribing values of objects, associations and attributes, us-
ing a different format. An example of an attached file state-
ment:

Building :: 10 : OWNER : RUDI
Within the context of the examples in the previous sections,
this statement describes that upon creation of the object of
the class “Building” with object identifier “10”, the attribute
“OWNER” will be set to “RUDI”.

9 Metadata
TTML is an abstract way to represent Update Proposals.
By translating these Update Proposals to a form compat-
ible with the FDBS, the proposed changes can be applied.
But TTML needs information on the structure of the classes,
associations and attributes referenced in a TTML script.
Furthermore, there has to be a mapping from the symbolic
names of the objects in the TTML statements to the names
and locations of these objects in the FDBS. Note that this
is not a trivial task, because an object in LDBMS 1 may
refer to several objects in LDBMS 2. Setting up metadata
is a matter of the integration of the pre-existing stand-alone
LDBMSs into the FDBS. Therefore a very detailed analy-
sis of the schema and thorough testing has to be performed
in order to ensure that the mapping is correct and consis-
tent. However, the integration only has to be performed for
data that is shared in the FDBS. Data that is “private” for
the agency must not be integrated into the FDBS.

10 Summary
We have proposed a solution to improve interoperability of
databases used in public administration by addressing the
workflow in a multi-agency situation, where the agencies
share data in a Federated Database, but authority to permit
updates is with each agency. In such situations it is neces-
sary that another than the authorised agency can propose
updates - but that it cannot commit them, lacking update
permits for the database. The solution is to construct stor-
able Update Proposals, which can be passed to the respon-
sible Validator, who may authorise and execute them as
updates to his agency’s local database.
The method is based on the separation of the roles of Up-
date Proposal Maker and Validator. Update Proposals are
transmitted in the vendor-independent TTML language.
Some time after reception the Validator checks if the pro-
posed changes to the environment are to be permitted. If
he permits the changes, the Update Proposal is translated
into the appropriate data manipulation statements and sent
to the underlying Federated Database, where it is executed
as a global transaction.
Update proposals can also be seen as a generalised form of
long-running transactions. The information transported by
Update Proposals is available to authorised personnel as
soon as the Update Proposals are submitted by the Update
Proposal Makers. The integration of this information into
the FDBS only takes place after the acceptance of the Up-
date Proposal by the Validators, which may take years.

The translation uses the Commuter Metadata to translate
the symbolic names used in the TTML-script into database
object names. If only one update of the sub-transactions
fails, because it would violate constraints implemented in
the corresponding local database, all sub-transactions of this
transaction to the FDBS have to be rolled back.

Acknowledgements

Support from the European Commission (DG III) for the
Commuter Project and GIPSIE Project is gratefully ac-
knowledged. We wish to thank our colleagues in the Com-
muter Project, especially Medur Sridharan, Francesco Fusco
and Djahanguir Djamei.

References
1. Barghouti, N.S. and Kaiser, G.E.: Concurrency Con-

trol in Advanced Database Applications, ACM Com-
puting Surveys, 23(3) (1991)

2. Castellanos, M.: A Methodology for Semantically En-
riching Interoperable Databases, Advances in Data-
bases - Proc. of the 11th British National Conference
on Databases (1993)

3. Djamei, D. et al.: Architecture of the Commuter Sys-
tem, Commuter Consortium (1997)

4. Ekenberg, L. and Johannesson, P.: A Formal Basis for
Dynamic Schema Integration, Conceptual Modeling -
ER’96, Proc. of the 15th International Conference on
Conceptual Modeling (1996)

5. Hwang, S.-Y., Huang, J. and Srivastava, J.:
Concurrency Control in Federated Databases: A Dy-
namic Approach, CIKM’93, Proc. of the Second In-
ternational Conference on Information and Knowledge
Management (1993)

6. Korth, H.F. and Speegle, G.: Formal Aspects of
Concurrency Control in Long-Duration Transaction
Systems Using the NT/PV Model, ACM Transactions
on Database Systems, 19(3) (1994)

7. Rayna, L. et al.: TTML Specifications, Commuter Con-
sortium (1997)

8. Sheth, A.P. and Larson, J.A.: Federated Database Sys-
tems for Managing Distributed, Heterogeneous and
Autonomous Databases. ACM Computing Surveys,
22(3) (1990)

9. Schmitt, I. and Saake, G.: Integration of Inheritance
Trees as Part of View Generation for Database Federa-
tions, Conceptual Modeling - ER’96, Proc. of the 15th
International Conference on Conceptual Modeling
(1996)

10. Vermeer, M.W.W. and Apers, P.M.G.: On the Appli-
cability of Schema Integration Techniques to Database
Interoperation, Conceptual Modeling - ER’96, Proc.
of the 15th International Conference on Conceptual
Modeling (1996)

11. Chirie, F. and Frank, A.U.: Scenarios for Demonstrat-
ing the Commuter Federated Multi-Agency Capabili-
ties, Commuter Consortium (1998)

