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Abstract. Topological relations are not well defined for raster repre-
sentations. In particular the widely used classification of topological re-
lations based on the nine-intersection [8,5] cannot be applied to raster
representations [9]. But a raster representation can be completed with
edges and corners [14] to become a cell complex with the usual topolog-
ical relations [16]. Although it is fascinating to abolish some conceptual
differences between vector and raster, such a model appeared as of the-
oretical interest only.

In this paper definitions for topological relations on a raster — using the
extended model — are given and systematically transformed to functions
which can be applied to a regular raster representation. The extended
model is used only as a concept; it need not to be stored. It becomes thus
possible to determine the topological relation between two regions, given
in raster representation, with the same reasoning as in vector representa-
tions. This contributes to the merging of raster and vector operations. It
demonstrates how the same conceptual operations can be used for both
representations, thus hiding in one more instance the difference between
them.

1 Introduction

Topological relations are not well defined for raster representations. In particu-
lar the widely used classification of topological relations based on the four- and
nine-intersection [8,5] cannot be applied to raster representations [9]. This is
due to the topological incompleteness of a raster: it consists, in the field view,
of (open) two-dimensional cells only. In contrast, vector representations con-
sist also of one- and zero-dimensional elements, used for the representation of
boundaries, which close two-dimensional point sets and demarcate from their ex-
terior. Boundary constructions in raster representations require the use of raster
elements [13], although they are two-dimensional by nature. Two-dimensional
boundaries contradict to topology, so they cause some well-known paradoxes.
Kovalevsky has suggested that the raster can be completed with edges and
nodes to become a full topological model [14]. In this representation, called
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here a hybrid raster, topological relations are defined equivalent to a vector
representation [16]. But the hybrid raster appeared as of theoretical interest only,
mostly due to its additional and redundant memory requirements (see Section
2.3).

Here detailed definitions for topological relations on a raster — using the
hybrid raster representation — are given and then systematically transformed
to yield functions which can be used in a convolution operation applied to a
regular raster representation. Hereby the hybrid raster is only used as a concept.
It need not be stored and is only partially constructed during the execution of
a determination of a topological relation. It becomes thus possible to determine
the topological relationship of two regions, given in raster representation, by the
four- or nine-intersection.

A formal approach is used to understand the structure and the theory of an
extended raster representation and its application for topological relations. The
specification is written in a functional language. Pure functional languages [1],
like Gofer [11], provide a useful separation of specification and implementation
[10]. With executable specifications, the result is a provable code — in syntax as
well as with test cases — with a clear semantic. Furthermore, such a specifica-
tion is basis for iterative optimization; e.g. the Gofer code published here! was
optimized in several cycles of improvements. The value of such formal specifi-
cations is recognized more and more. So Dorenbeck and Egenhofer presented a
formal specification of raster overlay, with a generalization for polygons [3]. We
also specify an overlay, but of an extended raster, deriving the same behavior of
raster and vector representations.

This contributes to the merging of raster and vector operations. It demon-
strates how the same conceptual operations can be used for both representations,
thus hiding in one more instance the difference between them.

The paper is structured as follows. In Section 2 previous work is collected,
regarding topological relations between regions, and hybrid raster representation.
In Section 3 the raster representation is extended to a hybrid raster, and the
combination of two raster images is presented to determine a four-intersection.
It is also discussed how to optimize computations. An example in Section 4 shows
the advantage of an executable specification. Finally a discussion sums up the
results and perspectives (Section 5).

2 Previous Work

2.1 Topological Relations

Egenhofer proposed a representation of topological relations between point sets,
based on the intersection sets of such point sets [6,7,5]. Point sets in IR? refer
to Euclidean topology, with the Euclidean distance as a metric. The metric is
needed to define a boundary of (open) sets. Distinguishing the interior X'°, the
boundary X and the exterior X¢ of a point set X, two point sets .4 and B may

! The complete code is available at our web-page.



have nine intersection sets, which form a partition of the plane. For describing
topological properties the size of the intersection sets is irrelevant, only being
empty or not is characterizing.

For regular closed and singular connected sets — simple regions — even four
intersection sets are sufficient, because the omitted five intersection sets do not
vary. The sets can be ordered in a 2 x 2-array, the four-intersection 14:
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The nine-intersection contains the other five sets, too. — Eight relationships
between two simple regions can be characterized using this schema (Table 1).

Table 1. The eight distinct four-intersections for simple regions, and the names of the
characterized topological relations.

R

DisJoINT MEET OVERLAP EqQuaL

-0 -0 -6 0 -0 -0 -0 0
0 -0 -0 -0 6 0 -0 0

CovER CovEREDBY CoONTAIN CONTAINEDBY

The found relationships were investigated and applied to spatial reasoning
[4,12], with the interest to speed up spatial queries in GIS or in Al They are
an important improvement of vector representations, which base on point sets
in IR2.

2.2 Topological Relations and Raster Representations

A raster representation is a two-dimensional array of elements with integer co-
ordinates. Interpreting the raster elements as fields — instead of lattice points —,
the raster is a regular subdivision of space into squares of equal size, resels (short
form for ’raster elements’). — For the general principle it doesn’t matter how the
raster is implemented (see e.g. [15]). But a comparison to vector representations
directly shows that only (open) two-dimensional elements exist, and one- and
zero-dimensional elements are missed. Boundaries of regions cannot be defined
by infinite balls as in the Euclidean space.
This problem was treated so far in two ways:

— omitting boundaries, having only regions as open sets, as it is done in region
based reasoning methods (e.g. [2]);



— defining substitutes for one-dimensional boundaries, using raster elements
and any arbitrary neighborhood definition [13].

The first solution allows the application of the nine-intersection only for its
two-dimensional intersection sets, i.e. the region interiors and exteriors, which
yields a subset of the relationships in Euclidean space [17]. The resulting four-
intersection may not be mixed up with the four-intersection defined with bound-
aries (Eq. 1).

The second solution generates two-dimensional boundaries, resel chains or
bands, either as interior boundaries or as exterior boundaries. Two-dimensional
boundaries contradict to topology, so they cause some well-known paradoxes
[13]. The result of intersecting the sets of interior, boundary and exterior raster
elements depends heavily on the definition of the boundary (interior or exterior).
Even worse is the possibility of more than the eight four-intersections described
in Table 1, simple regions presumed [9]. These intersections have no common-
sense meaning; they appear as variations of the eight presented intersections and
need special care.

2.3 The Hybrid Raster Representation

Kovalevsky has suggested that the raster can be completed with edges and nodes
to become a full topological model, to be precisely: an abstract cell complex
[14]. The only specialty of this cell complex is its regular structure (Figure 1).
Generally all elements of a cell complex are called (2D-, 1D-, 0D-)cells, but we
will speak in the following of two-dimensional cells — identical with the resels in
raster —, one-dimensional edges and zero-dimensional nodes. The union of edges
and nodes will be called the skeleton of the cells.

@ —
! .
Fig.1. A (regular shaped) cell complex, replacing a raster element of usual raster
representations in the hybrid raster: each cell is closed by four edges and four nodes.

In this representation, topological relations regard again to Euclidean space,
and the four- or nine-intersection can be applied in full accordance to vector
representations [16]. In vector representations these tests are expensive, requiring
polygon intersection. In a hybrid raster representation the tests are simple to
evaluate: two hybrid rasters (of the same resolution, same size and common
origin), labeled by three values for interior, boundary and exterior, are overlaid
by A (equivalent to N in set denotation). Then the nine possible combinations
can be accumulated in a histogram. Binarizing the histogram (= 0, > 0) yields



the nine-intersection. In a more sophisticated algorithm one would consider the
dimension of the intersection sets, and reduce the overlay to the cells of the
relevant dimension.

Winter presented also a data structure to store and access the cells and their
skeleton. If the raster is of size n X m, additional elements in a hybrid raster
are (n + 1) * m horizontal edges, n * (m + 1) vertical edges, and (n + 1) * (m +
1) nodes: the required memory space is of order 4 higher than for the raster.
Another critical point of such data structures are the considerable amount of
index transformations for each access.

However, if the hybrid raster is used only to represent regions — as raster
does —, and no lines or points, then the additional elements of the hybrid raster
become totally redundant to the cells. The skeleton can be renounced from ex-
plicit storage, applying dependency rules instead, which work locally. This paper
will investigate these ideas, using a functional approach to specify semantically
the rules and their application.

3 Topological Relations in a Functional Extended Raster
Representation

The determination of the nine-intersection is simple in a raster representation,
if the topologically completed raster is used (Section 2.3). But this does not
seem practical, as the model includes not only the cells, but also the edges
and the nodes; this would quadruple the storage requirement and also make
computation four times longer. We will develop now a functional extension of
the raster that fulfills all the conditions of a hybrid raster virtually, without
explicit representation. The functions are specified in Gofer [11].

3.1 Specification of a Hybrid Raster in Natural Language

The hybrid raster representation can be computed from the regular raster repre-
sentation, i.e. the necessary information is already contained in the raster, and
all additional elements are redundant.

Agsume an arbitrary region — without loss of generality let us confine our-
selves to simple regions — given as the set of resels with value 'Region’, and the
background resels have the value "Empty’. These two values are mapped to the
Boolean values true and false, to allow the regular logical operations.

Cells: Cells are identical to resels. A

Vertical edges: A vertical edge belongs to the interior of the region, iff the
adjacent left and right cells are labeled as 'Region’. It belongs to the exterior
of the region, iff the adjacent left and right cells are labeled as "Empty’. It
belongs to the right boundary, iff the adjacent left cell is 'Region’ and the
right cell is "Empty’, otherwise it belongs to the left boundary (Figure 2). A



Fig. 2. Classification of edges by the two adjacent cells (bright cells are outside of the
region, dark cells are elements of the region). An edge belongs (a) to the exterior or (b)
to the interior, if both raster elements are homogenous, (¢) and (d) to the boundary,
if the values of the raster elements are different.

Horizontal edges: A horizontal edge belongs to the interior of the region, iff
the adjacent upper and lower cells are labeled as 'Region’. It belongs to
the exterior of the region, iff the adjacent upper and lower cells are labeled
as "Empty’. It belongs to the lower boundary, iff the adjacent upper cell is
'Region’ and the lower cell is "Empty’, otherwise it belongs to the upper
boundary. A

To distinguish the orientation of the boundary is not necessary in the context
of this paper. But it could get importance in other tasks like line following.

Nodes: A node belongs to the interior of the region, iff all four adjacent cells
are labeled as 'Region’. It belongs to the exterior of the region, iff all four
adjacent cells are labeled as "Empty’. Otherwise the node belongs to the
boundary (Figure 3). A

... .. ...
Fig. 3. Classification of nodes by the four adjacent raster elements (bright resels are
outside of the region, dark resels are elements of the region). A node belongs to the
exterior, if all resels are outside (a), to the interior, if all resels are element of the region

(b), and to the boundary if the four resels are not homogenous; the given examples (c,
d) are not complete.

To transform the rules into a formal language, an identification of each single
elementsis required. We define the following index schema:

Cell index: Cells are indexed in the regular way of resels. A

Vertical edge index: Vertical edges are indexed with the same index as the
cell to their left. A



Horizontal edge index: Horizontal edges are indexed with the same index as
the cell above. A

Node index: Nodes are indexed with the same index as the cell left above. A

Figure 4 shows that this indexing schema is indeed complete for the Euclidean
plane and gives for each element of the representation a unique index. However,
any subset of the plane will miss the edges and nodes at the left and upper border
by this indexing schema. For that reason it is presumed that the subsets are
chosen with a border of at least one resel width CEmpty’) around the represented
region.

\4

Fig. 4. Indexing schema for egdes and nodes.

3.2 Specification of a Hybrid Raster in a Functional Language

In Gofer an array can be realized as a class of {bounds, [index := valuel},
where bounds are the lower and upper limit of indices, and the remainder is a
list of associations between an index and a value. In the context of this paper
arrays are two-dimensional and rectangular, indices are integer tuples, and the
type of cells is Boolean:

instance Arrays (Int,Int) Bool

Let us extract an arbitrary 2-by-2 sub-array from a binary raster image, by
applying the class method getSubMat:

get22Mat image i j = getSubMat image ((i,j),(i+1,j+1))

The sub-array contains the four resels (¢,5), (i + 1,5), (4,5 + 1), and (¢ + 1,5 +
1). In the following, they are referred to as patterns cIJ, cEast, cSouth, and
cSouthEast, cf. Figure 5.

All the following functions map this sub-array onto a Boolean. They represent
the rules of Section 3.1:



Fig. 5. The names of resels/cells in a window at cell (¢, 7).

cInterior mat22 = cIJ

cExterior mat22 = not (cInterior ar)

vInterior mat22 = cIJ && cEast

vExterior mat22 = (not cIJ) && (not cEast)

vBoundary mat22 = not (vInterior ar) && not (vExterior ar)

and so on for horizontal edges and for nodes. The result confirms or falsifies the
rule name; e.g. if vBoundary returns true then the vertical edge (4, 7) belongs to
the boundary. While the resels are binary, the skeleton elements are ternary.

With the functions above the elements of a hybrid raster can be derived from
a raster on demand at any raster position. That ability allows the construction
of the hybrid raster on the fly during the overlay of two raster images. No storage
of the results is specified for the functions.

3.3 Determination of Topological Relations

Testing for the intersection between boundary and interior of two simple regions
determines their topological relation. In a hybrid raster, the tests must be re-
peated for cells, for horizontal and vertical edges, and for nodes. With regard
to the limited dimension of some intersection sets, some of these tests can be
neglected.

For two hybrid raster images (of the same resolution, the same orientation,
and the same origin), only cells intersect with cells, only edges intersect with
edges, and only nodes intersect with nodes. That is a consequence of the regular
decomposition of the plane, and exceeds the usual properties of vector repre-
sentations. Taking advantage from these properties, the four intersection sets of
Equation 1 can be reformulated as:

(&& (cInterior a) (cInterior b))
(&& (vInterior a) (vBoundary b)) ||
(&& (hInterior a) (hBoundary b))
(&& (vBoundary a) (vInterior b)) ||
(&& (hBoundary a) (hInterior b))
(&& (nBoundary a) (nBoundary b))

ii_intersect a b
ib_intersect a b

bi_intersect a b

bb_intersect a b



Here the arguments a and b stand for two sub-arrays, one from each raster
image, with the same index. That means that with this compact code at any
raster position (7, j) the four intersection sets between two region interiors and
boundaries are determined:

fourIntersectionIJ a b i j = [ii, ib, bi, bb] where
ii = ii_intersect (get22Mat a i j) (get22Mat b i j)
ib = ib_intersect (get22Mat a i j) (get22Mat b i j)
bi = bi_intersect (get22Mat a i j) (get22Mat b i j)
bb = bb_intersect (get22Mat a i j) (get22Mat b i j)

The remaining task is to move the 2-by-2 sub-arrays over both rasters in parallel.
So the determination of the four-intersection is reduced to a convolution:

fourIntersection a b = ((map or).transpose)
[ fourIntersectionIJ a b i j |
i<-[begRow .. endRow], j<-[begCol .. endCol] ]

In the code a test is added to guarantee the identical image sizes. Also the
patterns begRow and endCol are defined in the code, with exploitation of the
outer band of ’Empty’ in both images.

Let us consider the last function in more detail. Convolution yields a list of
four-intersections for each raster position (right hand of the equation), which are
realized as lists of four Booleans. Transposing this list of lists yields a list of four
lists each containing all Booleans regarding one intersection set for the whole
overlaid images. The map operation applies the argument — the or function — to
all elements of the lists: we derive four Booleans for the global four intersection
sets.

Extension of the procedure to the nine-intersection is straight forward.

3.4 Computational Improvements

In functional languages, the optimization is easily performed — but it is not even
necessary. Languages like Gofer are ’lazy’; they evaluate functions only when
needed, and only to a degree that is needed. While lazy evaluation optimizes
program execution of the Gofer interpreter, the effects must be made explicit for
translation to standard programming languages.

Partly the given Gofer code is already optimized: consider the limitation of
evaluating intersection sets with hybrid elements of specific dimensions only.
For example, ii_intersect evaluates only cells — no edges or nodes. That is
sufficient because if the interior-interior-intersection set is not empty it must
contain two-dimensional elements. — Open for optimization is the last function
fourIntersect. The or, mapped to a list of Booleans, is true if at least one
element is true. In principle it is sufficient to stop evaluation of each intersection
set when the first true result is found.

Once optimization is done (and tested), the code can be translated into
standard programming languages, like Pascal or C++.



4 Examples

Because Gofer is an executable (interpreted) language, one can run the code
with some test cases. To generate such examples, first a constructor is called to
deliver a raster image, initialized as "Empty’:

imgEmpty = binArray (-1) (-1) 2 3 False

Note that the bounds yield a 4-by-5 array, where the usable indices 0...1 or 2
guarantee the outer band of 'Empty’ resels. — With the same constructor now
two rectangular regions are created. Each region is combined with the empty
image, creating the two raster images imgA and imgB (Figure 6):

boxA = binArray 0 0 1 0 True
boxB = binArray 0 1 0 2 True
imghA = imgEmpty // assocs boxA
imgB = imgEmpty // assocs boxB

More complex regions could be generated iteratively. Now we can formulate the
query:

? fourIntersection imgA imgB

The result is: [False, False, False, True]. That means the only intersec-
tion set of Equation 1 (here in linear order) that is not empty is the intersection
between the two (one-dimensional!) boundaries. The topological relationship be-
tween region A and B must be MEET therefore.

Fig. 6. The regions A (in the left raster image) and B (in the right raster image) meet
along an implicit one-dimensional common boundary.

5 Conclusions

The systematic and conform extension of the topological relations, as defined
by Egenhofer, from the vector representation to the raster representation can be
achieved using the conceptual transformation of the raster representation into
the hybrid raster, as a complete topological model. This seems not practical,
but a careful examination shows that no representation for the hybrid raster



representation must be constructed, and the necessary parts can be computed
on the fly from a regular raster representation.

The approach to specify in a functional language yields a semantically clear
piece of code that can be run with test application to demonstrate the correctness
in the investigated test cases. The systematic development and the application of
standard methods of program simplification and optimization leads from a con-
ceptually simple and correct formalization to efficient operations, which can be
coded in various languages. For example, a translation into C++ took only few
hours including testing. Differences between Gofer specification and C++ imple-
mentation concern the conceptual change to an algorithmic language, and some
adaptions to specific efficiency properties fo the target language. It is interesting
to compare the codes.

In the paper effects are not investigated that originate in resolution of vector-
raster conversion. We do not claim that an operation on a pair of vector regions
results in the same topological relation than applied on the rasterized regions.
Instead we claim in this paper that the behavior of vector and raster represen-
tation can be assimilated, by extending the raster with its skeleton. So far, the
paper contributes to the merging of raster and vector operations. With the use
the same conceptual operations in both representations, the difference between
both can be hidden in one more instance.

It is to expect that in principle the ideas are applicable to quad-trees, too.
But one has to take care of neighboring quad-tree leaves of different size. The
construction of that skeleton is open to formalization. Furthermore, translation
of the given specifications into standard programming languages is open for
further elaboration. Only then evidence can be given for time consumption of the
algorithms. We expect that the requirements are not bad, because the complexity
of the problem is O(n * m) with the number n x m of raster elements.
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