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Synonyms
KW complex, polyhedron, cell complex

(these are not synonyms, but  terms used to describe very similar concepts – enter them as 
synonyms?)

Definition 
A simplicial complex is a topological space constructed by gluing together dimensional simplices 
(points, line segments, triangle, tetrahedrons, etc.). 

A simplicial complex K is a set of simplices, which satisfies the two conditions:

1. any face of a simplex in k is also in K
2. the intersection of any two simplices in k is a face of both simplices.

Historical Background
Raster (field) or vector (object) are the two dominant conceptualizations of space. Applications 
focusing on object with 2 or 3 dimensional geometry structure the storage of geometry as points, 
lines, surface, and volumes and the relations between them; a classical survey paper discussed the 
possible approaches mostly from the perspective of Computer Aided Design (CAD) where 
individual physical objects are constructed [10]. 

The representation of geographic information, e.g., maps, introduces consistency constraints 

Figure 1: Cadastral parcels provide an example of a 
simplicial complex

mailto:frank@geoinfo.tuwien.ac.at


Encyclopedia of Database Systems Entry: Simplicial Complex draft  2

between the objects; consider the sketch of few cadastral parcels (lots) and the adjoining street 
(Figure 1). Land, in this case 2 dimensional space, is divided in lots, such that the lots do not 
overlap and there are no gaps between them; this is called a partition (definition next section). 
Corbett [2] proposed to check that a sequence of line segments around a face closes and that the 
neighbors of line segments around a point form pairs; these two conditions are dual to each other 
(Figure 7). This duality is the foundation of the DIME (dual independent map encoding) schema to 
store 2D line geometry for areas.

Every line of a graph, which represents a partition is related to a start and an end point and to two 
adjacent faces. (Figure 3); such data structures were typical for the 1980s; implemented originally 

with network and later relational DBMS. They did not perform acceptably fast with large 
Geographic Information System data, mostly because geometric operations do not translate to 
database operations directly (the so-called impedance mismatch of record oriented programming 
and tuple oriented database operations [7]), most obvious when checking geometric consistency. As 
late as 1985, all commercial programs to compute the overlay of two partitions, which is one of the 
most important operations in geographic information processing, failed. 

In 1986 Frank observed that simplicial (and possibly cell) complexes enforced exactly the 
consistency constraints required by the large class of applications that manage geometry as 2D or 
became 3D partitions [5]. A commercial implementation available, designed concurrently by Dr. 
John Herring (then with Intergraph, now Oracle). Alternative approaches to manage the geometry of 
partitions without explicit representation of topology and to reconstruct topology when required 
were often used, but cause difficulties, because of the fundamental limitations of approximative 
numerical processing. 

Figure 3: An UML object diagram for a database schema for partitions

Figure 2: The two consistency checks: following the line segments 
around a face and following the line segments around a node.
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Scientific Fundamentals
Topology, specifically the theory of homotopy, provides the mathematical theory to program 
geometric operations. Homotopy captures the notion that multiple metric (coordinative) 
descriptions of a single geometry may be different but represent “essentially” the same geometry. 
Figure 1 can be transformed continuously to Figure 4 but not to Figure 5.

Homotopy creates equivalence classes for geometric figures. Many applications are interested  in 
exactly these equivalence classes and benefit from the achieved abstraction that leaves out 
imprecisions caused, e.g., by measurements or approximative numerical processing.

Topology studies the invariants of space under continuous (homeomorphic) transformations, 
which preserve neighborhoods. Algebraic topology, also called combinatorial topology [1], studies 
invariants of spaces under homotopy with algebraic methods. The perspective of point set topology, 
which sees geometric figures as (infinite) sets of points is not practical for programming and the 
discretization of geometry achieved through algebraic topology is crucial: the unmanageable 
infinite sets are converted in countable objects, namely points, lines between points and faces 
bounded by the boundary lines. Algebraic topology studies different 'spaces' like Figure 4 and 
Figure 5 (both are embedded in ordinary 2D space, but the embedding is not in focus in algebraic 
topology).

The complexity of operations on arbitrary cells of a partition can be reduced by forcing a 
triangulation; all elements are then convex! Figure 1 is a cell complex and the corresponding 
simplicial complex is Figure 6.

Algebraic topology studies simplices and their relations: A simplex is the simplest geometric 

Figure 4: A deformed, but homotopic,  
copy of Figure 1

Figure 5: Metric is preserved,  
but the figure is not homotopic to  
figure 1, because elements are 
missing 

Figure 6: The geometry of figure 1 
triangulated
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figure in each dimension. A zero dimensional simplex (0-simplex) is a point, a one dimensional 
simplex (1-simplex) is a straight line segment, a two dimensional simplex (2-simplex) is a triangle, 
a three dimensional simplex (3-simp) a tetrahedron, etc. n + 1 points in general position define an 
n-simplex. Each simplex consists of (is bounded) by (n + 1) n-simplexes: a line (1-simplex) is 
bounded by 2 0-simplices (points). 

A k-simplicial complex K is a complex in which at least one simplex has dimension k and none a 
higher dimension. A homogeneous (or pure) k-complex K is a complex in which every simplex with 
dimension less than k is the face of some higher dimension simplex in K. For example, a 
triangulation is a homogeneous 2-simplicial complex, a graph is a homogeneous 1-simplicial 
complex. Homogeneous simplicial complexes are models of partitions of space and used therefore 
to model geographic spatial data. Whitehead gave for CW-complexes a slightly more general, more 
categorical definition mostly used in homotopy theory.

Four operations are important for simplicial complexes: the closure of a set of simplices S is the 
smallest complex containing all the simplices; it contains all the faces of every simplex in S. The 
star of a set of simplices S is the set of simplices in the complex that have simplices in S as faces. 
The link of a set of simplices S is a kind of boundary around S in the complex. The skeleton of 
simplicial complex K of dimension k is the subcomplex of faces of dimension k-1 in K.

Simplicial complexes can be represented as chains, which are lists of the ordered simplices 
included in the complex. Chains can be written as polynomials with integer factors for the simplices 
included in the complex, e.g., the 2-chain of the 2-complex in Figure 1 is 

K = 1 · A + 1 · B + 1 · S.
The boundary operator δ applied to a k-simplex gives the set of k-1-simplices, which form the 

boundary of the simplex; for example, the boundary of a 1-simplex gives the two 0-simplices, 
which are start and end point of the line. The boundary operator can be applied to a simplex written 
as a chain. The boundary of a closed simplicial complex is 0; in general, the boundary of the 
boundary is 0.

δA = l12 + l23 + l35 - l15

δ(δA) = δl12 + δl23  + δl35  - δl15

          =p1 – p2 + p2  - p3 + p3 – ps – p1 + ps

          = 0
The boundary operator is important to deduce the topological 4- and 9-intersection (Egenhofer) 

relations between two subcomplexes, of the same complex [3, 4]. Chains and boundary operator are 
easy to implement with list operators and often times it is sufficient to generalize the code for 
operations on polynoms. 

The theory of simplicial complexes can be generalized to cell complexes. Cells are homomorph 
to simplices, but can have arbitrary form; a 2-cell can have an arbitrary number of nodes in its 
boundary. 

Figure 7: The simplices of 0, 1, 2, and 3 dimensions
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From an application point of view, it is often important, that objects do not overlap and all of 
space is accounted for. The concept of a partition captures this idea; a partition of a space S is a set 
of subsets of the space, such that

● all subsets cover all of space (jointly exhaustive) ,

● no two subsets overlap (pairwise disjoint) .

These two properties are sometimes abbreviated as JEPD. 

Partitions are changed by the Euler operations, glue and split, which maintain the Euler 
characteristic of the surface; the Euler characteristic is computed as χ = V – E + F, where V is the 
number of nodes (vertices), E is the number of edges and F is the number of faces. From Figure 1 
with χ =  8 – 9 + 3 = 2 results Figure 8 when the two parcels are merged (glued together) with χ = 8 
– 8 + 2 = 2 and Figure 9 when parcel A is split into parcel C and D with χ =  11 – 13 + 4 = 2.

Consistency of these operations is difficult to check in cell complexes if “islands” occur as in Figure
10, which is realistic for many application areas. The problem is avoided by triangulation and 
therefore simplicial complexes are an effective representation for maintainable geometric data 
describing partitions.

Simplicial complexes are of 2 dimensional space triangulation; they contain more objects than a 
partition represented as cells, but operations to maintain consistency in a triangulation are faster and 
simpler to program. The representation of a simplicial or cell complex requires the explicit 
representation of the boundary and converse co-boundary relation. The schema used initially 
(Figure 3) contains redundancy (which is used in Corbett's tests for consistency) and is therefore 
difficult to maintain. Popular today are schemes with half edges (Figure 11), where a half-edge 
points to the starting node and the corresponding other half edge or quad edges [6] (Figure 12), 

Figure 10: A parcel with “islands”

Figure 8: A and B merged Figure 9: A subdivided in C and D
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where each quad-edge points to the next quad-edge and either a boundary node or face; in a quad-
edge structure, the boundary graph and its dual are maintained in a well-defined algebra with a 
single operation splice. For example, taking Figure 1 as a boundary graph (primal) the dual is 
Figure 13, which shows adjacency between faces.

Quad edges represent efficiently without redundancy a much larger universe, namely partitions of 
orientable manifold. The Euler operations glue and split can be efficiently implemented and 
maintain a simplicial or cell complex. The geometry can be represented as generalized maps, for 
which efficient implementation using relational databases has been reported [9].

Key Applications
Many applications include geometric descriptions of objects; Computer Aided Design for 
mechanical and civil engineering are important, but also Geographic Information systems, with 
many special applications like Utility Mapping for cities, Cadastral Maps to show ownership of 
land, but also car navigation systems, are popular examples.

Management of partitions is central for Geographic Information systems (GIS); 2D partitions are 
wisely used for land ownership parcels, soil types, etc. Increasingly 3D models of cities and 
buildings are built to produce visualizations for virtual trips. Town planning expect that changes in 
3D models over time can be visualized, which requires 4 (3 spatial plus one temporal) dimensions. 

Management of geometry of partitions of 3D space are important for CAD (Computer Aided 
Design), used for architecture, civil engineering but also mechanical engineering. Image processing 
intended to produce 3D representations of the environment is using hierarchically structured 
partitions and needs effective operations to subdivide these.

A generalizable approach to storing and maintaining geometry in a database integrates for many 
application areas the treatment of geometric data with other data. Approaches based on the theory of 
simplicial or cell complexes are now available as plug-ins to convert general purpose DBMS to 
spatial databases. They replace earlier systems where geometric data was managed in proprietary 
file structures and the connection between geometry and descriptive data established only in the 
application program. 

Figure 11: Two half edges, pointing to  
adjacent nodes Figure 12: Four quad edges give one 

edge and point to adjacent nodes and 
faces

Figure 13: The dual graph of Figure 1 
(dashed) shows the neighbor relations 
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Future Directions
Besides efforts to enhance performances of implementations three major research goals stand out:

1. efficient solutions for 3 dimensional data; required for example to build 3D city models and 
to construct operations for consistent updating these [12].

2. generalization to n-dimensions to include temporal data, especially 2 and 3 dimensional 
geometry and time required to include time related data, movement and, in general, 
processes in CAD and GIS applications [11]. 

3. hierarchical structures to have partitions at one level of resolution (e.g., countries of the 
world) and then allow subdivision (e.g., regions, departments, counties, towns) [13].

A fully general application independent, n-dimensional and hierarchical representation that supports 
Euler operations effectively within data stored in a database is the implied goal of research in the 
first decade of the 21st century.

Cross References 
(Egenhofer) relations.
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