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ABSTRACT 
Object representation and reasoning in vector based geographic 
information systems (GIS) is based on Euclidean geometry. 
Euclidean geometry is built upon Euclid�s first postulate, stating 
that two points uniquely determine a line. This postulate makes 
geometric constructions unambiguous and thereby provides the 
foundation for consistent geometric reasoning. It holds for exact 
coordinate points and lines, but is violated, if points and lines are 
allowed to have extension. As an example for a point that has 
extension consider a point feature that represents the city of 
Vienna in a small scale GIS map representation. Geometric 
constructions with such a point feature easily produce 
inconsistencies in the data [23]. The present paper addresses the 
issue of consistency by formalizing Euclid�s first postulate for 
geometric primitives that have extension. 
We identify a list of six consequences from introducing extension:  
these are �new qualities� that are not present in exact geometric 
reasoning, but must be taken into account when formalizing 
Euclid�s first postulate for extended primitives. One important 
consequence is the positional tolerance of the incidence relation 
(�on�-relation). As another consequence, equality of geometric 
primitives becomes a matter of degree. To account for this fact, 
we propose a formalization of Euclid�s first postulate in 
Łukasiewicz t-norm fuzzy logic. A model of the proposed 
formalization is given in the projective plane with elliptic metric. 
This is not a restriction, since the elliptic metric is locally 
Euclidean. We introduce graduated geometric reasoning with 
Rational Pavelka Logic as a means of approximating and 
propagating positional tolerance through the steps of a geometric 
construction process. Since the axioms (postulates) of geometry 
built upon one another, the proposed formalization of Euclid�s 
first postulate provides the first building block of a geometric 
calculus that accounts for positional tolerance in a consistent way.  
The novel contribution of the paper is to define geometric 
reasoning with extended primitives as a calculus that propagates 
positional tolerance. Also new is the axiomatic approach to 
positional uncertainty and the associated consistency issue. 

Categories and Subject Descriptors 
I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving - 
uncertainty, "fuzzy," and probabilistic reasoning.  

General Terms 
Theory. 

Keywords 
GIS, geometric reasoning, approximate reasoning, error 
propagation, positional tolerance, axiomatic geometry. 

1. INTRODUCTION 
In vector based geographic information systems (GIS) object 
representation is based on Euclidean geometry. Euclidean 
geometry relies on the idea that points are infinitely small. Points 
are the indivisible building blocks of geometric reasoning. In 
conflict with this idea is the fact that points in GIS map 
representations often represent geographic entities that in reality 
have extension. As an example, Figure 1 sketches two 
representations of the city of Vienna in different levels of detail: 
In Figure 1a, Vienna is represented by a single coordinate point, 
whereas in Figure 1b, its extended character is visible. A 
geometric construction that operates with the point representation 
of Vienna disregards its true extension, and consequently 
disregards the extension of the output. Existing heuristic solutions 
do not provide control over the behavior of a geometric 
construction w.r.t. extension. When plugged together, heuristics 
produce exceptions which must be treated separately. The present 
paper poses the question if it is possible to formalize geometric 
reasoning with points and lines that have extension in a consistent 
way.  
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We approach the issue of consistency by adopting an axiomatic 
standpoint of geometry. The paper provides a first step towards an 
answer of the above question by addressing the most fundamental 
axiom of all classical geometries, namely Euclid�s first postulate. 
Euclid�s first postulate states that the line determined by two 
points is unique. It makes geometric constructions unambiguous 
and thereby lays the foundation for consistent geometric 
reasoning.  

As was shown in [23] positional tolerance plays a key role in 
geometric reasoning with extended primitives: An operator that 
connects two points with extension by a line with extension is 
either not practically useful in GIS, or introduces ambiguity into 
Euclid�s first postulate: There is no law of nature telling the 
�right� way of connecting Vienna with Munich by a linear entity. 
Despite this lack of principle, the generated ambiguities are not 
arbitrary: Based on some general assumptions on the nature of 
extended objects in a GIS context, we show that it is possible to 
derive a location constraint for the output object of a geometric 
construction. Since location constraints provide a certain amount 
of tolerance in positioning an object, we call the resulting 
ambiguity �positional tolerance�, and the respective formalism 
�tolerance geometry�. 

As a consequence of introducing extension, six �new qualities� 
emerge in connection with Euclid�s first postulate: positional 
tolerance of incidence, significance of size and distance, 
graduation of equality of points and of lines, intransitivity of 
equality, and granularity. We provide a formalization of Euclid�s 
first postulate for extended primitives that accounts for these �new 
qualities�. One way to define a graduated version of the equality 
relation is to define a reasonable fuzzy extension. The proposed 
formalization of Euclid�s first postulate extends the Boolean 
formalization by translating it into fuzzy logic, and adapting it to 
fit the granularity component. Due to its metric properties, we 
choose Łukasiewicz t-norm fuzzy logic. We provide a model of 
the proposed fuzzy formalization in the projective plane with the 
elliptic metric. Since the elliptic plane is locally Euclidean, the 
proposed model is an approximation for Euclidean reasoning.   

As a means of approximating and propagating positional 
tolerance, we introduce graduated geometric reasoning with 
Rational Pavelka Logic. Rational Pavelka Logic builds upon 
Łukasiewicz fuzzy logic, and allows for deriving a degree of 
equality of extended lines from Euclid�s first postulate.  

The remainder of the paper is structured as follows: Chapter 2 
gives a review of related work. Chapter 3 discusses general 
assumptions on points and lines with extension. We derive a list 
six �new qualities� that result from introducing extended 
primitives into Euclid�s first postulate. Chapter 4 develops 
formalizations and interpretations of the incidence and equality 
relations for extended primitives that are based on the six new 
qualities. Chapter 5 gives a fuzzification of Euclid�s first postulate 
in Łukasiewicz logic.  Chapter 6 introduces graduated geometric 
reasoning with Rational Pavelka Logic. Chapter 7 concludes with 
a summary of contributions and chapter 8 gives an outlook to 
future work. 

2. RELATED WORK 
Extended objects may be interpreted as location constraints. The 
issue of geometric reasoning with extended objects can be seen as 

a special case of geometric reasoning with positional uncertainty. 
Some of the oldest references addressing this topic are [16], [18], 
or [3]. Among others, these authors developed the concept of 
epsilon tolerance and fuzzy tolerance to cope with the problem of 
spurious objects that result from positional uncertainty. The 
approaches improved on a multitude of different problems 
concerning e.g. coincidence of points, line crossing and 
conflation. Yet, a closed and consistent solution for all geometric 
constellations and operations is still missing. The present work 
addresses the issue of consistency by the attempt to integrate the 
concept of positional tolerance into the axiomatic foundation of 
geometric reasoning. As a first step towards this goal, the present 
paper formalizes the most fundamental axiom of geometry, 
Euclid�s first postulate, in mathematical fuzzy logic. The 
axiomatic approach has three advantages: First, it is structurally 
close to exact geometry. Second, consistency of the calculus can 
be investigated with the tools of mathematical logic. Third, it 
allows for logical deduction and theorem proving. 

Numerous axiomatic approaches exist, that aim at restoring 
classical geometry from primitives that have extension. These 
approaches are inspired by a similar idea as the present work, 
namely the idea that extensionless points and lines are 
abstractions, and as such do not exist in reality. In contrast to the 
present work, their aim is to restore exact geometry from 
extended primitives, and not to approximate the behavior of exact 
geometry with extended primitives. The best known of these 
approaches is A. Tarski�s Geometry of Solids [21], followed by 
H. J. Schmidt [19], and, G. Gerla [9], [10]. In the GIS community 
B. Bennett�s �Region Based Geometry� [1] is of particular 
importance.  

In the present paper, we use mathematical fuzzy logic to fuzzify 
the process of geometric reasoning, but do not use fuzzy logic for 
object description: Vague geographical objects, and operations on 
them, can be described with the tools of fuzzy set theory (e.g., [7], 
[8], [6], [5]). In contrast to this, the present paper uses t-norm 
fuzzy logic [12] which is a branch of mathematical logic and 
developed from multivalued logical systems.  

Recent approaches to geometric reasoning with positional 
uncertainty in GIS are mostly concerned with positional 
uncertainty that is caused by stochastic variability. Y. Leung et. 
al. [14] proposed a probabilistic framework for error analysis in 
measurement based GIS. Another example stems from the field of 
computer vision: Under the title of �Uncertain Projective 
Geometry� S. Heuel [13] proposes a projective geometric calculus 
for points and lines that have positional uncertainty. Heuel 
augments the formalism of Grassmann-Caley algebra by attaching 
to each exact projective point and exact projective line, 
respectively, the covariance matrix of a Gaussian probability 
density function. As a result, an �uncertain point� is described by 
a pair (exact point, Gaussian); an �uncertain line� is described by 
a pair (exact line, Gaussian). In a geometric construction step, the 
exact formalism is applied to the first entry, while the law of error 
propagation is applied to the covariance matrix of the second 
entry. The advantage of Heuel�s calculus lies in the good 
approximation properties of error propagation for Gaussians over 
linear functions. This advantage vanishes if general probability 
density functions are used. Consequently the theory cannot be 
applied to extended objects, which, in case they stem from limited 



measurement resolution or lack of information, would have to be 
described by uniform distributions.  

Another recent reference is E. Clementini [4], who gives a model 
for GIS line features that have extension. His �model for uncertain 
lines� is built upon the model for regions with broad boundaries 
and allows for deriving topological relations between �uncertain 
lines�, but does not discuss geometrical operations. 

3. EXTENDED GEOMETRIC PRIMITIVES 
In the following subchapter 3.1 we motivate, from a GIS 
perspective, a reasonable definition of �point with extension� and 
�line with extension�. Subchapters 3.2 - 3.6 introduce a total of six 
�new qualities� that have to be taken into account when 
considering extended primitives in conjunction with Euclid�s first 
postulate. These new qualities are the following:  

1) The incidence relation between extended points and 
extended lines is subject to positional tolerance. 

2) Size and distance matter. 
3) Equality of extended lines is a matter of degree. 
4) Granularity is introduced due to varying object sizes.  
5) Equality of extended points is a matter of degree. 
6) Equality of extended objects is intransitive. 

3.1 General Assumptions on Points and Lines 
with Extension 
In the present paper we are concerned with entities that have 
extension in geographic space, and whose GIS representations are 
intended to be used as primitives of a geometric construction.  
We differentiate between an actual GIS object representation, and 
a potential representation as an extended object in an underlying 
metric space. As shown in the introduction using the example of 
Vienna, the actual GIS object representation can be punctual, 
while potentially the objects� extension can be displayed, e.g. in a 
different level of detail. In other words, a metric space exists, 
where the object�s extension is representable.  
For object representation in GIS it is common to use either 
Cartesian coordinates or homogeneous coordinates. 
Homogeneous coordinates are coordinates for the projective 
plane. The usual metric used is the Euclidean metric in a 
Cartesian vector space and the elliptic metric in the projective 
plane. Since the elliptic plane is locally Euclidean, elliptic 
distance can be used to approximate Euclidean distance locally 
[2]. 
In the present paper we confine our considerations to two 
dimensional object representations. We further confine ourselves 
to extended geographic entities with sharp (�crisp�) boundaries: 
For such objects, the indeterminacy of the object�s boundary is 
negligible compared to its extension in space. Examples are 
parcels of land, buildings, countries, most lakes, roads, or streams. 
We do not consider point measurements like GPS coordinate 
points, which might have relevant measurement inaccuracy. We 
also do not consider objects with vague boundaries like mountains 
or pollution plumes.  
Extended geographic objects can be classified as �punctual� or 
�linear�, depending on context and grain size (e.g. [20]), or 

depending on semantics. The present paper assumes no such 
classification. Instead, the notions �point with extension� and �line 
with extension� are derived from points and lines as they are used 
in Euclidean and projective axiomatic geometry. Here, points and 
lines are different sorts of objects, complying with a set of 
axioms, namely the axioms of Euclidean or projective geometry. 
With the terms �extended point� and �extended line� we refer to 
an augmentation of a specific model of Euclidean or projective 
geometry, in which exact points and lines have an interpretation. 
As an example, the Cartesian interpretation of a two dimensional 
Euclidean point is a pair of real numbers. We can �add extension� 
to the point by considering a topological neighborhood of the 
point in the real plane. A Cartesian line in the plane can be 
represented by a tupel of parameter, e.g. an incident Cartesian 
point, and direction. We can �add extension� to a Cartesian line by 
considering a topological neighborhood in its parameter space.  
Using homogeneous coordinates simplifies the representation task 
for extended points and lines: Exact projective points and lines 
can both be represented by vectors of the two dimensional unit 

sphere { }2 3: |p p 1= ∈ =!S" , where antipodal points, p+  and 

p−  are identified: 2 2:= ±P" S" . Consequently the parameter 
space of an exact elliptic line is identical to the parameter space of 
an exact elliptic point. Using the duality of exact points and lines, 
it is sufficient to define extended points and derive a definition of 
extended lines from duality:  
Definition 1. An extended elliptic point is a non-empty, bounded 
and regular closed subset of the elliptic space. A set of exact 
projective lines in the elliptic plane is an extended line, if the set 
of dual exact points is an extended point. 
As mentioned above, the canonical metric on the projective plane 

2 2= ±P" S"  is the elliptic metric 

 2: [0, 2], ( , ) : Arccosp q p qε π ε→ =P" ⋅ , (1) 

where 1 1 2 2 3 3p q p q p q p q⋅ = + +  denotes the standard inner 

product in . The term �regular closed� in definition 1 refers to 
the topology on , which is induced by

3!
2P" ε . Note that in the 

elliptic plane, exact lines are unbounded, but have finite length 
π . The maximum distance of any two points is 2π . This is not 
a restriction, since we are interested in bounded map 
representations, and do not consider the global behavior of the 
geometry. Every non-zero scaling of ε is also a metric distance 

on . In particular 2P" (2 )π ε⋅  is an elliptic metric, where the 
maximum distance of any two points is normalized to 1 [2]. 
 

3.2 Incidence of Extended Primitives has 
Positional Tolerance 
As already mentioned in the forgoing subchapter, axiomatic 
geometry is an abstract logical theory. An interpretation of such a 
theory in another domain, like the Cartesian interpretation in the 
real plane, is called a model of the theory, if it complies with its 
axioms. As a first step towards a geometric theory of extended 
primitives, the present paper is concerned with only one axiom, 
namely Euclid�s first postulate, which is a part of all classical 
geometries, in particular of Euclidean and projective geometry. It 



was shown in [23] that a model of Euclid�s first postulate that 
operates with extended primitives must hold object shape and 
object size fixed, and consequently does not carry any 
information about an object�s extension. As a consequence, it is 
necessary to extend Euclid�s first postulate and it�s 
interpretations.  

Figure 2 sketches three typical geographic scenarios, where two 
extended objects can be classified as incident: Figure 2a shows a 
floating water mill that is installed in a stream. The polygon 
representing the mill can be interpreted as an extended point; the 
stream can be interpreted as (a segment of) an extended line. The 
polygon representing the mill is a proper part of the polygon 
representing the stream. Figure 2b shows a station building of a 
city railway and its tracks. Clearly, the building overlaps with the 
tracks. Figure 2c shows a marina on the banks of stream.  If the 
marina is aggregated to a single polygon, it clearly overlaps the 
polygon representing the stream. These examples suggest that 
incidence of extended objects can be modeled by the overlap 
relation in the underlying metric space. 

 
Figure 2. Three examples of extended objects that are incident 

with an extended line.  

Note that in axiomatic geometry, the notion of �line segment� is 
derived from the more general notion of �line�, after an order 
relation (�betweenness�) has been added to the theory. It is not 
possible to give a real world example of an extended line, just as 
it is not possible to give a real world example of an infinitely long 
straight exact line. This fact does not disqualify the motivating 
examples. 

3.3 Equality of Extended Lines is Graduated 
The location of the extended points creates a constraint on the 
location of an incident extended line. In exact geometry this 
location constraint fixes the position of the line uniquely. In case 
points and lines are allowed to have extension this is not the case. 
Consequently Euclid�s First postulate does not apply: Figure 3 
shows that if two distinct extended points P  and  are incident 
(i.e. overlap) with two extended lines  and 

Q
L M , then  and L M  

are not necessarily equal.  

Yet, in most cases,  and L M   are �closer together�, i.e. �more 
equal� than arbitrary extended lines that have only one or no 
extended point in common. The further P and Q move apart from 
each other, the more similar L and M become. One way to model 
this fact is to allow degrees of equality for extended lines. In other 
words, the equality relation is graduated: It allows not only for 
Boolean values, but for values in the whole interval [0 . ,1]

 
Figure 3. Two extended points do not uniquely determine the 

location of an incident extended line. 

3.4 Size and distance matters 
In exact coordinate geometry, points and lines do not have size. 
As a consequence, distance of points does not matter in the 
formulation of Euclid�s first postulate1. If points and lines are 
allowed to have extension, both, size and distance matter.  

 
Figure 4.  Size and distance matter. 

Figure 4 depicts the location constraint on an extended line L that 
is incident with the extended points P an Q. The location 
constraint can be interpreted as tolerance in the position of L. In 
Figure 4a the distance of P and Q is large with respect to the sizes 
of P and Q, and with respect to the width of L. The resulting 
positional tolerance for L is �small�. In Figure 4b, the distance of 
P and Q is smaller than it is in Figure 4a. As a consequence the 
positional tolerance for L becomes larger. In Figure 4c, P and Q 
have the same distance than in Figure 4a, but their sizes are 
increased. Again, positional tolerance of L increases. 

As a consequence, a formalization of Euclid�s first postulate for 
extended primitives must take all three parameters into account: 
the distance of the extended points, their size, and the size of the 
incident line. In the present paper we simplify the formalizing 
task by limiting the scope of the incidence relation: instead of 
considering an overlap relation, as suggested in chapter 3.2, we 
model incidence by the subset relation. In other words, an 
extended line can not be incident with a point that is �larger� than 
itself. In Figure 2, only example (a) of the floating water mill 
complies with this interpretation. 

3.5 Extension Introduces Granularity 
In exact coordinate geometry, two distinct coordinate points   
and  determine (the location of) a coordinate line uniquely, 
even if  and  are arbitrarily close to one another. This is not 
necessarily the case for distinct extended points 

p
q

p q
P  and Q . To 

see this, imagine that the extended points P and Q in Figure 3 
move closer together: If  P  and  are �very close� to one 
another and the extended line   is �too broad�, then it may 

Q
L

                                                                 
1 More specifically, the discrete metric  is used: Δ ( , ) 1p qΔ = , if 

p q≠ , and ( , ) 0p qΔ = , if . p q=



happen that P  and   behave like one single point with respect 
to  .   

Q
L

 

Figure 5. P and  are indiscernible for .  Q L

Figure 5 illustrates this case: Despite the fact that P  and  are 
distinct extended points that are both incident with , they do not 
specify any directional constraint for . Consequently, the 
directional parameter of the extended lines L and L´ in Figure 5 
may assume its maximum (at 90°). If we measure similarity (i.e. 
graduated equality) as inverse to distance, and if we establish a 
distance measure between extended lines that depends on all 
parameters of the line�s parameter space, then L and L´ in Figure 
5 must have maximum distance. In other words, their degree of 
equality is zero, even though they are distinct and incident with P 
and Q. 

Q
L

L

The above observation can be interpreted as granularity: If we 
interpret the extended line L in Figure 5 �as a sensor�, then the 
extended points P and Q are �indiscernible for L�.  Note that in 
this context grain size is not constant, but depends on the line that 
serves �as a sensor�. 

3.6 Equality of Extended Points is Graduated 
Graduated equality of extended lines compels graduated equality 
of extended points. Figure 5a sketches a situation where two 
extended lines  and L M  intersect in an extended point P . If a 
third extended line  is �very similar� to , its intersection 
with M yields an extended point 

'L L
'P  which is �very similar� to P . 

It is desirable to model this fact. To do so, it is necessary to allow 
graduated equality of extended points.  

 
Figure 5. (a) Graduated equality of extended lines compels 

graduated equality of extended points. (b) Equality of extended 
lines is not transitive. 

3.7 Graduated Equality is not Transitive 
Figure 5b illustrates that an equality relation between extended 
objects need not be transitive. This phenomenon is commonly 
referred to as the Poincaré paradox. The Poincaré paradox is 
named after the famous french mathematician and theoretical 
physicist Henri Poincaré, who repeatedly pointed this fact out, 
e.g. in [17], referring to indiscernibility in sensations and 
measurements. Note that this phenomenon is usually insignificant, 
if positional uncertainty is caused by stochastic variability. In 
measurements, the stochastic variability caused by measurement 
inaccuracy is usually much grater than the indiscernibility caused 
by limited resolution. For extended objects, this relation is 

reversed: The extension of an object can be interpreted as 
indiscernibility of its contributing points. As stated in chapter 3.1, 
the present paper starts off from the assumption that the extension 
of an object is big compared with the indeterminacy of its 
boundary. 

4. EQUALITY AND INCIDENCE OF 
EXTENDED POINTS AND LINES 
In subchapter 4.1 we propose an interpretation of the incidence 
predicate for extended points and lines that have positional 
tolerance (cf. chapters 3.2 and 3.4). Chapter 4.2 develops a 
formalization of graduated equality predicates for extended points 
and lines: in a step by step manner, we include the graduation 
property (cf. chapters 3.3 and 3.6), the Poincaré paradox (cf. 
chapter 3.7), and granularity (cf. chapter 3.5). 

4.1 Incidence of extended points and lines 
As shown in chapter 3.2, it is a reasonable assumption in the GIS 
context to classify an extended point and an extended line as 
incident, if their extended representations in the underlying metric 
space overlap. In chapter 3.4 we argued that we intend to limit the 
scope of the incidence relation in this paper in order to simplify 
the formalism. We do this by modeling incidence by the subset 
relation: 

Definition 2: For an extended point P, and an extended line L we 
define the incidence relation by 

 ( )( , ) :   {0,1},On P L P L= ⊆ ∈  (2) 

where the subset relation  refers to P and L as subsets of the 
underlying metric space.  

⊆

The extended incidence relation (2) is a Boolean relation, 
assuming either the truth value 1 (true) or the truth value 0 (false). 
Since a Boolean relation is a special case of a graduated relation, 
i.e. since {0 , we will be able to use relation ,1} [0,1]⊂ (2) as part 
of a fuzzified Euclid�s first postulate later on. The interpretation 
of the subset relation (2) in the elliptic plane is straight forward.  

4.2 Equality of extended points and lines 
As stated in chapters 3.3 and 3.6, equality of extended points, and 
equality of extended lines is a matter of degree. Geometric 
reasoning with extended points and extended lines relies heavily 
on the metric structure of the underlying coordinate space. 
Consequently, it is reasonable to model graduated equality as 
inverse to distance.  

4.2.1 Metric Distance 
A pseudometric distance, or pseudometric, is a map 

2:d M +→ !  from a domain M  into the positive real numbers 
(including zero), which is minimal, symmetric, and satisfies the 
triangle inequality: 

  (3) ( , ) 0 d x x =

  (4) ( , ) ( , )d x y d y x=

  (5) ( , ) ( , ) ( , ).d x y d y z d x z+ ≥

d  is called a metric, if additionally separability holds:  



  (6) ( , ) 0  .d x y x y= ⇔ =

Well known examples of metric distances are the Euclidean 
distance, or the Manhattan distance. Another example is the 
elliptic metric for the projective plane defined in (1). 

The �upside-down-version� of a pseudometric distance is a fuzzy 
equivalence relation w.r.t. the Łukasiewicz t-norm. The next 
chapter briefly introduces the logical connectives in Łukasiewicz 
t-norm fuzzy logic. We will use this particular fuzzy logic to 
formalize Euclid�s first postulate for extended primitives in 
chapter 5. The reason for choosing Łukasiewicz fuzzy logic is its 
strong connection to metric distance. 

4.2.2 Łukasiewicz Logic 
Łukasiewicz logic is one of the three fundamental t-norm fuzzy 
logics. In t-norm fuzzy logics, a triangular norm (t-norm) plays 
the role of a graduated conjunction operator. A t-norm is a binary 
operation   that is commutative, associative, non-
decreasing, and has 1 as its unit element [12]. For the 
fuzzification of Euclid�s first postulate in chapter 5, we will 
additionally need an implication and a negation operator. The 
Łukasiewicz t-norm , its residuated implication  , and the 
corresponding negation ¬  are given by 

2:[0,1] [0,1]∗ →

⊗ →

 { } max 1,0x y x y⊗ = + − , (7) 

 
1            for     
1  for   

x y
x y

x y x y
≤⎧

→ = ⎨ − + >⎩
, (8) 

 ( ) ( )1x x¬ = − , (9) 

respectively. In chapter 6.2, we will need the following 
equivalences: 

 [ ] 1    x y x→ = ⇔ ≤ y , (10) 

 ( ) ( )1    1x z y z x y⎡ ⊗ → ⎤ = ⇔ ⎡ → → ⎤ =⎣ ⎦ ⎣ ⎦ . (11) 

4.2.3 Fuzzy Equivalence Relations 
As mentioned above, the �upside-down-version� of a 
pseudometric distance is a fuzzy equivalence relation w.r.t. the 
Lukasiewicz t-norm ⊗ . A fuzzy equivalence relation w.r.t. ⊗  is 

a fuzzy relation  on a domain 2: [0,1]→e M M , which is 
reflexive, symmetric and -transitive: ⊗

  (12) ( , ) 1e x x =

  (13) ( , ) ( , )e x y e y x=

  (14) ( , ) ( , ) ( , ).e x y e y z e x z⊗ ≤

e is called a fuzzy equality relation, if  additionally separability 
holds: 

  (15) ( , ) 1  .e x y x y= ⇔ =

If d is a pseudometric distance, then  

 { }( , ) : max 1 ( , ),0e x y d x y= −  (16) 

is a fuzzy equivalence relation w.r.t. the Łukasiewicz t-norm 
⊗ [22]. In case the size of the domain M  is normalized to 1 , 
equation (16) simplifies to  

  (17) ( , ) : 1 ( , ).e x y d x y= −

In other words, given a metric distance d on a normalized domain, 
equation (17) defines a graduated equality relation e by simple 
Łukasiewicz negation. 
As stated in chapter 3.6, it is necessary to account for the Poincaré 
paradox when defining a graduated equality relation between 
extended points and lines. The next chapter shows how the 
Poincaré paradox can be integrated in the formalism of fuzzy 
equivalence relations without dropping transitivity completely. It 
is not desirable to drop transitivity of equality, since it is the only 
ingredient that enables us to relate two extended objects via a 
third [25].  

4.2.4 Approximate Fuzzy Equivalence Relations 
G. Gerla (2008) shows that for modeling the Poincaré paradox in 
a graduated context transitivity may be replaced by a weaker 
form:  

 . (18) ( , ) ( , ) ( ) ( , )e x y e y z dis y e x z⊗ ⊗ ≤

Here  is a lower-bound measure for the degree of 
transitivity that is permitted by

: [0,dis M → 1]
y . A pair  that is reflexive ( ,e dis)

(12), symmetric (13), and weakly transitive (18) is called an 
approximate fuzzy ⊗ -equivalence relation2.  

In the setting of Euclid�s first postulate shown in Figure 3 
(chapter 3.3), the only link between the extended lines L and M 
are the extended points P and Q. Approximate fuzzy equivalence 
relations allow determining the equality degree of L and M via the 
extended connection  

 ( , ): { | , , }p qPQ l p P q Q p q= ∈ ∈ ≠  (19) 

of P and Q. Here, ( , )p ql  is the unique exact line connecting the 

exact points p and q. Figure 6a sketches PQ  in the Euclidean 
plane. Figures 6b and 6c show two arbitrary extended lines L and 
M that are incident with P and Q.  

 

Figure 6. The equality of L and M can be determined via PQ . 

                                                                 
2 Gerla uses the name approximate similarity relation. In the 

present abstract we use the name approximate fuzzy equivalence 
relation to stress the connection with the Boolean equality 
relation used in Euclid�s first postulate.  



An approximate fuzzy -equivalence relation is the �upside-
down-version� of a so-called pointless pseudometric space 

⊗
( , )sδ : 

  (20) ( , ) 1,x xδ =

 ( , ) ( , ),x y y xδ δ=  (21) 

 ( , ) ( , ) ( ) ( , ).x y y z s y x zδ δ δ+ + ≥  (22) 

Here,  is a (not necessarily metric) distance between 

extended regions, and  is a size measure. Inequality 

: Mδ +→ !
:s M +→ !

(22) is a weak form of the triangle inequality. It corresponds to 
the weak transitivity (18) of the approximate fuzzy ⊗ -
equivalence relation e . 

In case the size of the domain M  is normalized to 1 ,  and  
can be represented by [11] 

e dis

   . (23) ( , ) : 1 ( , ),e x y x yδ= − ( ) : 1 ( )dis y s y= −

In other words, given a pointless pseudometric ( , )sδ  for 
extended regions on a normalized domain, equations (23) define 
an approximate fuzzy -equivalence relation (e,dis) by simple 
Łukasiewicz negation. The so defined equivalence relation on the 
one hand complies with the Poincaré paradox, and on the other 
hand retains enough information to link two extended points (or 
lines) via a third. 

⊗

An example of a pointless pseudometric space is the set of 
extended points in the elliptic plane with the following measures 
[11]:  

 { }( , ) : inf ( , ) | , ,P Q d p q p P q Qδ = ∈ ∈  (24) 

 { }( ) : sup ( , ) | , ,s P d p q p q= P∈  (25) 

where [ ] 2: (2 ) : [0,1]d π ε= ⋅ →P  is the normalized elliptic 
metric defined in chapter 3.1. A pointless metric distance on the 
set of elliptic extended lines can be defined in the dual space: 

 { }( , ) : inf ( ', ') | , ,L M d l m l L m Mδ = ∈ ∈  (26) 

 { }( ) : sup ( ', ') | , .s L d l m l m= L∈  (27) 

4.2.5 Boundary Conditions for Granularity  
As discussed in chapter 3.4 granularity enters Euclid�s first 
postulate, if points and lines have extension: If two extended 
points P and Q are �too close� and the extended line L is �too 
broad�, then P and Q are indiscernible for L. Since this relation of 
indicernibility (equality) depends not only on P and Q, but also on 
the extended line L, which acts �as a sensor�, we denote it by 

, where L serves as an additional parameter for the 
equality of P and Q.  

( , )[ ]e P Q L

We propose three boundary conditions to specify a reasonable 
behavior of :  ( , )[ ]e P Q L

1. If ( ) ( , ) ( ) ( )s L P Q s P s Qδ≥ + + , then P  and Q  impose no 
direction constraint on  (cf. Figure 5), i.e. P and Q are 
�indiscernible for L� to degree 1: . 

L
( , )[ ] 1=

2. If ( ) ( , ) ( ) ( )s L P Q s P s Qδ< + + , then P  and Q  impose 
some direction constraint on , but in general do not fix its 
location unambiguously. Accordingly, the degree of 
indiscernibility of 

L

P  and Q  lies between zero and 
one: 0 ( , )[ ] 1e P Q L< < .   

3. If ( ) ( , ) ( ) ( )s L P Q s P s Qδ< + +  and , P p= Q q=  and L l=  
are crisp, then ( ) ( ) ( ) 0s L s P s Q= = = . Consequently,  and 

determine the direction of  unambiguously, and all 
positional tolerance disappears. For this case we demand 

p
q l

( , )[ ] 0e P Q L = .  

4.2.6 An Elliptic Model of Granulated Equality  
From the boundary conditions on granularity proposed in the 
forgoing subchapter, we can derive an interpretation of granulated 
equality in the elliptic plane. Unfortunately the derivation is too 
long for presentation in the present paper. Instead, we make it 
available on the authors� website [24].  
Definition 4. For extended elliptic points P, Q, and an extended 
elliptic line L, we define the elliptic granulated equality relation 
as follows: 

 ( ){ }( , )[ ] : min (2 ) Arcsin ( , )[ ] , 1e P Q L H P Q Lπ=  (28) 

where  

   (29) 
( , )[ ],    if   ( , ) ( ) ( ) 0,

( , )[ ] :
             ,   if   ( , ) ( ) ( ) 0,
h P Q L P Q s P s Q

H P Q L
P Q s P s Q

δ
δ

+ + ≠⎧
= ⎨ + + =⎩ ∞

and  

 
( )

( ) ( )
tan 4 ( )

( , )[ ] :
tan 4 ( , ) ( ) ( )

s L
h P Q L

P Q s P s Q
π

π δ
⎡ ⋅ ⎤⎣ ⎦=

⎡ ⋅ + + ⎤⎣ ⎦
. (30) 

Here, , ( , )P Qδ ( )s P , ( )s Q  and ( )s L  are specified by 
definitions (24),  (25) and (27).  

5. A FUZZIFICATION OF EUCLID�S 
FIRST POSTULATE 
In chapters 3 and 4 we identified and formalized a number of new 
qualities that enter into Euclid�s first postulate, if extended 
geometric primitives are assumed. Consequently, we are now in 
the position of formulating a fuzzified version of Euclid�s first 
postulate. To do this, we first split the postulate  

              "  (31) Two distinct points determine a line uniquely."

into two subsentences 

         "G  (32) iven two distinct points, there exists at least one line 
 that passes through them. "

                  "I  (33) f more than one line passes through them, 
 then they are equal."

These subsentences can be formalized in Boolean predicate logic 
as follows: 

 [ ], . . ( , ) ( , )p q l on p l on q l∀ ∃ ∧ , (34) 
e P Q L



 
[ ] [ ]

[ ]
, , , . ( ) ( , )  ( , )    

                        ( , )  ( , )  ( ).  

p q l m p q on p l on q l

on p m on q m l m

∀ ¬ = ∧ ∧

∧ ∧ → =
 (35) 

Here, p, q stand for (exact) points, and l, m stand for (exact) lines. 
The Boolean predicates = and on refer to equality and incidence. 

 and  denote the universal and existential quantifiers, 
 stand for Boolean negation, conjunction, and 

implication, respectively. In the remainder of this paper, we refer 
to 

∀ ∃
, ,¬ ∧ →

(34) as the exact existence property, and to (35) as the exact 
uniqueness property of incidence geometry.  

A verbatim translation of (34) and (35) in the syntax of 
Łukasiewicz fuzzy logic yields 

 [ ]
,

inf sup ( , ) ( , )
P Q L

on P L on Q L∧ , (36) 

 
[ ] [ ]{

[ ] }
, , ,
inf ( , )   ( , ) ( , )

                    ( , ) ( , )   ( , ) ,
P Q L M

e P Q on P L on Q L

on P M on Q M e L M

¬ ⊗ ⊗

⊗ ⊗ →
 (37) 

where P, Q denote extended points, L, M denote extended lines, 
and the symbol e replaces the symbol = for equality, since = is 
usually reserved to denote Boolean equality. The universal 
quantifier is replaced by the infimum operator; the existential 
quantifier is replaced by the supremum operator [12]. 
The translated existence property (36) can be adopted as it is, but 
the translated uniqueness property (37) must be adapted to include 
granulated equality of extended points:  
In contrast to the Boolean case, the degree of equality of two 
given extended points is not constant, but depends on the 
extended line that acts �as a sensor�. Consequently, the term 

 on the left hand side of ( , )e P Q¬ (37) must be replaced by two 
terms,  and , one for each line, L and M, 
respectively:  

( , )[ ]e P Q L¬ ( , )[ ]e P Q M¬

     

[ ]{

[ ]
[ ] }

, , ,
inf ( , )[ ]  ( , )[ ]

              ( , )  ( , )

                   ( , )  ( , )   ( , ) .

P Q L M
e P Q L e P Q M

on P L on Q L

on P M on Q M e L M

¬ ⊗ ¬

⊗ ⊗

⊗ ⊗ →

 (38) 

In order to use weak transitivity of graduated equality, the 
discernibility measure of the extended connection PQ  must be 
added:  

{
[ ]

[ ] }

, , ,
inf ( , )[ ]  ( , )[ ] ( )

                    ( , )  ( , )

                          ( , )  ( , )   ( , ) .

P Q L M
e P Q L e P Q M dis PQ

on P L on Q L

on P M on Q M e L M

⎡ ⎤¬ ⊗ ¬ ⊗⎣

⊗ ⊗

⊗ ⊗ →

⎦

 (39) 

In the following, we refer to (36) as the graduated existence 
property, and to (38) as the graduated uniqueness property. 
The graduated existance property (36) can be formulated in words 
as follows:  

  (40) "Given two extended points, there is always 
an extended line that overlaps with them."

The graduated uniqueness property (38) can be formulated in 
words as follows:  

"Two (more or less) distinct extended points determine an
extended line up to (more or less great) positional tolerance."  (41) 

These sloppy formulations reflect the fact that, given two suitable 
extended points, it is possible (for humans) to draw an 
approximate extended line that connects them. Properties (36) and 
(38)  formalize this effect:  The granulated equality predicates 

 and  in ( , )[ ]e P Q L ( , )[ ]e P Q M (38) measure �how suitable� P 
and Q are.  expresses a worst case measure of �how 
equal� two extended lines L and M are, provided they both 
overlap with P and Q.  

( , )e L M

If we use only one line L as an input to the graduated uniqueness 
property (38), i.e. if L=M,  then is a measure of how 
much positional tolerance L has, if it is �hooked up� to P and Q, 
i.e. if P and Q are subsets of L.  

( , )e L M

It is possible to prove that the elliptic interpretations of incidence 
given by (2), graduated equality of extended lines given by (23) 
and (26), and granulated equality of extended points given by (28) 
define a model of the proposed fuzzifications (36) and (38) of 
Euclid�s first postulate. Unfortunately, the length restriction of the 
present paper format does not allow for presenting it here. 
Instead, we provide the proof on the author�s website [24]. 

6. GRADUATED GEOMETRIC 
REASONING 
In this last chapter we address the question of how the proposed 
formalization (36) and (38) of an �extended version� of Euclid�s 
first postulate can be used in practical applications. Chapter 6.1 
introduces Rational Pavelka Logic (RPL) as a tool for graduated 
reasoning. Chapter 6.2 shows how RPL can be used to propagate 
estimates of the positional tolerance through the steps of a 
geometric construction process.  

6.1 Rational Pavelka Logic 
As stated in chapter 4.2, one reason for choosing Łukasiewicz 
logic is its strong connection to metric spaces. Another reason is 
that Łukasiewicz logic can be extended to allow for graduated 
deduction rules in the style of J. Pavelka ([12], [15]). The 
according logic is called Rational Pavelka Logic (RPL). 
Graduated deduction rules allow for inferring partially true 
conclusions from partially true assumptions. This is useful in our 
setting: We can interpret the degree 1λ <  of equality of two 
extended lines L and M by saying that the proposition �L and M 
are equal� is partially true, with truth degree λ . 

As the most important deduction rule, the exact Modus Ponens 
rule is given by  

 ,A A B
B
→ . (42) 

The formulas above the line are assumptions (facts), and the 
formula below the line is the conclusion of the rule. The exact 
Modus Ponens deduces true conclusions from true assumptions: If  
and A B→  have truth degree 1, then B has truth degree 1.  

The graduated modus ponens rule is given by 

             
( , ),( , )

( , )
A A

A A B

A A B
B
μ μ

μ μ
→

→

→
⊗

B , (43) 



where ϕμ  is a graduated truth value associated with the formula 

ϕ . The pair ( , )ϕϕ μ  is called a graduated formula. The deduced 

truth value A A Bμ μ →⊗  is a lower bound for the real truth value 

Bμ  of the formula B. Consequently, the graduated modus ponens 
can be used to find a lower bound estimate of the truth value of a 
given formula. Since the deduced truth value need not coincide 
with the real truth value, we write ( , )ϕϕ μ  instead of ϕϕ μ= .  

If a formula ϕ  is the result of repeated application of graduated 
modus ponens, then a deduced truth value ϕμ  of ϕ  can be 

interpreted as a proof of the fact thatϕ  holds true with a truth 
degree of at least ϕμ . In RPL different proofs can yield different 

deduced truth values for the same formula. If the deduced truth 
value of a formula equals zero, this means that no information on 
the truth value of the formula can be deduced from the given 
facts. The largest deduced value that can be derived is the best 
available estimate for the real truth degree.  

6.2 Euclid�s First Postulate and Graduated 
Modus Ponens 
Given two extended points P and Q that are subsets of the 
extended lines L and M, we can use the graduated Modus Ponens 
rule to derive a lower bound for the equality measure e(L,M) from 
the graduated uniqueness property (38).  
Before doing the deduction, we simplify formula (38): Since P 
and Q are subsets of L and M, the extended incidence predicate 
defined in (2) yields the truth value 1 for all instances:  

 ( ) ( ) ( ) ( ), , , ,on P L on Q L on P M on Q M= = = 1= . (44) 

Since 1 is the unit of the t-norm,  holds for arbitrary 
. Inserting 

1 1x⊗ =
[0,1]x∈ (44) into the graduated uniqueness property 

(38) yields the following simplified formula3

 ( , )[ ]  ( , )[ ] ( )   ( , )e P Q L e P Q M dis PQ e L M⎡¬ ⊗ ¬ ⊗ →⎣ ⎤⎦ , (45) 

which can be rewritten as  

[
:

:

( ) ( , )[ ]  ( , )[ ]  ( , )
x

y

dis PQ e P Q M e P Q L e L M
=

=

⎡
⎢→ ¬ → ¬ →
⎢
⎣

"####$####%
"#########$#########%

]
⎤
⎥
⎥
⎦

 (46) 

using the equivalence (11) introduced in chapter 4.2.2. 

Now the graduated modus ponens rule can be applied to 
e(P,Q)[L], e(P,Q)[M], ( )dis PQ , and (46). Assume the truth 
value of e(P,Q)[L] is μ , and the truth value of  e(P,Q)[M] is λ . 
Both can be calculated from formula (28) using s(P), s(Q), and 

( , )P Qδ . The truth value η  of ( )dis PQ  can be estimated from 
s(P) and s(Q). Since (46) is a simplified version of the graduated 
uniqueness property (38), the truth value of (46) equals 1. A first 

                                                                 
3 The graduated uniqueness property (38) includes the universal 

quantifier
, , ,
inf

P Q L M
, which is not needed in the assumption. 

application of Graduated Modus Ponens to ( )dis PQ  and (46) 
yields  

 
( ) ( )

( )
( ), , ( ) ,1

, 1

dis PQ dis PQ y

y

η

η

→

⊗
, (47) 

where 1η η⊗ =  is the deduced truth value of the 
formula [ ]( , )[ ]y e P Q M x= ¬ → . The next deduction step yields 

 ( ) ( )
( )

( , )[ ], , ( , )[ ] ,
,

e P Q M e P Q M x
x
μ η

μ η
¬ ¬

⊗
→

. (48) 

Finally we deduce 

 ( ) ( )
( )

( , )[ ],  ,  ( , )[ ] ( , ),  
( , ),  

e P Q L e P Q L e L M
e L M

λ μ η
λ μ η

¬ ¬ →
⊗ ⊗

⊗ . (49) 

As a result, a lower bound estimate λ μ η⊗ ⊗  for the real truth 
value ρ  of   has been derived: (( , )e L M )λ μ η ρ⊗ ⊗ ≤ . This 
estimate can be calculated by simple Łukasiewicz conjunction (7). 
The proposed procedure provides a quick and slim method for 
finding a lower bound for the degree of equality of two extended 
lines that are incident with two extended points. The only prior 
knowledge necessary is the information about the size measures 
s(P), s(Q), s(L), s(M), and about the distance measure . ( , )P Qδ

Given a predefined threshold for the equality of lines, the 
procedure can be used to produce a warning, if in a construction 
the value falls below the threshold. The warning means that not 
enough information is available to derive a non-zero lower bound 
equality measure. In order to find out, if the equality value indeed 
equals zero, the exact value of the equality measure must be 
calculated from the exact knowledge about shapes and relative 
locations of the involved extended objects. This can be done 
automatically, without user involvement. Only if the real equality 
value falls below the threshold must the user be informed that the 
construction is ill-defined. 
The procedure can also be used to estimate how well defined a 
geometric construction is, if no exact knowledge about shape and 
location of the involved objects is available. Such a situation may 
arise in the context of ubiquitous computing, where the ability to 
represent and query textual descriptions of spatial configurations 
becomes increasingly important. The lack of detailed information 
on geographical entities may be caused by a limited bandwidth of 
hand held devices or by incomplete information from a 
participatory database. 

7. CONCLUSIONS 
The paper discusses a special form of positional uncertainty in 
vector based GIS, namely positional tolerance that arises from 
geometric constructions with extended primitives. We propose a 
framework for approximating and propagating positional 
tolerance through the steps of a geometric construction process. 
As a first step towards this goal, we address Euclid�s first 
postulate, which lays the foundation for consistent geometric 
reasoning in all classical geometries. We isolated six qualities that 
are not present in the Boolean version of Euclid�s first calculus, 
but must be taken into account when introducing extended 
primitives. We proposed interpretations in the elliptic plane for 



the incidence and equality relation for extended primitives, and 
gave a fuzzification of Euclid�s first postulate in Łukasiewicz 
logic. We provide a proof on the author�s website that the 
proposed interpretations are a valid model of the fuzzified version 
of Euclid�s first postulate. We introduced graduated geometric 
reasoning with Rational Pavelka logic as a means of 
approximating and propagating positional tolerance through the 
steps of a geometric construction. 

8. FUTURE WORK 
We currently implement the proposed elliptic model in the 
functional programming language HASKELL. Euclidean data is 
transformed into homogeneous coordinates. After calculating the 
equality values in the elliptic model, a local Euclidean 
approximation is visualized in the z=1 plane. After an initial 
testing phase with artificial data, real GIS data is used to test for 
practical applicability of the model. 
The axiomatic approach to geometry makes it possible to extend 
the proposed theory to include further geometric primitives and 
axioms, like e.g. a fuzzifid betweenness relation between 
extended points, and the corresponding axioms. It is our objective 
to provide a consistency analysis with the tools of mathematical 
logic after a number of axioms have been successfully modeled. 
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