
The use of daino, a Static Site
Generator (SSG)

Design of a Static Site Generator (SSG).

August 4, 2023

Contents

Architecture of the bake process 2
Command line processing: 2
Processing of Layout (file settingsN.yaml) 2
Watching for changes 2
Shake for rebuilding 3
Transformation of filepath to Path 3

Processing 3

Issues : how to organize regression tests 3

Command Line Interface (CLI) for bake 4

30. PackagesUsed.md 5
Pandoc 5

Templates 5

Watching file change : Twitch 5

Caching 5

JSON 5

40 use of pandoc . md 6



2 CONTENTS CONTENTS 2

Read Markdown 6
Extract all information into Context 6
Convert the Data to target format 6
Fill the converted pieces into template. 6

The design of my Static Site Generator is explained here and gives
a detailed account of its functioning.



Architecture of the bake process

The bake process gradually converts the source texts into texts a
html server can use (primarily HTML, PDF, JPG) and adds the
supplementary files (mostly CSS to describe appearances.)

The architecture, i.e. the combination of implementations of functions
to achieve the overall functionality of SSG, can be seen as steps and
each step processing an input into some formats which are used by
the next.

Command line processing:
Command line processing:

The standard Unix-style command line analyzes the CLI input and
passes it to the program. It establishes the directory in which the
command was issued.

Processing of Layout (file settingsN.yaml)
Processing of Layout (file settingsN.yaml)

List of the directory names and locations - to give flexibility on
different distribution of the relevant directories. It is possible to have
the code, the content (dough) and the directory where the served
files are stored in three different locations.

Watching for changes
Watching for changes

The use of twitch to watch for changes in the directories where
input files exist and triggering the shake organized rebuilding process
removes all tests for file changes in one point. If a change is detected,
shake is called.

Given that shake is only redoing what is strictly necessary and
caches older results, makes false positives — alerts to changes which
are not substantiated — not dangerous and can be ignored.



4 architecture of the bake process 4

Shake for rebuilding
Shake for rebuilding

Shake is checking for changes in the needed input files with precision
and starts redoing what is necessary to update the result - filtering out
false alerts from watching for changes.

Shake relies on filenames and specifically extension. It is important
that files with different semantics have different extensions; for
example, templates must be separated by extension for the specific
processor.
Shake is managing all filenames and calls functions in the next (sub-
layer). It checks for existence of files and produces error messages
when a file is not found — no further error processing for missing
files neded.

In cases where files with the same extension (e.g. html or pdf) are
given (in the dough directory) and are produced for some other files
given as e.g. md files, the processing checks wether a file is given and
if not, tries to produce it.

Transformation of filepath to Path
Transformation of filepath to Path

The FilePath typed files are translated to Path type, which differenti-
ates relative and absoulute path to files or directories.

Processing

Processing layers are split again in two: a layer to read or write
files (using typed files and typed content) before it is passed to the
operations actually manipulating the data.

Issues : how to organize regression tests

In general, testing algebraic properties is difficult for complex data; I
have a method to organize regression tests. Results from operations
are stored and used for input later. The input and output of the
test functions are typed to avoid problems with confusion in types
between data written to disk and read from disk.

The construction of a test for a function is limited as another tested
function must produce the input data.



Command Line Interface (CLI) for bake

The main program of SSG ssgbake has a command line interface
(CLI) which includes switches to direct

The main program is ssgbake and it includes some swiches to taylor
the run:

• continuous update (watch) when filecontent on disk changes
update the current produced content to reflect changes applied to
the files on disk (w)

• start a web server to serve the produced homepage (s)

• update the test homepage (t), which is included in the code and
distributed with it,

• quick run without producing the pdf files, which slows down the
conversion (q)

• help. The swiches include in specific version of SSG are shown (h).



30. PackagesUsed.md

The Packages from Hackage used. Primarily pandoc, pandoc-
citeproc, doctemplates, but also twich, shake, scotty and aeson,
lens, and aeson-lens.

Pandoc

The central component of any modern site generator seems to be
Pandoc. At the moment only markdown is used for content and
output is html, additionally, pdf files for print output.

Pandoc-citeproc allows the inclusion of references and reformat
references based on a BibTex file, which includes the details.

Templates

Pandoc includes a template system, [doctemplates] (http://hackage.
haskell.org/package/doctemplates). Injects text values from a JSON
record (based on labels); it allows conditionals (‘i f (label) .. endi f )
and loops.

Watching file change : Twitch

Twitch uses FSnotify to connect programmed actions to activities
with files. It can be used to notify the process which bakes files about
changes in file content.

Caching

Shake is a Haskell version of make and can be used to convert a static
site (idee in Slick

JSON

The aeson Haskell implementation of JSON is used, together with
aeson-lens for getting and setting values in JSON records.

http://hackage.haskell.org/package/pandoc
http://hackage.haskell.org/package/pandoc-citeproc
http://hackage.haskell.org/package/doctemplates
http://hackage.haskell.org/package/doctemplates
http://hackage.haskell.org/package/twitch
http://hackage.haskell.org/package/shake
http://hackage.haskell.org/package/slick
http://hackage.haskell.org/package/aeson
http://hackage.haskell.org/package/aeson-lens


40 use of pandoc . md

The transformation uses Pandoc, in four steps: - read the file into
the pandoc structure - extract from the pandoc file all content
into a context - convert the context into the target format - fill the
context into a template to produce the result (respective a .tex file
to process by lualatex)

Read Markdown
Read Markdown

Reads the YAML header and the text content into a Pandoc data type.
The formating, in the header and the content, is converted from the
input format (e.g. markdown) into the internal Pandoc encoding.

This first step could read essentially any format, Pandoc accepts -
likely with minimal or no changes in other steps.

Extract all information into Context
Extract all information into Context

Extract the information in the MetaValue type into a Context
MetaValue; preserves the formating in the Pandoc format, but
separated into pieces.

Convert the Data to target format
Convert the Data to target format

The Pandoc structured formatted data are converted to the target
format (either Latex encoded as Text or HTML encoded as Text) -
each individual piece.

Fill the converted pieces into template.
Fill the converted pieces into template.

The specific templates for Daino must be compiled and are then
filled with converted pieces - separately to produce the HTML file
to be served and the .tex file to be processed by lualatex, which
produces the final .pdf.

Produced with ‘daino’ (Version versionBranch = [0,1,5,3,3], versionTags = []) from /home/
frank/Desktop/myHomepage/Essays/SSGdesign/09technical/index.md with latexTufte81.dtpl

arguments booklet

/home/frank/Desktop/myHomepage/Essays/SSGdesign/09technical/index.md
/home/frank/Desktop/myHomepage/Essays/SSGdesign/09technical/index.md

	Architecture of the bake process
	Command line processing:
	Processing of Layout (file settingsN.yaml)
	Watching for changes
	Shake for rebuilding
	Transformation of filepath to Path

	Command Line Interface (CLI) for bake
	30. PackagesUsed.md
	40 use of pandoc . md
	Read Markdown
	Extract all information into Context
	Convert the Data to target format
	Fill the converted pieces into template.


